

LEUSÁRY TO MELALUMPNIA









CONY 2

Bulletin No. 65-59

QUALITY OF

SURFACE WATERS

IN CALIFORNIA

1959

# PART I NORTHERN AND CENTRAL CALIFORNIA

Edmund G. Brown Governor



William E. Warne Director of Water Resources

July 1961

un. Tri

MAR 5 1962

LIBRARY



STATE OF CALIFORNIA
DEPARTMENT OF WATER RESOURCES
DIVISION OF RESOURCES PLANNING

# Bulletin No. 65-59 QUALITY OF SURFACE WATERS

IN CALIFORNIA 1959

# PART I NORTHERN AND CENTRAL CALIFORNIA

Edmund G. Brown Governor William E. Warne Director of Water Resources

July 1961







#### TABLE OF CONTENTS

| <u> </u>                                               | CLOS C |
|--------------------------------------------------------|--------|
| FRONTISPIECE                                           | ii     |
| LETTER OF TRANSMITTAL                                  | 111    |
| ORGANIZATION, STATE DEPARTMENT OF WATER RESOURCES      |        |
| ORGANIZATION, CALIFORNIA WATER COMMISSION x            | 1      |
| ACKNOWLEDGMENTS x                                      | 11     |
| INTRODUCTION                                           |        |
| SURFACE WATER QUALITY, DEPARTMENT OF WATER RESOURCES 6 |        |
| Summary                                                |        |
| North Coastal Region (No. 1)                           |        |
| Klamath River Basin                                    | )      |
| Smith River Basin                                      | 8      |
| Redwood Creek and Mad River Unit                       | 2      |
| Eel River Basin                                        | 8      |
| Mattole River-Mendocino Coast Unit 6                   | 14     |
| Russian River Basin                                    | 6      |
| San Francisco Bay Region (No. 2)                       | 7      |
| Napa River Basin                                       | 8      |
| Alameda Creek Basin                                    | 12     |
| Coyote Creek Basin                                     | 8      |
| Los Gatos Creek Basin                                  | .02    |
| Central Coastal Region (No. 3)                         | .07    |
| San Lorenzo River Basin                                | .08    |
| Soquel Creek Basin                                     | 12     |
| Pajaro River Basin                                     | .16    |
| Salinas River Basin                                    | 24     |

| = |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

|                |                                                                            | Page |
|----------------|----------------------------------------------------------------------------|------|
| Cent           | ral Valley Region (No. 5) (Cont.)                                          |      |
|                | Tulare Lake Drainage (5d)                                                  | 368  |
|                | Kings River Basin                                                          | 370  |
|                | Kaweah River Basin                                                         | 378  |
|                | Tule River Basin                                                           | 382  |
|                | Kern River Basin                                                           | 386  |
| Laho           | ontan Region (No. 6)                                                       | 395  |
|                | Susan River Basin                                                          | 396  |
|                | Truckee River Basin                                                        | 400  |
|                | Carson River Basin                                                         | 412  |
|                | Walker River Basin                                                         | 418  |
| CURFACE W      | ATTER QUALITY, OTHER AGENCIES' MONITORING PROGRAMS                         | 425  |
|                |                                                                            |      |
|                | PLATES                                                                     |      |
| Plate No.      |                                                                            |      |
| 1              | Stream Sampling Stations, North Coastal Region (No. 1) Following page      | 86   |
| 2              | Stream Sampling Stations, San Francisco Bay Region (No. 2) Following page  | 106  |
| 3              | Stream Sampling Stations, Central<br>Coastal Region (No. 3) Following page | 132  |
| l <sub>k</sub> | Stream Sampling Stations, Central Valley Region (No. 5) Following page     | 394  |
| 5              | Stream Sampling Stations, Lahontan Region (No. 6) Following page           | 424  |
|                |                                                                            |      |
|                | AFPENDIXES                                                                 |      |
| 6              | Procedures and Criteria                                                    | A-1  |
| В              | Basic Data                                                                 | B-1  |

WILLIAM E. WARNE



# STATE OF CALIFORNIA Denortment of Mater Resources

JUL 1 0 1960

Honorable Edmund G. Brown, Governor, and Members of the Legislature of the State of California

Water Pollution Control Boards

#### Gentlemen:

I have the honor to transmit Bulletin No. 65-59, entitled "Quality of Surface Waters in California, 1959, Part I, Northern and Central California". The period January through December 1959 is covered in this fifth volume of a continuing chronological series on quality of surface waters in California. Surface waters in Northern and Central California are discussed in Part I; Southern California surface water quality will be reported in Part II.

At the request of the State Water Pollution Control Board, a statewide surface water monitoring program was commenced in April 1951. As authorized by Section 229 of the Water Code, the Department of Water Resources has administered this program in cooperation with the State Department of Public Health, Bureau of Sanitary Engineering; the State Department of Fish and Game; the United States Geological Survey; and various other agencies and individuals. Under the statewide program samples from 210 stations, located on 143 different water sources, are collected and analyzed monthly to maintain surveillance on quality of surface waters in California. This volume reports the results of monitoring at 178 of these stations, located on 110 streams and lakes, in Northern and Central California.

During 1959 quality of surface waters in Northern and Central California was generally excellent, with only insignificant changes from previous years. During late summer and fall, the lower San Joaquin River

ADDRESS REPL P. O. BOX 388 SACI and the Sacramento-San Joaquin Delta contained water with mineral concentrations which were the maximum of record. The high mineral concentrations often caused the water to be classed as poor in quality. The poor quality water was attributed to low flows, resulting from below normal precipitation, which afforded only minor dilution to poor quality drainage and effluent ground waters entering the lower reach of the river and the delta.

Part II of this bulletin, which will include an evaluation of surface water quality conditions in Southern California, will be published at a later date.

William J. Warre

Dimatan

#### ORGANIZATION

## DEPARTMENT OF WATER RESOURCES DIVISION OF RESOURCES PLANNING

| William E. Warne Director of Water Resources                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------|
| James F. Wright                                                                                                             |
| Alfred R. Golze'                                                                                                            |
| William L. Berry                                                                                                            |
| Irvin M. Ingerson Chief, Engineering Services Branch                                                                        |
|                                                                                                                             |
| The activities in Northern California covered by this report and the preparation of this report were under the direction of |
| Meyer Kramsky Principal Engineer, Water Resources                                                                           |
|                                                                                                                             |
| Supervisor of activities in Northern California covered by this report was                                                  |
| Willard R. Slater Supervising Engineer, Water Resources                                                                     |
| This report was prepared by                                                                                                 |
| Wayne S. Gentry Associate Engineer, Water Resources James M. Windsor Assistant Civil Engineer                               |
| Assisted by                                                                                                                 |
| Curtis J. Peterson Junior Civil Engineer Edwin E. Crawford Civil Engineering Technician Harlan Proctor Engineering Aid II   |

#### ORGANIZATION

#### CALIFORNIA WATER COMMISSION

#### William H. Jennings, Chairman

Ralph M. Brody

George C. Fleharty

John W. Bryant

John J. King

John P. Bunker

Samuel B. Morris

Ira J. Chrisman

Marion R. Walker

William M. Carah Executive Secretary

George B. Gleason Chief Engineer

#### ACKNOWLEDGMENTS

The extensive coverage of the statewide surface water monitoring program is made possible through cooperation of federal, state and local agencies. The helpful cooperation of the following agencies is gratefully acknowledged:

#### Federal Agencies

Department of the Army
Corps of Engineers
Department of the Interior
Bureau of Reclamation
Geological Survey
Department of Health, Education and Welfare

Public Health Service

#### State Agencies

California Disaster Office, Radiological Service
Department of Fish and Game
Department of Public Health
Bureau of Sanitary Engineering
Division of Laboratories
State Water Pollution Control Board

#### Other Public Agencies

City and County of San Francisco
Kern County Land Company
Kings River Water Association

The Department of Water Resources wishes to especially thank the following federal and state agencies who granted permission for inclusion in this report of unpublished water quality data collected under various programs:

United States Department of the Interior

Bureau of Reclamation

Geological Survey

Central Valley Regional Water Pollution Control Board (No. 5)

In addition, the United States Geological Survey performed a substantial portion of the analyses required by this program under a cooperative agreement with the Department of Water Resources. The bacteriological determinations were made by the California State Department of Public Health and the radiological determinations by the California Disaster Office under provisions of an agreement with the State Water Pollution Control Board.



#### INTRODUCTION

Bulletin No. 65-59 is the fifth volume in a series on surface water quality conditions in California. Data presented were collected by the Department of Water Resources' surface water monitoring program and other public agencies in California. In addition to basic data, this bulletin contains evaluations and interpretations of significant quality variations detected during 1959 and, where possible, an explanation of the causes of these variations.

To disseminate quality data as soon as practicable, the department also publishes, and distributes a monthly report containing data and preliminary evaluations of detected quality variations. These reports are distributed to pollution control, public health, and other agencies and individuals.

An abundant and usable source of water is an essential commodity in man's present environment. To insure that California's rapidly expanding economy and increasing population are provided with a usable supply of water an effective surveillance program must be maintained.

The early detection and control of quality impairment is necessary, in order to insure the fullest beneficial use of the State's water resources. Realizing the need for a detection system, the State of California initiated a statewide surface water monitoring program in April 1951.

Since that time the monitoring program has been conducted by the Department of Water Resources in cooperation with numerous agencies and individuals. Other agencies have also maintained monitoring stations at various places throughout the State.

Part I of this bulletin presents water quality data and an evaluation of surface water quality conditions in Water Pollution Control Regions 1 and 2, the portion of Region 3 north of the San Antonio-Salinas River drainage boundary, Region 5, and the portion of Region 6 north of the Mono Lake drainage divide. Part II, to be published at a later date, will present data and an evaluation of surface water quality conditions in the southern portion of Region 3 (Santa Ynez, Santa Maria, Nacimiento, and San Antonio Rivers and the portion of Salinas River upstream from the confluence of San Antonio River), all of Region 4, Region 6 south of the northern Mono Lake drainage boundary and all of Regions 7, 8 and 9. The regions and the areas reported on in this volume are shown on the frontispiece map.

The 1959 stream sampling programs reported herein comprised
the collection of water samples and analyses from 178 stations on 110
streams and lakes throughout Northern and Central California. Previous
quality monitoring data are included in the following report and bulletins:

California Department of Public Works, Division of Water Resources, Water Quality Investigations, Report No. 15, "Quality of Surface Waters in California, 1951-1954"

California Department of Water Resources, Division of Resources Planning, Bulletin No. 65, "Quality of Surface Waters in California, 1955-1956"

---. Bulletin No. 65-57, "Quality of Surface Waters in California, 1957"

---. Bulletin No. 65-58, "Quality of Surface Waters in California, 1958"

The activities of the department's surface water monitoring program are authorized by Section 229 of the Water Code, which directs that:

"The department, . . . shall investigate conditions of the quality of all waters within the State, including saline waters, coastal and inland, as related to all sources of pollution of whatever nature and shall report thereon to the Legislature and to the appropriate regional water pollution control board annually, and may recommend any steps which might be taken to improve or protect the quality of such waters."

The basic objectives of the department's surface water quality monitoring program are:

- (a) to secure continuous and reliable water quality data, on a monthly basis, from a network of stations which will provide representative data pertaining to the quality of water in the major surface streams and lakes of the State;
- (b) to evaluate and interpret chemical, physical, biological and radiological information collected during the course of the program to develop a comprehensive understanding of the factors which make up and alter the water quality at any station; and
- (c) to detect changes in water quality and to notify the appropriate control agency, (regional water pollution control boards, state and local health departments, State Department of Fish and Game) when warranted.

The discussion of water quality data collected by the Department of Water Resources' surface water monitoring program is presented in this bulletin, in successive order, by water pollution control regions which are numbered and named substantially in accordance with the major surface drainage basins with which they are coterminous (see Frontispiece). For convenience in presentation, the Central Valley Region (No. 5), has been divided into four separate areas, 5a, 5b, 5c, and 5d. Area 5a embraces

the Sacramento Valley, 5b the San Joaquin Valley, 5c the Sacramento-San Joaquin Delta, and 5d the Tulare Lake Basin. Within each region, the discussion is presented by basins or stream groups. In each basin or stream group, the main stream is discussed first, followed by a discussion and summary of data, in downstream order, of all monitoring stations. The discussion for each monitoring station includes a detailed location description of the sampling point, period of quality record, a detailed discussion of water quality characteristics, and an analysis of significant water quality changes in 1959. For each station a presentation is given for the maximum and minimum concentrations of the mineral constituents in the water for the total period of record and for 1959; curves depicting the monthly variation, for the period of record, of stream flow, specific conductance, and, where applicable, pertinent problem mineral constituent concentrations.

Following the discussion and analysis of the Department of Water Resources monitoring program, a listing of water quality monitoring stations maintained by other agencies during 1959 is presented. This listing includes the name and number of the station, a description of the sampling point, the agency responsible for the station operation, and where known, the period of water quality record. We attempt is made in this bulletin to present an evaluation of quality monitoring data collected by other agencies.

Results of bacteriological and radiological determinations presented in this bulletin should be considered as only qualitative indicators and undue weight should not be given to quantitative values. The indicators contribute to long-term environmental studies.

Results of bacteriological examinations are expressed as the most probable number (MPN) of coliform bacteria per milliliter (ml) of sample. In view of the rapidity and frequency of change in the density of coliform organisms, frequent and lengthy sampling is necessary before a truly reliable evaluation can be made.

Results of radiological determinations are expressed in terms of activity, measured in micro-micro curies per liter ( $\mu\mu$ c/1). No well-defined limits have been established for maximum safe concentrations of unknown alpha and beta emitters in domestic water supplies. The International Commission on Radiological Protection has recommended provisional criteria for permissible concentrations of radioactivity in water. Even though evaluation criteria have been recommended by this commission, this bulletin does not attempt to evaluate the specific safety conditions. Pertinent features of these criteria are given in Appendix A.

Appendix A of this bulletin contains a discussion of field and laboratory procedures and methods, and the criteria utilized by the Department of Water Resources in evaluating the quality of water. Appendix B contains the physical, mineral, bacteriological and radiological data for samples collected during 1959.

### SURFACE WATER QUALITY, DEPARTMENT OF WATER RESOURCES MONITORING PROGRAM

#### Summary

During 1959 quality of surface waters in Northern and Central California was generally excellent, with only insignificant changes from previous years. During late summer and fall, the lower San Joaquin River and the Sacramento-San Joaquin Delta contained water with mineral concentrations which were the maximum of record. The high mineral concentrations often caused the water to be classed as poor in quality. The poor quality water was attributed to low flows, resulting from below normal precipitation, which afforded only minor dilution to poor quality drainage and effluent ground waters entering the lower reach of the rivers and the delta.

#### North Coastal Region (No. 1)

The North Coastal Region extends southward from the Oregon border 270 miles, to the northern boundary of Lagunitas Creek Basin in Marin County, and ranges in width from 180 miles at the Oregon boundary to 30 miles in the southern portion.

Terrain of this region is largely mountainous, with cliffs often several hundred feet high along the coast line, and steep canyons and numerous ridges with many peaks inland. Valley and mesa land, easily adaptable to agricultural development, comprises about 15 percent of the 19,586 square miles in this region. A fairly thick absorptive soil mantle covers much of the area and helps sustain stream flow through drier portions of the year.

Natural mean seasonal surface runoff is estimated to exceed 28,800,000 acre-feet. Principal hydrographic units in this region include the drainage basins of the Smith, Klamath, Mad, Eel, and Russian Rivers. Thirty-two sampling stations shown on Plate 1, "Surface Water Monitoring Program Stream Sampling Stations North Coastal Region (No. 1)", are being monitored to obtain information and to provide a continuing check on the quality of surface water resources in the North Coastal Region. Monitored streams are listed below with the number of sampling stations along each in parentheses.

Klamath River (5)
Antelope Creek (1)
Butte Creek (1)
Shasta River (1)
Scott River (1)
Salmon River (1)
Trinity River (3)
Smith River (1)
Redwood Creek (1)
Mad River (1)
Eel River (3)

Outlet Creek (1)
Eel River, Middle Fork (1)
Eel River, South Fork (1)
Van Duzen River (1)
Mattole River (1)
Noyo River (1)
Big River (1)
Navarro River (1)
Gualala River (1)
Russian River (3)
Russian River, East Fork (1)

A review of quality data revealed surface water in the northern portion of this region to be predominantly calcium-magnesium bicarbonate, while streams in the remaining portions were generally calcium bicarbonate in character. Excellent quality water for all but the most exacting requirements is found in North Coastal streams. During 1959 there was no appreciable change in the mineral quality of streams in the North Coastal Region.

#### Mamath River Basin

The California portion of the Klamath River Basin is located in the northern section and comprises over one-half the North Coastal Area. The watershed includes all tributaries downstream from the boundary between Oregon and California as well as those portions of Butte Valley (a basin of interior drainage), Lost River and Tule Lake Basins that lie in California. The Klamath's main tributaries in California are Trinity, Salmon, Scott, Shasta, and Lost Rivers. The Klamath River Basin encompasses 15,715 square miles of which approximately 10,020 square miles are in California. The average seasonal flow of the Klamath River into the Pacific Ocean is about 12,500,000 acre-feet.

Land classification surveys indicate approximately 405,000 acres of land in this basin are irrigable of which 182,000 acres are presently irrigated. The approximately 6,000,000 remaining acres are comprised of a series of mountain ranges separated by long, narrow river valleys. The mountainous areas and undeveloped valley lands are used extensively for livestock range, timber production, mining, and recreation. Support of fish and wildlife is of major importance to the welfare of this basin.

Numerous lumbermill operations and small communities discharge waste into the Klamath River. Most of these wastes are minor in quantity and do not result in a discernible quality impairment problem. Irrigation return causes some mineral impairment of tributaries to Klamath River; however, the overall effect is not significant.

Thirteen surface water monitoring stations are located in the Klamath River Basin. The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed.

| Monitoring Station                         | Page Number of<br>Station Discussion |
|--------------------------------------------|--------------------------------------|
| Klamath River near Copco                   | 12                                   |
| Klamath River above Hamburg Reservoir Site | 14                                   |
| Klamath River near Seiad Valley            | 16                                   |
| Klamath River at Somesbar                  | 18                                   |
| Klamath River near Klamath                 | 20                                   |
| Antelope Creek near Tennant                | 22                                   |
| Butte Creek near MacDoel                   | 24                                   |
| Shasta River near Yreka                    | 26                                   |
| Scott River near Fort Jones                | 28                                   |
| Salmon River at Somesbar                   | 30                                   |
| Trinity River at Lewiston                  | 32                                   |
| Trinity River near Burnt Ranch             | 34                                   |
| Trinity River near Hoopa                   | 36                                   |



#### KLAMATH RIVER NEAR COPCO (STA. 1)

Sampling Point The monitoring station is located in Section 36 of Township 48 North, Range 5 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank at the USGS gage 1 mile downstream from Copco No. 2 power plant of the California-Oregon Power Company, 500 feet downstream from Fall Creek.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Klamath River near Copco is excellent, a bicarbonate type with sodium as its most predominant cation, class 1 for irrigation, soft to slightly hard, and meets drinking water standards for mineral content.

Significant Water Quality Changes Concentrations of dissolved oxygen were generally lower throughout 1959 with the minimum of record, 4.7 ppm, being reported in June. This apparent deoxygenation of the river was possibly caused by algal bloom die-off, resulting in an increased B.O.D. along this reach.

| WATER QUALITY RANGES                                                                                                                                                                                                                |                                                                  |                                                                          |                                                 |                                                              |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|--|--|--|--|
| Item                                                                                                                                                                                                                                | Maximum of Record                                                | Minimum of Record                                                        | Maximum = 1957                                  | Minimum - LE                                                 |  |  |  |  |
| Specific conductance (micromnos at 25°C)                                                                                                                                                                                            | 1,1                                                              | 121                                                                      | 7-1                                             | Me                                                           |  |  |  |  |
| Temperature in OF                                                                                                                                                                                                                   | 71,                                                              | 36                                                                       | 7                                               | 9                                                            |  |  |  |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                         | 11,4                                                             | 5.7                                                                      | 8.2                                             | 4.7                                                          |  |  |  |  |
| pH                                                                                                                                                                                                                                  | 8.2                                                              | 6.,                                                                      | 7.8                                             | 7.6                                                          |  |  |  |  |
| Mineral constituents in parts per million Galcium (G.) Augmentum (Mg.) Sodium (Mg.) Fotas dim (G.) Carbonski m (G.) Carbonski m (G.) Salifate (SO.) Salifate (SO.) Chloride (CI.) Hitrate (W) Fluoride (F) Boron (B) Salifate (MG.) | 25<br>11<br>29<br>11<br>117<br>50<br>9,1<br>5,1,1<br>0,6<br>0,30 | 5.1<br>3.6<br>0.9<br>1.3<br>5.1<br>8.<br>0.0<br>1.2<br>0.0<br>0.0<br>5.3 | 13<br>10<br>7<br>1<br>98<br>29<br>9<br>1<br>0.1 | 10<br>6.1<br>12<br>2.<br>72<br>8.<br>2.8<br>1.2<br>0.0<br>22 |  |  |  |  |
| otal dissolved solids in parts per million                                                                                                                                                                                          | 250                                                              | 84                                                                       | 153                                             | TOF                                                          |  |  |  |  |
| Percent sodium                                                                                                                                                                                                                      | 55                                                               | 19                                                                       | 41                                              | 26                                                           |  |  |  |  |
| Hardnese as CaCO <sub>3</sub> in parts per million<br>Total<br>Noncarbonate                                                                                                                                                         | 115<br>28                                                        | 18                                                                       | 7L<br>3                                         | 49                                                           |  |  |  |  |
|                                                                                                                                                                                                                                     |                                                                  |                                                                          | 20                                              | 0.0                                                          |  |  |  |  |
| Coliform in most probable number per milliliter Radioactivity in micro-micro curies per liter Dissolved alpha Solid slpha Missolved bate                                                                                            | >7,000.<br>0.90<br>0.52<br>22.9                                  | 0.13<br>0.10<br>0.00<br>0.00                                             | 7,000.<br>0.90<br>0.37<br>7.93                  | 0.28<br>0.00<br>0.36<br>6.18                                 |  |  |  |  |
| Solid bets                                                                                                                                                                                                                          | 5.9                                                              | 0.00                                                                     | 2,05                                            | 0.79                                                         |  |  |  |  |

#### WATER QUALITY VARIATIONS



#### KLAMATH RIVER ABOVE HAMBURG RESERVOIR SITE (STA. 1c)

Sampling Foint Klamath River monitoring Station lc is located in Section 14 of Township 46 North, Range 10 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from a bridge on State Highway 96, in the center of the channel of flow, about 6 miles upstream from the mouth of Scott River, about 7 miles northeast of the town of Hamburg.

Period of Record December 1958 through December 1959.

Water Quality Characteristics Mineral classification of analyses of samples from this station show the water to be a bicarbonate type with no major cation. Qualitatively, this river is class 1 for irrigation, soft to slightly hard, and meets drinking water standards for mineral content. The concentration of most mineral constituents in Klamath River between Station 1 near Copco and Station 1c are fairly comparable. Based upon limited data, it appears that the Shasta River at times may slightly degrade water quality of the Klamath in the reach immediately above Station 1c.

Significant Water Quality Changes None.

| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Territoria        |                   |                                                                      | T                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------------------------------------------------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum of Record | Minimum of Record | Maximum = 1959                                                       | Minimum - 1955       |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | See 1959          | See 1959          | 259                                                                  | 170                  |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                   | 74                                                                   | 30                   |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 12 3<br>108                                                          | 7 7<br>8K            |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   | 7.9                                                                  | 7 4                  |
| Mineral constituents in parts per million Calcium (Calcium (Calciu |                   |                   | 19<br>10<br>20<br>3 2<br>0 7<br>117<br>31<br>12<br>3.0<br>0 2<br>0 2 | 12<br>6              |
| Total dissolved solids in parts per million<br>Parcent sodium<br>Parcheses as CaCO; in parts per million<br>Total<br>Monocarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   | 168<br>35<br>88                                                      | 125<br>26            |
| Turbidity (Not Measured)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                   |                                                                      |                      |
| Coliform in most probable number per milliliter (Mot<br>Radioactivity in micro-micro curies per liter<br>Dissolved sipha<br>Solid sipha<br>Dissolved bata<br>Solid shea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                   | 0.10<br>0.27<br>8.95                                                 | 1 00<br>1 00<br>3 59 |

WATER QUALITY VARIATIONS



KLAMATH RIVER ABOVE HAMBURG RESERVOIR SITE (STA. 1c)

### KLAMATH RIVER NEAR SEIAD VALLEY (STA. 2b)

Sampling Point Station 2b is located in Section 3 of Township 46 North, Range 12 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected at mid-depth, from the right bank, at the USGS gaging station, 0.4 mile upstream from Bittenbender Creek, about 14 miles downstream from the mouth of Scott River, and 2.2 miles west of the town of Seiad Valley.

Period of Record December 1958 through December 1959.

Water Quality Characteristics Since inception of monitoring of the Klamath River at this station, the water has been excellent in quality, calcium-magnesium bicarbonate in character, class 1 for irrigation, slightly hard, and has met drinking water standards for mineral content. There is normally no significant difference between the mineral content of the Klamath River at this station and above Hamburg Reservoir Site (Station 1c). However, it is noted that during periods of high inflow from the Scott River, the major tributary to the Klamath River between Stations 1c and 2b, regardless of flow conditions on the Klamath, a significant decrease in the mineral content of the Klamath River occurs. This condition was shown by conductivity values in April 1959, which decreased from approximately 250 micromhos at Station 1c to approximately 160 micromhos at Station 2b. This phenomenon indicates mineral content of Scott River is sufficiently low to more than offset the degradation of Klamath River caused by Shasta River.

Significant Water Quality Changes The maximum radioactivity found in the Klamath River Basin during 1959 was the 35.3  $\mu\mu$ c/1 total activity recorded at Station 2b in May. The activity decreased appreciably during the year to 8.3  $\mu\mu$ c/1 (micro-micro curies per liter) in September.

| WATER                                                             | QUALITY RAN       | GES               |                |                |
|-------------------------------------------------------------------|-------------------|-------------------|----------------|----------------|
| It-                                                               | Maximum of Record | Minimum of Record | Haximum = 1957 | Minimum - 1955 |
| Specific conductance (micromhom at 25°C)                          | Tee (91)          | See 121           | 25/1           | 191            |
| Temperature in OF                                                 |                   |                   |                | 3              |
| Dissolved oxygen in parts per million                             |                   |                   | 2              | 1              |
| Percent saturation                                                |                   |                   | 177.9          | 0              |
| PH                                                                |                   |                   |                | 0.7            |
| fineral constituents in parte per million                         |                   |                   |                | -              |
| Calcium (Ca)                                                      |                   |                   |                |                |
| Magnaeium (Mg)                                                    |                   |                   | 17.0           |                |
| Sodium (Na)                                                       |                   |                   | 7              |                |
| Potassium (K)                                                     |                   |                   | 3 A            | 1.2            |
| Carbonate (CO3)                                                   |                   |                   | la la          |                |
| Bicarbonate (HCO3)                                                |                   |                   | 1.18           | 9.9            |
| Sulfate (SO <sub>1</sub> )<br>Chloride (CI)                       |                   |                   | 50             | 7.00           |
| Nitrate (NO <sub>3</sub> )                                        |                   |                   |                | 2 .            |
| Fluoride (F)                                                      |                   |                   | 2.6            |                |
| Boron (B)                                                         |                   |                   | 2              | 1 ^            |
| Silica (SiO <sub>2</sub> )                                        |                   |                   | 40             | 17             |
| otal dissolved solids in parts per million                        |                   |                   | 166            | 100            |
|                                                                   |                   |                   |                |                |
| ercent sodium                                                     |                   |                   | 37             | 1"             |
| lardness as CaCO3 in parts per million                            |                   |                   |                |                |
| Total                                                             | Į.                |                   | gn             | × 0            |
| Noncerbonate                                                      |                   |                   | R              | 2.0            |
| Partidity (Not Measured)                                          |                   |                   |                |                |
| Coliform in most probable number per milliliter (Not<br>Measured) |                   |                   |                |                |
| adioactivity in micro-micro curies per liter                      |                   |                   |                |                |
| Dissolved alpha                                                   |                   |                   | 1 20           |                |
| Solid alpha                                                       |                   |                   | 2 56           | ^ hc           |
| Dissolved bate                                                    |                   |                   | 15 61          | 7 -1           |
| Solid beta                                                        |                   |                   | 19.00          | 0.00           |





### KLAMATH RIVER AT SOMESBAR (STA. 2)

Sampling Point The Somesbar station is located on the Klamath River in Section 4 of Township 11 North, Range 6 East, Humboldt Base and Meridian. Monthly grab samples were collected at mid-depth, from the left bank, 100 feet downstream from the USGS gage, 1 mile west of Somesbar post office and 300 feet downstream from Salmon River.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Since inception of the monitoring program, flow in Klamath River at Station 2 has been excellent in quality, calcium-magnesium bicarbonate in character, class 1 for irrigation, with a range from soft to slightly hard and has consistently met drinking water standards for mineral content. Review of data reveals a general improvement, averaging about 30 micromhos, in the mineral quality of Klamath River flow between Station 2b above Hamburg Reservoir Site and Station 2. This improvement is attributed to dilution by better quality tributary waters between the two stations.

| W                                               | ATER QUALITY RAN  | GES               |                |               |
|-------------------------------------------------|-------------------|-------------------|----------------|---------------|
| Itm                                             | Maximum of Record | Minimum of Record | Maximum - 1959 | Minimum - 195 |
| Specific conductance (micromhos at 25°C)        | 580               | 93 3              | Ang            | Loa           |
| Temperature in OF                               | 81                | 39                | 78             | h1            |
| Dissolved oxygen in parts per million           | 16.2              | 7 2               | 13.3           | R             |
| Percent saturation                              | 124               | 59                | 109            | 97            |
| Mq                                              | 8.8               | 6.3               | 8 7            | 7.3           |
| fineral constituents in parts per million       |                   |                   |                |               |
| Calcium (Ca)                                    | 23                | 9 ?               | 17             | 3             |
| Magnesium (Mg)                                  | 43.               | 2.6               | 8 1            | 7 2           |
| Sodium (Na)                                     | 22                | 1.8               | 1.00           | 1 0           |
| Potsasdum (X)                                   | 3 h               | 0.7               | 2 3            | 10.9          |
| Carbonate (CO3)                                 | 2                 | 0.0               | 2              | 1.0           |
| Bicarbonate (800a)                              | 124               | 50                |                |               |
| Sulfate (SOL)                                   | 35                | 3.5               |                | 9.6           |
| Chloride (CI)                                   | 9.0               | 0.0               | 6.2            | 25            |
| Hitrata (NO1)                                   | 2 4               |                   | 2              | 36            |
| Flaoride (F)                                    | 2 4               | 2.2               | 0.2            | 1             |
| Boron (B)                                       | 7.3               | 0.0               |                | 5.5           |
| 311ica (3102)                                   | 36                |                   | . 5            |               |
| 3111Ce (3105)                                   | 36                | 5.3               | 39             | 15            |
| Total dissolved solids in parts per million     | - Or              | 57                | 49             | 63            |
| Percent sodium                                  | 16                |                   | 3.6            |               |
| Sardness sa CaCO; in parts per million          |                   |                   |                |               |
| Total                                           | gR .              | 38                | 86             |               |
| Noncarbonate                                    | 18                | 0.5               | 9              |               |
| Partidity                                       | ⊒00.              | 0.0               | 700            | ,             |
| coliform in most probable number per milliliter | 2,400             | 0.045             | 620            | - 12          |
| ladioactivity in micro-micro curies per liter   |                   |                   |                |               |
| Dissolved alpha                                 | 0.27              | 0.09              | 7 27           | 95,500        |
| Solid alpha                                     | 0.72              | 0.00              | = 36           | W 10          |
| Dissolved beta                                  | 13.30             | 0.00              | 3.54           | 1 00          |
| Solid beta                                      | 22.5              | 7.00              | 72 95          | nin           |





### KLAMATH RIVER NEAR KLAMATH (STA. 3)

Sampling Point Station 3 is located in Section 17 of Township 13 North, Range 2 East, Humboldt Base and Meridian. Monthly grab samples were collected at mid-depth from the right bank at the USGS gaging station, about 6 miles upstream from the mouth, 3.3 miles east of Klamath (on Highway 101) and 0.4 mile upstream from Klamath Glen Road.

Period of Record April 1951 through December 1959.

water Quality Characteristics Antecedent data reveal Klamath River water, at this station, to be excellent in quality, calcium bicarbonate in character and class 1 for irrigation. It consistently ranges from soft to slightly hard and meets drinking water standards for mineral content.

In past years, Klamath River water, due to tributary inflow, has consistently undergone a gradual change in character from bicarbonate type with no predominant cation at Station 1 (near Copco) to a generally calcium bicarbonate type water at Station 3 (near Klamath). A slight decrease in the concentration of constituents, on the order of 25 micromhos from the upstream station to the downstream station, has also been noted.

Analyses of water samples collected from the Klamath River at Stations 1c and 2b disclose that the concentration of mineral constituents in the river normally increase to a maximum in the vicinity of these two stations.

Mineral content again decreases, as tributary inflows dilute mineral concentration, to a minimum at Station 3.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN                                          | GES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|
| Itam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                        | Minimum of Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum = 195 /                         | Hinimm - 195        |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 280                                                      | V4.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                     | 574                 |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 714                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                      | No.                 |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 %                                                     | 7 h<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 4                                    | 7.7                 |
| PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.3                                                      | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                       | 1.3                 |
| Hisaral constituents in parts per million Calcium (Calcium (Calciu | 11<br>17<br>170<br>170<br>170<br>17<br>1 5<br>1,54<br>29 | la () 2.6 la () 2.6 la () 2.7 la () | 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                     |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 192                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.57                                    |                     |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                      | 9                   |
| Marchess as CaCO <sub>3</sub> in parts per million<br>Total<br>Noncarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 <b>b</b><br>8                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -c<br>u                                 | 9                   |
| Parbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300                                                      | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Qr                                      | 1                   |
| oliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >7,000                                                   | ≥ 0€                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.000                                   | T-n6                |
| adicactivity in micro-micro curies per liter<br>Dissolved alpha<br>Dissolved beta<br>Solid abeta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2h<br>1 h3<br>16 00                                    | 0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | 7 17<br>7 4<br>7 00 |

WATER QUALITY VARIATIONS



# ANTELOPE CREEK NEAR TENNANT (STA. le)

Sampling Point The station is located in Section 25 of Township 43

North, Range 1 West, Mt. Diablo Base and Meridian. Monthly grab

samples were collected from the right bank. The sampling point is 4 miles downstream from Frog Lake, 17 miles southeast of the town of Mount Hebron, and 2.5 miles south of Tennant.

Period of Record March 1959 through December 1959.

Water Quality Characteristics Past analyses of samples of Antelope
Creek show it to be calcium bicarbonate in character, class 1 for
irrigation, soft, and meets drinking water standards for mineral content.
Significant Water Quality Changes None.

| WATER                                                                                                                                                                                                                                                                                             | QUALITY RAN       | GES               |                                                     |                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-----------------------------------------------------|-------------------------------------------------|
| Itm                                                                                                                                                                                                                                                                                               | Maximum of Record | Minimum of Record | Hasimum - 1959                                      | Hinimum - 195                                   |
| Specific comductance (micromhoe at 25°C)                                                                                                                                                                                                                                                          | See 1959          | See 1959          | 13.9                                                | lur n                                           |
| Temperature in Oy                                                                                                                                                                                                                                                                                 |                   |                   | 60                                                  | 32                                              |
| Diasolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                       |                   |                   | 1 A                                                 | 7 7<br>73                                       |
| Ne                                                                                                                                                                                                                                                                                                |                   |                   | 7 h                                                 | TI                                              |
| Withers! constituents in parts per million Calcium (Ca. Calcium (Ca. Magnesium (Mg) Sodium (Ws) Potas dium (H) Carbonate (OD) Sicarbonate (OD) Sicarbonate (SO) Sulfate (SO) Sulfate (SO) Filipia (SO) Filipia (SO) Silipia (SO) Silipia (SO) Silipia (SO) Silipia (SO) Silipia (SO) Silipia (SO) |                   |                   | 8 8 3 9 5 9 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5 2<br>1 7<br>1 9<br>3<br>0<br>23<br>1 0<br>0 5 |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                       |                   |                   | 88                                                  | < 5                                             |
| Percent sodium                                                                                                                                                                                                                                                                                    |                   |                   | 28                                                  | 13                                              |
| Hardness as CaCO3 in parts per million<br>Total<br>Woncarbonate                                                                                                                                                                                                                                   |                   |                   | 36<br>7                                             | 20                                              |
| Turbidity (Not Measured)                                                                                                                                                                                                                                                                          |                   |                   |                                                     |                                                 |
| Colifors in most probable number per milliliter (Not<br>Radioactivity in micro-micro curies per liter<br>Exsolved alpha<br>Edisolved bata                                                                                                                                                         |                   |                   | 7 41<br>7 54<br>3 36<br>17 16                       | 17<br>2 M<br>7 M                                |

WATER QUALITY VARIATIONS



ANTELOPE CREEK NEAR TENNANT (STA. 1e)

## BUTTE CREEK NEAR MACDOEL (STA. 1d)

Sampling Point Station ld is located in Section 30 of Township 45
North, Range l West, Mt. Diablo Base and Meridian. Monthly grab
samples were collected from the right bank 7.5 miles downstream from
Little Antelope Creek and 7 miles south of Macdoel.

Period of Record March 1959 through December 1959.

Water Quality Characteristics Samples of water from Butte Creek are a bicarbonate type with calcium and magnesium as major cations. This water is excellent in quality, class 1 for irrigation, soft, and has a mineral content within the limits for drinking water.

| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QUALITY RAN       | GES               |                                                                                 |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------------------------------------------------------------------|---------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record | Minimum of Record | Maximum - 47 /                                                                  | Hininum -   5 |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | See   2           | ee i .            |                                                                                 |               |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                   |                                                                                 |               |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 21                                                                              | 3             |
| pil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                   | 7 -                                                                             | 12.           |
| Mineral constituents in parts per million Calcium (G.) Augenesium (Mg) Sodium (Mg) Potassium (G) Blacebonate (GO) Blacebonate (GO) Blacebonate (GO) Blacebonate (GO) Flacetonate |                   |                   | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 |               |
| Total dissolved solids in parts per million<br>Percent sodium<br>Hardness as CeOO3 in parts per million<br>Total<br>Koncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                   | 26<br>3                                                                         | 6.            |
| Turbidity: (Not Measured)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                   |                                                                                 |               |
| Coliform in most probable number per milliliter (Not Measured) Radioactivity in micro-micro curies per liter Dissolved alpha Solid alpha Dissolved beta Solid alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                   | - (1                                                                            |               |





## SHASTA RIVER NEAR YREKA (STA. 1a)

Sampling Point Station lais located in Section 24 of Township 46 North, Range 7 West, Mt. Diablo Base and Meridian. Monthly water samples were collected from the right bank 0.5 mile upstream from the mouth of the Shasta River and 7 miles north of Yreka.

Period of Record December 1958 through December 1959.

water Quality Characteristics Since inception of a monitoring station on this river concentrations of mineral constituents, with the exception of boron, have been within the acceptable limits for nearly all beneficial uses. A good quality sodium-bicarbonate type water, moderate to very hard, is characteristic of samples from Shasta River. At times boron is detected in excess of 0.5 ppm, the upper limit for a class 1 irrigation water.

Significant Water Quality Changes During six months of 1959 boron exceeded 0.5 ppm in Shasta River. Boron in concentrations of this magnitude was generally characteristic of samples collected during late spring, the summer and early fall. The quantity of discharge in the river directly affected boron concentrations, with the lower flows being associated with higher concentrations. The source of boron in this river is believed to stem from irrigation return and mineralized spring waters.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN   | IGES              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| [tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Haximum of Record | Minimum of Record | Maximum - 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hinimum - 1955              |
| Specific conductance (micromnos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dec   1017        | 100   V 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/12                        |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                   | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | la la                       |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27                          |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| Wineral conetitomete in parte per million Calcium (Ca.) Magnesium (Mg   Sodium (Mg ) Fotas stum (T) Blacarbonate (ROC) Blacarbonate (ROC) Witrate (ROC) Filteriae (ROC) Filter |                   |                   | h   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   16   17   17 | 2h<br>28<br>2               |
| Total dissolved solids in parts per million<br>Percent sodium<br>Hardness as CaOO3 in parts per million<br>Total<br>Koncarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                   | N35<br>32<br>262<br>0 ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 287<br>24<br>118            |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                           |
| Coliform in most probable number per milliliter Radicactivity in micro-micro curies per liter Dissolved alpha Solid alpha Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                   | 0.30<br>0.45<br>14 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 2<br>0 00<br>0 28<br>0 00 |

#### WATER QUALITY VARIATIONS



## SCOTT RIVER NEAR FORT JONES (STA. 1b)

Sampling Point Scott River sampling station is located in Section 28 of Township 44 North, Range 10 West, Mt. Diablo Base and Meridian.

Monthly grab samples were collected at mid-depth, from the right bank, 150 feet south of the Fort Jones-Scotts Bar road, about 20 miles upstream from the mouth and 10.5 miles downstream from Fort Jones.

Period of Record December 1958 through December 1959.

Water Quality Characteristics A review of analyses reveals Scott River to be excellent in quality, magnesium-calcium bicarbonate in character and class 1 for irrigation. It ranges from slightly to moderately hard, and does not exceed the drinking water standards for mineral content.

Significant Water Quality Changes None.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATER QUALITY RAN                                                                                 | GES                                                                     |                                                                           |                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 1ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                                                | Minimum of Record                                                       | Maximum - 1959                                                            | Minimum - 195                                                           |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 1                                                                                              | 116                                                                     | 273                                                                       | 196                                                                     |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                                                                               | 37                                                                      | 60                                                                        | 17                                                                      |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.3                                                                                             | 8 2<br>83                                                               | 12 5                                                                      | A 2                                                                     |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R 1                                                                                              | 7.3                                                                     | A 1                                                                       | 7.3                                                                     |
| Wheral constituents in parts per million Calcium (Calcium | 11<br>  7<br>  4   7<br>  2   2<br>  7<br>  179<br>  10<br>  10, 0<br>  11<br>  0, 11<br>  0, 11 | 10<br>6 9<br>1 8<br>0.1<br>0.0<br>70<br>0.6<br>0.8<br>0.3<br>0.0<br>0.0 | 11<br>17<br>9<br>22<br>0 0<br>171<br>10<br>9 0<br>2 2<br>0 1<br>0 1<br>21 | 10<br>8 3<br>1 8<br>9 1<br>0 7<br>70<br>1 9<br>1 5<br>0 3<br>0 0<br>0 6 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90                                                                                               | 7 h                                                                     | 176                                                                       | 7 k                                                                     |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                                                | 5                                                                       | 9                                                                         |                                                                         |
| Hardness as $Ca\infty_3$ in parts per million Total Noncarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150                                                                                              | 56<br>0.0                                                               | 1 h7<br>8                                                                 | 59<br>0 0                                                               |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See 1959                                                                                         | See 1959                                                                | 30                                                                        | 10                                                                      |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62n                                                                                              | 0.62                                                                    | 620                                                                       | 0.62                                                                    |
| dadioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See 1959                                                                                         | See 1959                                                                | 0 20<br>0 4s<br>1 73<br>1.63                                              | 0 10<br>0.00<br>0 00<br>0 00                                            |





## SALMON RIVER AT SOMESBAR (STA. 28)

Sampling Point Station 2a is located in Section 1 of Township 11

North, Range 6 East, Humboldt Base and Meridian. Monthly water samples were collected at mid-depth, from the right bank, 0.5 mile east of Somesbar post office and 3 miles upstream from the confluence with the Klamath River.

Period of Record November 1958 through December 1959.

Water Quality Characteristics Antecedent data classify flow in Salmon River as excellent in quality, bicarbonate in character, soft to slightly hard, class 1 for irrigation and well within drinking water standards for mineral content.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN   | GES                        |                                              |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|----------------------------------------------|------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record | Minisum of Record          | Maximum - 1959                               | Minimum - 195                |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 176               | +10. p                     | 1.0                                          | 10.0                         |
| Tumpareture in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1)               | 39                         | 49                                           | 1                            |
| Diesolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 0              | A 3                        | 0.2                                          | 7                            |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 11              | 7.3                        |                                              |                              |
| Witherel constituents in parts per million Calcium (Calcium (Calci | W                 | 6<br>13<br>13<br>10<br>0 7 | 6<br>1<br>1 9<br>92<br>1 6 5<br>1 6 7<br>0 1 | 37<br>1<br>1 P               |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109               | h1                         | 109                                          | 1-1                          |
| Percent sodium lardness as CaCO3 to parts per million Total Noncarbonate Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24<br>68<br>11    | 28<br>0 o                  | 24<br>68<br>11                               | 28                           |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,400             | 0.06                       | 5 PUU                                        | 11 74                        |
| Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid hata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sea 1559          | 340 Ly30                   | 0 10<br>0 00<br>1 59<br>17 67                | 0 0r<br>0 00<br>0 00<br>0 14 |





# TRINITY RIVER AT LEWISTON (STA. 4a)

Sampling Point Station 4a is located in Section 19 of Township 33 North, Range 8 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected at mid-depth, from the left bank, at the USGS gaging station at Lewiston, and 0.8 mile downstream from Deadwood Creek.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Historical records at this station show the water to be excellent in quality, generally magnesium bicarbonate in character, class 1 for irrigation, with a range from soft to slightly hard, and within drinking water standards for mineral content.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN                         | GES               |                       |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------|-----------------------|-------------------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                       | Minimum of Record | Harimum 1000          | Hinteum ( 185)                            |
| Specific conductance (micromnos at 2500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.6                                     |                   | -6                    | -                                         |
| Temperature in Oy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *1                                      |                   |                       |                                           |
| Dissolved oxygen in parts per million<br>Percent seturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.1                                    | 5.9               | ×                     | 7.                                        |
| He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0                                     | - 1               |                       | 8.1                                       |
| Harri consiltents in parts per million Calcium (Cal Kagnesium (Ng   Sodium (Nm ) Polas mium (Car) Carbonate (Carbonate (Carb | 20.<br>11.<br>12.<br>14.<br>17.<br>18.  |                   | ***                   |                                           |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | lan .             | 125                   | pc.                                       |
| Percent sodium  tardness as CeDO; in parts per million  Total  Honcarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120                                     | 27                | 71                    | 4.                                        |
| Parbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |                       | 1                                         |
| Coliform in most probable number per milliliter Radioactivity in micro-micro curies per liter Dissolved slpha Chisolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 % % % % % % % % % % % % % % % % % % % | 00                | , ?<br>:<br>:<br>0 27 | 0 P. 1 P. 1 P. 2 P. 2 P. 2 P. 2 P. 2 P. 2 |





# TRINITY RIVER NEAR BURNT RANCH (STA. 4b)

Sampling Point The Burnt Ranch station is located in Section 19 of
Township 5 North, Range 7 East, Humboldt Base and Meridian. Monthly
grab samples were collected from mid-depth, from the left bank 500 feet
upstream from Cedar Flat Creek, 700 feet upstream from Highway 299
bridge at Cedar Flat, and 2.3 miles southeast of the town of Burnt
Ranch.

Period of Record April 1958 through December 1959.

Water Quality Characteristics Past water analyses from Station 4b show the water to be excellent in quality, calcium-magnesium bicarbonate in character, class 1 for irrigation, soft to slightly hard, and within drinking water standards for mineral content. A study of analyses of Trinity River waters reveals a slight increase in mineral concentrations, on the order of 30 micromhos, occurs between Station 4a (Lewiston) and 4b.

| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QUALITY RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GES               |                                          |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------|------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum of Record | Maximum = 19° /                          | Hinimum - L999               |
| Specific conductance (micromhos st 2500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ye.               |                                          | de -                         |
| Comperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L.                |                                          |                              |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ()                |                                          | 11                           |
| He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,2               | 7.4                                      | 7.3                          |
| Wineral constituents in parts per million falctum (Ca.) Ragmentum (Mg.) Sodium (Wg.) Potastium (CD) Bicarbonats (CD) Bicarbonats (CD) Bicarbonats (CT) Bicarbonats (CT) Filterate (WD) Fil | No. year of the control of the contr |                   | 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ₩ <sup>€</sup>               |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146               | 143                                      | 69                           |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 20                                       | А                            |
| Mardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                | 100<br>13                                | 36                           |
| Partidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | See 1999          | 90                                       | - 4                          |
| Coliform in most probable number per milliliter (Not<br>Measured)<br>Underschied alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | See 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | See 1959          | 0.ls1<br>0.09<br>15 56<br>6.02           | 0 18<br>0 00<br>4 14<br>5.04 |





# TRINITY RIVER NEAR HOOPA (STA. 4)

Sampling Point Station 4 is located in Section 31 of Township 8 North, Range 5 East, Humboldt Base and Meridian. Monthly water samples were collected from the left bank at the USGS gage 2 miles southeast of Hoopa, 0.5 mile downstream from Campbell Creek on the Hoopa Indian Reservation, and 12 miles upstream from its confluence with Klamath River.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Trinity River at Station 4 has historically been excellent in quality, magnesium-calcium bicarbonate in character, class 1 for irrigation, soft to moderately hard, and within drinking water standards for mineral content. Past records indicate a gradual increase of about 15 micromhos in the concentration of most dissolved minerals between Station 4b, Burnt Ranch, and Station 4.

| WA                                                               | TER QUALITY RAN   | GES               |                         |                   |
|------------------------------------------------------------------|-------------------|-------------------|-------------------------|-------------------|
| It-                                                              | Maximum of Record | Minimum of Record | Maximum = 1959          | Minimum - 1955    |
| Specific opraductance (micromhom at 25°C)                        | 243               | Rk                | 243                     | 1 ==              |
| Pemperature in OF                                                | Bo                | 41                | 76                      | h't               |
| Dissolved oxygen in parts per million<br>Percent saturation      | 128               | 67                | 12 6<br>10 <sup>6</sup> | 7 F<br>8,8        |
| Hq                                                               | 10.0              |                   | 8.1                     | 7.4               |
| Mineral constituents in parts per million<br>Calcium (Ca)        | 26                | 7                 | 18                      | 12                |
| Magnesium (Mg)<br>Sodium (Na)<br>Potaesium (K)                   | 15<br>A, b        | 2 3<br>1 h        | 15<br>A 4<br>1 1        | 7 1<br>2 -<br>0 1 |
| Carbonata (CO <sub>3</sub> ) Bicarbonata (ROO <sub>3</sub> )     | 2                 | 0 0<br>h7         | 126                     | 20                |
| Sulfate (SO <sub>1</sub> )<br>Chloride (CI)                      | 12                | 0.6               | 1/                      | F 8               |
| Witrate (NO <sub>3</sub> )<br>Fluoride (F)<br>Buron (B)          | 0.3               | 0.0               | 0.5                     | 0.0               |
| Silica (S102)                                                    | 21                | 11                | 15                      | 14                |
| Total dissolved solids in parts per million                      | 148               | 56                | 148                     | 64                |
| Percent sodium                                                   | 18                | 6                 | 13                      | 7                 |
| Bardness as CaCO; in parts per million<br>Total                  | 120               | ho.               | 120                     | 50                |
| Noncarbonate                                                     | 17                | 0.0               | 17                      | 1                 |
| Turbidity                                                        | 180               | 0.0               | 70                      | 1                 |
| Coliform in most probable number per milliliter                  | 7,000.            | <0.0hs            | 7,000                   | 8 04              |
| Radioactivity in micro-micro curies per liter<br>Dissolved alpha | 0.92              | 0.00              | 0.02                    | 101               |
| Solid alpha                                                      | 0.54              | 2.00              | 0.54                    | 1 27              |
| Dissolved beta                                                   | 36,46             | 0.00              | 1.09                    | 71                |
| Solid beta                                                       | 2.73              | 0.00              | 2.73                    |                   |

WATER QUALITY VARIATIONS



## Smith River Basin

The California portion of the Smith River Basin occupies approximately 780 square miles in the extreme northwest portion of the North Coastal Region. The major portion of the area is drained by the Smith River whose Middle and South Forks originate on the western slope of the Siskiyou Mountains, and whose North Fork has its headwaters in Curry County, Oregon. The basin is bounded by the Pacific Ocean on the west, the California-Oregon state line to the north, the Del Norte-Siskiyou County line to the east, and the Klamath River watershed divide to the south.

Topography of the area is generally mountainous though interrupted with numerous steep-walled canyons and stream valleys. Elevation varies from sea level to heights of over 6,000 feet. Total average annual runoff in the Smith River Basin is on the order of 2,900,000 acre-feet.

Rough but relatively low mountains cover approximately 95 percent of this river unit. The Smith River Plain which lies along the coast covers about 50 square miles of agriculturally adaptable land. Logging and forest products constitute the largest source of income, followed in order of their importance by agriculture (dairying and bulb raising), mineral production, recreation and commercial fishing.

Waste discharges constitute only a minor source of inflow to the Smith River watershed and have not created a water impairment problem.

A surface water sampling station is maintained on Smith River near Crescent City to monitor quality of runoff from this basin.



## SMITH RIVER NEAR CRESCENT CITY (STA. 3a)

Sampling Point Station 3a is located in Section 10 of Township 16 North, Range 1 East, Humboldt Base and Meridian. Monthly grab samples were collected from the left bank at the USGS gage, 8 miles east of Crescent City, 0.5 mile downstream from the south fork of the Smith River, and about 12 miles upstream from the mouth.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Past analyses of this water have shown

it to be excellent in quality, magnesium bicarbonate in character, class 1
for irrigation, and soft to slightly hard. It has consistently met
drinking water standards for mineral content.

| WATER QUALITY RANGES                                        |                   |                   |                |                  |
|-------------------------------------------------------------|-------------------|-------------------|----------------|------------------|
| Item                                                        | Maximum of Record | Minimum of Record | Maximum - 1959 | Minimum - 1955   |
| Specific conductance (micromhos at 25°C)                    | 157               | 65                | 141            | P7 7             |
| Temperatura in °F                                           | 7A                | 39                | 7              | l <sub>0</sub> 1 |
| Dissolved oxygen in parts per million<br>Percent saturation | 1 h 1<br>1 7 5    | 6 1               | 12.5           | A U              |
| PH                                                          | 8.6               | 6.3               | 7.0            | 7.2              |
| Mineral constituents in parts per million                   |                   |                   |                |                  |
| Calcium (Ca)                                                | 11                | 26                | 2.6            | 1.2              |
| Magnosium (Mg)                                              | 13                | 4.5               | 1.7            | 1.6              |
| Sodium (Na)                                                 | 6.5               | 1.0               | 3.5            | 2                |
| Potsesium (K)                                               | 7                 | 5.6               | 0.5            | 2                |
| Carbonate (CO3)                                             | F-10              | 10.00             | 0.0            | 0.0              |
| Bicarbonata (ROO)                                           | 89                | 30                | Ro             | 1-1              |
| Sulfate (SO <sub>1</sub> )                                  | 77                |                   | 5.0            | 6 A              |
| Chloride (CY)                                               | 2-0               | 9.00              | h.A.           | 2.5              |
| Nitrate (NO3)                                               | 1.50              | 3.0               |                | 2.0              |
| Flooride (F)                                                | 0.5               | 30.00             |                | 2.5              |
| Boron (B)                                                   | P. 18             | 26.0              | (7.)           | 0.1              |
| Silice (310 <sub>2</sub> )                                  | 27                | 11                |                | 3                |
| Total dissolved solide in parts per million                 | Ql <sub>4</sub>   | 1/1               | 9h             | hq               |
| Percent sodium                                              | 20                | 6                 | 12             |                  |
| Mardness as CaCOg in parts per million                      |                   |                   |                |                  |
| Total                                                       | 76                | 35                | 76             | 300              |
| Noncarbonate                                                | 11                | = 1               |                |                  |
| Parbidity                                                   | 15                | 3.6               | 20             | 1.5              |
| Coliform in most probable number per milliliter             | 530               | 10 Ohs            | 230            | 0.76             |
| ladicactivity in micro-micro curies per liter               |                   |                   |                |                  |
| Dissolved alpha                                             | 93                | 2.00              | 0.20           | 2.18             |
| Solid alpha                                                 | 5.                | 0.00              | 0.54           | 0.09             |
| Dissolved bets                                              | 27.00             | 0.00              | 3 87           | 3 46             |
| Solid bets                                                  | 23.27             | 2.00              | 2 67           | 2 1/8            |

WATER QUALITY VARIATIONS



# Redwood Creek and Mad River Unit

Mad River is a large stream, draining a total of 496 square miles in Humboldt and Trinity Counties. Redwood Creek drains an area of about 279 square miles, north of Mad River Basin in Humboldt County. Both of these streams enter the Pacific Ocean and estimated mean annual runoffs of Mad River and Redwood Creek are 925,500 acre-feet and 823,500 acre-feet, respectively. Like other streams in the North Coastal Region, precipitation and runoff are high during the winter months and generally quite low in the late summer and fall.

In both of these stream basins a total of only 21 square miles is classed as valley and mesa land, the remaining area being a rugged mountainous terrain. Lumbering activities comprise the major users of surface waters in these basins; however, water is diverted from Mad River for use as a municipal supply for the communities of Arcata and Eureka. Both of these streams support runs of anadromous fish and resident trout and are considered to have significant value as recreational areas.

Waste discharges entering these streams are insignificant and do not cause an impairment problem.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed.

|                        | Page Number of     |
|------------------------|--------------------|
| Monitoring Station     | Station Discussion |
| Redwood Creek at Orick | 44                 |
| Mad River at Arcata    | 46                 |



## REDWOOD CREEK AT ORICK (STA. 3b)

Sampling Point Redwood Creek sampling station is located in Section 4 of Township 10 North, Range 1 East, Humboldt Base and Meridian. Monthly grab samples were collected from the left bank on the downstream side of the U.S. Highway 101 bridge at Orick and about 2 miles upstream from the mouth.

Period of Record November 1958 through December 1959.

Water Quality Characteristics Past analyses show the water at Station 3b to be excellent in quality, calcium bicarbonate in character, class 1 for irrigation and within drinking water standards for mineral content. Significant Water Quality Changes None.

| WATER QUALITY RANGES                                                                                                                                                                                                             |                                                                                                                  |                                                                  |                                                                       |                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|
| Itm                                                                                                                                                                                                                              | Haximum of Record                                                                                                | Minimum of Record                                                | Maximum = .959                                                        | Hinimum = 195                           |
| Specific conductance (micromnos at 25°C)                                                                                                                                                                                         | 11/1                                                                                                             | 77.                                                              |                                                                       | 19 11                                   |
| Temperature in OF                                                                                                                                                                                                                | .10                                                                                                              | 1,7                                                              | 100                                                                   |                                         |
| Diagolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                      | h ( =                                                                                                            | 7 1                                                              | 20                                                                    | 77                                      |
| PM                                                                                                                                                                                                                               | 7                                                                                                                | 19                                                               | 7.0                                                                   | 6.0                                     |
| Mineral constituents in parts per million Calcium (Ca. Calcium (Ca. Magnesium (Mg.) Sodium (Mg.) Potassium (1) Electronate (OD) Bicerbonate (OD) Bicerbonate (ED) Mineral (CT) Hitrate (NO) Fluoride (T) Bicro (B) Silica (SiDc) | 27<br>4.1<br>7.3<br>1.5<br>7.1<br>1.7<br>7.1<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1 | A,A<br>1,6<br>2<br>4,1<br>1,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 7?<br>h 1<br>7 3<br>1 0<br>0 0<br>71<br>13<br>10<br>1 R<br>0 1<br>0.1 | 0 0 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Total dissolved solids in parts per million                                                                                                                                                                                      | 34                                                                                                               | 75                                                               | o/                                                                    | 75                                      |
| Percent modium                                                                                                                                                                                                                   | 5.1                                                                                                              | 9                                                                | 21                                                                    | 9                                       |
| Hardness as CaCO3 in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                  | 68<br>16                                                                                                         | 29<br>0,0                                                        | 66<br>16                                                              | 20                                      |
| Turbidity                                                                                                                                                                                                                        | See 1959                                                                                                         | Ser 1959                                                         | I/B                                                                   | 1                                       |
| Coliform in most probable number per milliliter                                                                                                                                                                                  | >7,000                                                                                                           | 0.62                                                             | >7,000                                                                | 0 65                                    |
| Radioactivity in micro-micro curles per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                  | See 1959                                                                                                         | See 1959                                                         | 0.20<br>0.27<br>0.00<br>4.51                                          | 0.00<br>0.00<br>0.00<br>1.88            |

WATER QUALITY VARIATIONS



## MAD RIVER NEAR ARCATA (STA. 6a)

Sampling Point Station 6a is located in Section 15 of Township 6

North, Range 1 East, Humboldt Base and Meridian. Monthly water samples are collected in center of stream from Highway 299 bridge, about 4.5 miles upstream from the mouth, and 3 miles northeast of Arcata.

Period of Record November 1958 through December 1959.

Water Quality Characteristics Runoff in Mad River is excellent in quality, calcium bicarbonate in character, class 1 for irrigation, soft to moderately hard, and within drinking water standards for mineral content.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                   |                                |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------|--------------------------------|---------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                       | Minimum of Record | Haslmun a /                    | Minimum70     |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                     | 9.1               |                                | 001           |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                      | 114               | -                              | 111           |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27-0                                    | 21                |                                | 21            |
| Hq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                   |                                | -3.1          |
| Hismari constituents in parts per million Calcium (Calcium (Calciu | W 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 7                 | 10 C                           | State parties |
| otal dissolved solide in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 174                                     | 64                | 1 la                           |               |
| ercest sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                      | 3                 | 12                             |               |
| ardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Woncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 136<br>16                               | l.o.              | 136<br>16                      | lo<br>m       |
| projet A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | See 1959                                | See 1959          | 50                             | 1             |
| oliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,000                                   | 10 The            | 7.700                          | -17 -145      |
| adioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid elpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | See 1949                                | See 1959          | 1 20<br>- 12<br>1 .61<br>8 .62 | 7 26          |

WATER QUALITY VARIATIONS



# Eel River Basin

The Eel River watershed traverses the south-central portion of the North Coastal Region. It drains an area of 3,701 square miles, of which 3,574 square miles are rugged mountains, scarred by numerous landslides and narrow, steep stream canyons. Several small river terraces and a broad coastal plain constitute the remaining 127 square miles in the basin. The Eel River has an average annual discharge of about 6.273,000 acre-feet.

Eel River water is used for irrigation, power development, industry, recreation, and public and domestic water supplies. Except for power diversions which discharge to Russian River Basin, these users divert extremely small quantities and the abundant water resources of this basin are largely undeveloped. Lumber by-product industries and irrigation are considered the most probable future users of significant quantities of water within the basin.

Waste discharges and irrigation return entering the Eel River at the present time are small in quantity and do not significantly impair the receiving waters.

The following tabulation presents the names of stations maintained to monitor surface water quality in this basin and the page on which each is discussed.

| Monitoring Station                 | Page Number of<br>Station Discussion |
|------------------------------------|--------------------------------------|
| Eel River near Dos Rios            | 50                                   |
| Eel River near McCann              | 52                                   |
| Eel River at Scotia                | 54                                   |
| Outlet Creek near Longvale         | 56                                   |
| Eel River, Middle Fork at Dos Rios | 58                                   |
| Eel River, South Fork near Miranda | 60                                   |
| Van Duzen River near Bridgeville   | 62                                   |



### EEL RIVER NEAR DOS RIOS (STA. 5d)

Sampling Point Station 5d is located in Section 31 of Township 21 North, Range 13 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected in the center of the channel from the highway bridge 250 feet upstream from the confluence of Outlet Creek, 7.5 miles northeast of Longvale and 8.5 miles south of Dos Rios.

Period of Record April 1958 through December 1959.

Water Quality Characteristics Past analyses identify the water at Station 5d as good in quality, calcium bicarbonate in character, soft to moderately hard, and within drinking water standards for mineral content. At times boron concentrations in excess of 0.5 ppm are found, placing this water in class 2 for irrigation. Although the source of boron in this river has not yet been identified, evidence indicates the boron originates from geologic formations existing in the watershed upstream from and in the vicinity of this station. Runoff from numerous mineralized springs, probably of deep-seated origin, also enter the waterway of Eel River upstream from this station. It has been established that springs high in boron exist throughout much of the Clear Lake area which is coterminous with the upper watershed of this basin.

| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QUALITY RAN                      | GES                        |                               |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|-------------------------------|----------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                | Minimum of Record          | Maximum - 1959                | Hinimum - 1955 |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.74                            | 100                        |                               |                |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180                              | date                       |                               |                |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.                              |                            | 120                           |                |
| Mq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                              | 1.1                        |                               | 1.0            |
| Minoral constituents in parts per million Calcium (Calcium (Calciu | 71<br>11<br>12<br>12<br>11<br>11 | 12<br>3,9<br>1,1<br>.7<br> | -9<br>1.<br>2.1<br>1.1<br>1.1 |                |
| Total dissolved solide in parts par million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 169                              | 71.                        | 168                           | 71             |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                              | 11                         |                               | 1              |
| Mardness as CaCO <sub>J</sub> in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 136<br>12                        | ur.                        | 1.0                           |                |
| Parbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                | 1                          |                               |                |
| Coliform in most probable number per milliliter (Mot<br>Measured)<br>Radioactivity in micro-micro curies per liter<br>Dissolved slpha<br>Solid slpha<br>Dissolved bata<br>Solid slpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | See 1959                         | Sae 1959                   |                               | 3              |

WATER QUALITY VARIATIONS



EEL RIVER NEAR DOS RIOS (STA. 5d)

### EEL RIVER NEAR MCCANN (STA. 5)

Sampling Point The McCann station is located in Section 3 of Township 2 South, Range 3 East, Humboldt Base and Meridian. Monthly water samples were collected from the center of the channel, from the McCann Bridge 46.5 miles upstream from the mouth.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Eel River water near McCann is calcium bicarbonate in character, class 1 for irrigation uses, with a range from soft to moderately hard, and consistently meets drinking water standards for mineral content. An increase in conductivity, averaging about 25 micromhos, usually occurs from Stations 5d to 5. Boron, however, decreases significantly from the upstream station to the downstream station. Boron concentrations at Station 5 range from 0 to 0.3 ppm.

This decrease in boron between the two stations is attributable to low boron content waters tributary to the Eel River between the two stations.

Significant Water Quality Changes During 1959, samples of water from Station 5 ranged from slightly to very hard, reaching the maximum for the period of record in December when 204 ppm hardness was reported.

The lack of dilution waters during the extremely low flow period, occurring during the latter part of the year, was probably the cause of the high concentrations of hardness found at this station.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TER QUALITY RAN                                                      | GES                                                             |                                                                      |                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| lton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum of Record                                                    | Minimum of Record                                               | Maximum = 1959                                                       | Minimum - 1959                                                              |
| Specific conductance (micromhos st 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 399                                                                  | 101                                                             | 300                                                                  | 13h                                                                         |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ap.                                                                  | lip.                                                            | 71                                                                   | h.h                                                                         |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15 h<br>150                                                          | 6.6<br>5h                                                       | 11 R                                                                 | 8 6<br>an                                                                   |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.6                                                                  | 6 =                                                             | 32                                                                   | 7.3                                                                         |
| Nineral constituents to parte per million Calcium (C. | 60<br>11<br>16<br>9.7<br>290<br>26<br>20<br>0.7<br>0.3<br>0.30<br>14 | 9,8<br>2.0<br>2.6<br>0.5<br>0.0<br>53<br>7.7<br>1.0<br>0.0<br>7 | 77<br>9.6<br>11<br>1 k<br>b<br>230<br>22<br>13<br>0.7<br>0.1<br>0.30 | 25<br>5.1<br>2.9<br>0.5<br>0.0<br>70<br>12<br>2.2<br>0.1<br>0.0<br>0.0<br>7 |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 519                                                                  | 5h                                                              | 214                                                                  | 72                                                                          |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                   | 9                                                               | 15                                                                   | А                                                                           |
| Hardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20h<br>25                                                            | 41<br>0.0                                                       | 20 h<br>25                                                           | 65<br>7                                                                     |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,100                                                                | 0.0                                                             | As,                                                                  | 1                                                                           |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >7,000.                                                              | <0.045                                                          | 23.                                                                  | 0.046                                                                       |
| Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid slpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.43<br>0.59<br>45.1                                                 | 0.00<br>0.00<br>0.00                                            | 0.72<br>0.09<br>2.08                                                 | 0.00<br>0.00<br>0.00<br>1.58                                                |

WATER QUALITY VARIATIONS



EEL RIVER NEAR McCANN (STA. 5)

### EEL RIVER AT SCOTIA (STA. 6)

Sampling Point The station on Eel River at Scotia is located in Section 5 of Township 1 North, Range 1 East, Humboldt Base and Meridian. Monthly grab samples were collected from the left bank approximately 0.6 mile downstream from Highway 101 bridge between Scotia and Rio Dell at the foot of Painter Street, and about 12 miles upstream from the mouth.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Antecedent data reveal the water at Station 6 to be excellent in quality, generally calcium bicarbonate in character, soft to moderately hard, and within the recommended limits for mineral content in drinking water. Only minor increases in mineral content occur between this station and Station 5 and on occasions, when tributary inflow rates are high, the mineral content of Eel River has decreased slightly in this reach.

| WA                                                                                                                                                                                                           | TER QUALITY RAN       | GES                          |                                        |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|----------------------------------------|---------------|
| Itom                                                                                                                                                                                                         | Maximum of Record     | Minimum of Record            | Maximum   1959                         | Minimum - 195 |
| Specific conductance (micromnos at 25°C)                                                                                                                                                                     | 01                    |                              |                                        | 10.0          |
| Comparature in OF                                                                                                                                                                                            | -11                   | Sec.                         | -                                      | 97            |
| Resolved oxygen in parts per million<br>Percent saturation                                                                                                                                                   | 6.7                   | 21                           | 141                                    | - 2           |
| Ne                                                                                                                                                                                                           |                       |                              |                                        | * (0.         |
| (Ineral constituents in parts per million<br>Calcium (Ca)<br>Magmesium (Mg)<br>Sodium (Ma)<br>Potantium (K)                                                                                                  |                       | .6                           | 25<br>11<br>11<br>1.6                  | 2h            |
| Carbonate (OO <sub>1</sub> ) Bicerbonate (NOO <sub>2</sub> ) Sulfate (SO <sub>2</sub> ) Sulfate (SO <sub>2</sub> ) Chloride (CT Hitrate (NO <sub>3</sub> ) Flooride (F) Boron (B) Silice (SlO <sub>2</sub> ) | 200<br>11<br>20<br>48 |                              | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 179           |
| otal dissolved solids in parts per million                                                                                                                                                                   | 254                   | 57                           | . 6                                    | 92            |
| wresst sodium                                                                                                                                                                                                | 26                    |                              | 20                                     | 1             |
| Marchees as CeCO3 in parts per million<br>Total "<br>Moncarbonate                                                                                                                                            | 83<br>575             | la 3                         | 159<br>23                              | 66<br>h       |
| Partidity                                                                                                                                                                                                    | 1,100                 | 1.00                         | 60                                     | 1             |
| coliform in most probable number per milliliter                                                                                                                                                              | >7,000                | m 45                         | 620                                    | 7 nhc         |
| adinactivity in micro-micro curiss per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                               | 7.73<br>1 22<br>17.30 | - 00<br>- 00<br>- 00<br>- 00 | 25<br>5<br>7 00<br>2 04                | 0 1"<br>5 15  |





### OUTLET CREEK NEAR LONGVALE (STA. 5b)

Sampling Point The station is located in Section 31 of Township 21 North, Range 13 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, 300 feet downstream from the railroad bridge, 200 feet upstream from the confluence with the Eel River, 7.5 miles northeast of Longvale and 8.5 miles south of Dos Rios.

Period of Record May 1958 through December 1959.

Water Quality Characteristics Since inception of a monitoring station on Outlet Creek, waters have been calcium bicarbonate in character, slightly to moderately hard and within drinking water standards for mineral content. The water in Outlet Creek, because of boron concentrations, ranges from class 1 to class 3 for irrigation use. Boron usually exceeds 0.5 ppm and periodically reaches values in excess of 2.0 ppm.

Significant Water Quality Changes During 1959, boron concentrations in Outlet Creek reached a maximum of 3.4 ppm in November and were sufficiently high during the last eight months of the year to cause the water to be class 2 or 3 for irrigation. The high concentrations of boron is attributed to the lack of dilution waters in Outlet Creek. The source of boron degradation to Outlet Creek has not as yet been ascertained.

However, it is believed that the source, as in the headwaters of the Eel River, is geologic formations and springs.

| WATER                                                                                                                                                                                                                                                                                                                                                      | QUALITY RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GES               |              |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|----------------|
| Item                                                                                                                                                                                                                                                                                                                                                       | Maximum of Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum of Record | Maximum 1917 | Hinimum - 195) |
| Specific conductance (micromnos at 2500)                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.0              |              | 700            |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                |
| Diagolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                | L.T., 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 200          |                |
| pH                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1               |              | -              |
| Mineral constituents in parts per million Calcium [6] Magnestum [6] Sodium (8] Potassium (7) Electronate (00) Bicarbonate (00) Bitrata (00) Fluorida (7) Boron (8) Silica (SlO2) | The state of the s | 2<br>2<br>3<br>3  |              |                |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                | 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                | 234          | P5             |
| Percent sodium                                                                                                                                                                                                                                                                                                                                             | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 2            |                |
| Bardness as CaCO <sub>T</sub> in parts per million<br>Total<br>Moncarbonats                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.8               |              | 7              |
| Turbidity                                                                                                                                                                                                                                                                                                                                                  | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |              | - 10           |
| Coliform in most probable number per milliliter Reasured Radioactivity in micro-micro curies per liter Dissolved slpha Solid slpha Dissolved beta Solid heta                                                                                                                                                                                               | See 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sea 1959          |              | 12             |





OUTLET CREEK NEAR LONGVALE (STA. 5b)

### EEL RIVER, MIDDLE FORK AT DOS RIOS (STA. 5c)

Sampling Point Station 5c is located in Section 6 of Township 21
North, Range 13 West, Mt. Diablo Base and Meridian. Monthly grab
samples were collected from the center of the channel from the highway
bridge 0.5 mile southeast of Dos Rios and 0.2 mile upstream from the
confluence with Eel River.

Period of Record April 1958 through December 1959.

Water Quality Characteristics A review of analyses of samples reveals water at this station to be calcium bicarbonate in character, soft to moderately hard, and to consistently meet drinking water standards for mineral content. Boron concentrations at times place this water in class 2 for irrigation.

Significant Water Quality Changes In respect to boron, waters at this station were class 1 during the entire 1959 year.

| WATER                                                                                                                                                                                                                               | QUALITY RAN       | GES               |                  |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|------------------|---------------|
| Itom                                                                                                                                                                                                                                | Maximum of Record | Minimum of Record | Hagimum - 1959   | Minimum - 19c |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                            | 374               | 100-1             | 374              | 1-            |
| Temperature in OF                                                                                                                                                                                                                   | -                 | - Ari             |                  |               |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                         | 2.5               | 35                | - 1              | 20            |
| pH                                                                                                                                                                                                                                  |                   | 776               |                  |               |
| Mindral conelisante in parte per million Calcium (C.) Magnesium (Ng.) Sodium (Ng.) Pota estim (C.) Bioschomate (CO) Bioschomate (BCO) Sichomate (C.) Hitrate (NO) Fluoride (C.) Hitrate (NO) Fluoride (P.) Boron (B.) Silice (SlO2) | 1<br>1<br>1<br>1  | That car          | and the state of |               |
| Total dissolved solide in parts per million                                                                                                                                                                                         | 207               | 54                | 207              | 56            |
| Percent sodium                                                                                                                                                                                                                      |                   |                   | 73               |               |
| Hardness 48 CaCO3 in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                     | - 5               | 10                | 8                | 192           |
| Turbidity                                                                                                                                                                                                                           | 100               |                   | 47               |               |
| Coliform in most probable number per millilliter (No: Measured) Radioactivity in micro-micro curies per liter Dissolved alpha Solid alpha Dissolved beta Solid beta                                                                 | See 1959          | See 1959          |                  | 12            |





### EEL RIVER, SOUTH FORK NEAR MIRANDA (STA. 7)

Sampling Point Station 7 is located in Section 30 of Township 3 South, Range 4 East, Humboldt Base and Meridian. Monthly water samples were collected from the right bank, at the USGS gage at Sylvandale camp grounds on U. S. Highway 101, 6 miles south of Miranda and about 12 miles upstream from the confluence with Eel River.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Past records show South Fork Eel River water to be excellent in quality, calcium bicarbonate in character, class 1 for irrigation, soft to moderately hard, and within the recommended limits for minerals in drinking water.

Significant Water Quality Changes Boron reached 0.5 ppm, the upper limit for class 1 irrigation water, in December 1959. Boron possibly occurs in higher concentrations in the upstream reaches of the South Fork since this fork of the Eel River originates in geological formations which are known to contribute boron to surface runoff.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATER QUALITY RAN              | IGES                                    |                     |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|---------------------|----------------------|
| 1tm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record             | Minimum of Record                       | Maximum   1959      | Hinimum - T95        |
| Specific conductance (micromnos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 72 1                                    |                     | (10                  |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                             | 44                                      | rk                  |                      |
| Diasolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i ia                          | 3                                       | 1100                | 3.5                  |
| Hq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                           | 1 h                                     | 5.0                 |                      |
| Hiseral constituents to parte per million Calcium (Calcium (Calciu | ), f,                         | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 142<br>0 c<br>14    |                      |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/1                           | 45                                      | 1 < 0               | 20                   |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.                            |                                         |                     | 14.                  |
| ardness as CaCO3 in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12h<br>1h                     | 28                                      | 124                 | 52                   |
| Parbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,300                         |                                         | 5                   | 1                    |
| coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,400                         | 50500N*                                 | 62                  | n n45                |
| adioactivity in micro-micro curies per liter<br>Dissolved slpha<br>Solid slpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 22<br>- 79<br>19.5<br>13.54 | 1,01<br>0.00                            | 0.20<br>0.36<br>4.4 | 0 ng<br>0 21<br>0 00 |

WATER QUALITY VARIATIONS



# VAN DUZEN RIVER NEAR BRIDGEVILLE (STA. 5a)

Sampling Point The station is located in Section 17 of Township 1

North, Range 3 East, Humboldt Base and Meridian. Monthly water

samples were collected at the USGS gage, from the center of the channel

from the bridge on Highway 36, 0.3 mile downstream from Pip Creek,

0.5 mile upstream from Rogers Creek, 4 miles west of Bridgeville and

about 20 miles upstream from its confluence with Eel River.

Period of Record April 1958 through December 1959.

Water Quality Characteristics Water at Station 5a is calcium bicarbonate in character, class 1 for irrigation, ranging from soft to moderately hard. It meets drinking water standards for mineral content. The quality of this water does not differ significantly from the quality of Eel River water at Scotia.

| W                                                                                                                                                                                                                                                                                                              | ATER QUALITY RAN                                                                | GES                          |                      |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|----------------------|--------------|
| It-                                                                                                                                                                                                                                                                                                            | Maximum of Record                                                               | Minimum of Record            | Maeimum = .919       | Hinimum - 19 |
| Specific conductance (micromhos at 2500)                                                                                                                                                                                                                                                                       | 111                                                                             | 7 . 7                        |                      | 711          |
| Tumpersture in or                                                                                                                                                                                                                                                                                              | -61                                                                             | h R                          | 1.0                  | -17          |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                    |                                                                                 | 93                           | 10                   | 72           |
| PH                                                                                                                                                                                                                                                                                                             |                                                                                 | 7.0                          |                      |              |
| Mineral conelitone in parte per million Caloium (G.) Magnastum (Mg.) Sodium (Mg.) Fotas dim (G.) Carbonate (G.) Carbonate (G.) Salirate (SO,) Salirate (SO,) Hitrate (W) Filocitic (C) Sitrate (W) | 2<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 1<br>0 1<br>17<br>0 1<br>0 1 | 12                   | 7 2          |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                    | 207                                                                             | 47                           | 207                  | h7           |
| Percent sodium                                                                                                                                                                                                                                                                                                 | Pl                                                                              | -                            | 21                   | 0            |
| Rardness as CaCO <sub>3</sub> in parte per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                    | 1942<br>P1                                                                      | 20                           | 52<br>725            | 100          |
| Turbidity                                                                                                                                                                                                                                                                                                      | See 1959                                                                        | See 1959                     |                      | 1            |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                | See 1959                                                                        | See 1959                     | 62                   | 2 174        |
| Radioactivity in micro-micro curies per liter<br>Dissolved slpha<br>Solid slpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                |                                                                                 |                              | 6 30<br>6 30<br>6 30 | 0.19         |

WATER QUALITY VARIATIONS



### Mattole River-Mendocino Coast Unit

The unit is comprised of several noncontiguous watersheds draining the south coastal portion of Region 1 and includes the following rivers: Mattole, Noyo, Big, Navarro and Gualala. These rivers drain approximately 1,290 square miles of predominately mountainous coast land with less than one percent of the area being valley and mesa lands. The combined annual mean seasonal runoff of these rivers is estimated to exceed 2,430,000 acre-feet.

Present development in this area is dependent on the lumber industry and to a limited extent on stock raising. Water development is largely on an individual basis with a few small public agencies formed to develop and distribute domestic and municipal supplies. Waste discharges from lumber industries and small communities have not created any significant water quality impairment problems in these basins.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this unit and the page on which each is discussed.

| Monitoring Station                       | Page Number of<br>Station Discussion |
|------------------------------------------|--------------------------------------|
| Mattole River near Petrolia              | 66                                   |
| Noyo River near Fort Bragg               | 68                                   |
| Big River near mouth                     | 70                                   |
| Navarro River near Navarro               | 72                                   |
| Gualala River, South Fork near Annapolis | 74                                   |
| near immaparra                           | 1 7                                  |



### MATTOLE RIVER NEAR PETROLIA (STA. 7a)

Sampling Point Station 7a is located in Section 11 of Township 2 South, Range 2 West, Humboldt Base and Meridian. Monthly grab samples were collected from the right bank at the USGS gage 0.2 mile downstream from Clear Creek, 1.3 miles upstream from North Fork, 1.2 miles southeast of Petrolia, Humboldt County, and about 5 miles upstream from the mouth.

Period of Record January 1959 through December 1959.

Water Quality Characteristics Water at Station 7a is calcium bicarbonate in character, excellent in quality, class 1 for irrigation, soft to moderately hard, and within mineral standards for drinking water.

Significant Water Quality Changes Radioactivity decreased from 15.7

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN   | GES               |                                             |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------------------------------|-----------------------|
| It-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record | Minimum of Record | Hazimum - 1959                              | Minimum - 1955        |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sep. 12-7         | See 1959          | 500                                         | 12                    |
| Temperature in Oy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                   | 7/                                          | h7                    |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 19 7                                        | Ag 2                  |
| Ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   | 1 2                                         |                       |
| **Itimaral consultaneme in parte per million Calcium (Calcium (Cal |                   |                   | h9<br>11<br>1<br>1<br>1<br>1<br>1<br>7<br>7 | ,<br>,<br>,<br>,<br>, |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   | 184                                         | 46                    |
| ercent modium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                   | . 0                                         | 1                     |
| lardness as CaCO3 in parte par million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   | 174                                         | 51                    |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                   | 30                                          | 100                   |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   | p linn                                      | *                     |
| Ladioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   | 200                                         | 25                    |
| Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   | 2 6                                         | 30                    |

WATER QUALITY VARIATIONS



### NOYO RIVER NEAR FORT BRAGG (STA. 10c)

Sampling Foint Station 10c is situated in Section 10 of Township 18

North, Range 17 West, Mt. Diablo Base and Meridian. Prior to November 1959, monthly grab samples were collected from the right bank, 3.5 miles east of Fort Bragg, and about 4 miles upstream from the mouth.

In November the station was moved upstream approximately one mile to its present site at the proposed Fort Bragg Municipal Water Supply intake. This relocation was made because of the occurrence of unusually high concentrations of most mineral constituents caused by sea-water incursion due to tidal action.

Period of Record January 1959 through December 1959.

<u>Water Quality Characteristics</u> Noyo River water at Station loc is excellent in quality. It is a bicarbonate type with calcium as its major cation. Mineral concentrations place this water in class 1 for irrigation, soft to slightly hard and within drinking water standards for mineral content.

|                                                                                                                                                                                                                                                       | VATER QUALITY RAN | 000               |                |                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------|-----------------------------------|
| It-                                                                                                                                                                                                                                                   | Maximum of Record | Minimum of Record | Maximum = 1959 | Hinimum - 1955                    |
| Specific comfuctance (micromhos at 25°C)                                                                                                                                                                                                              | See: 1919         | See 1959          | 176            | 113                               |
| Temperature in or                                                                                                                                                                                                                                     |                   |                   | 6              | 41                                |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                           |                   |                   | 11             | R/r                               |
| pM                                                                                                                                                                                                                                                    |                   |                   | 7 1            | 7.1                               |
| Mineral constituents in parts per million<br>Calcium (Cas (Pag)<br>Cas (Pag)<br>Sodium (Mas)<br>Potassium (C)<br>Bicarbonate (MOC)<br>Bicarbonate (MOC)<br>Sulfrate (S)<br>Sulfrate (S)<br>Hiterate (MC)<br>Fluoride (F)<br>Boron (B)<br>Silica (SOC) |                   |                   | 16             | 7 6<br>2 7<br>6<br>3 1 8<br>3 5 5 |
| Total dissolved solids in parts per million<br>Percent sodium                                                                                                                                                                                         |                   |                   | 113            | 80                                |
| Marchees as CaCO; in parts per million<br>fotal<br>Moncarbonsts                                                                                                                                                                                       |                   |                   | 67             | 7                                 |
| Parbidity                                                                                                                                                                                                                                             |                   |                   |                | -                                 |
| Coliform in most probable number per milliliter                                                                                                                                                                                                       |                   |                   | o, hm          | -6.00                             |
| Radioactivity in micro-micro curlss per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta                                                                                                                                                     |                   |                   | 3.10<br>12.05  | 1.00<br>7.00<br>7.10              |

WATER QUALITY VARIATIONS



# BIG RIVER NEAR MOUTH (STA. 8c)

Sampling Point Station 8c is located in Section 24, Township 17 North, Range 17 West, Mt. Diablo Base and Meridian. Monthly water samples were collected from the right bank approximately 12 miles upstream from the mouth about 9 miles east of Mendocino.

Period of Record January 1959 through December 1959.

Water Quality Characteristics Water at Station 8c is excellent in quality, calcium bicarbonate in character, soft to moderately hard and within drinking water standards for mineral content. Although it is class 1 for irrigation throughout the year, boron has reached the maximum recommended concentration of 0.5 ppm at various times. The source of the boron in this stream has not as yet been ascertained. Significant Water Quality Changes None.

| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R QUALITY RAN     | GES               |                                                                    |                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|--------------------------------------------------------------------|-------------------------------------------------|
| It-m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record | Minimum of Record | Harimum - 1959                                                     | Hinimum - 1955                                  |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | See 1959          | See 1919          | 211                                                                | 126                                             |
| Temperature in Oy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                   | 7                                                                  | 39                                              |
| Dissolved axygen in parts per million<br>Percent seturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 101 T                                                              | 8 1<br>86                                       |
| Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   | 1,6                                                                | 7.1                                             |
| Hiseral constituents in parts per million Calcium (Calcium (Calciu |                   |                   | 30<br>A A<br>16<br>2.8<br>0<br>127<br>14<br>16<br>1.2<br>1.5<br>2h | 12<br>3. h<br>7 5<br>7 7<br>7 0<br>5 h<br>1 6 5 |
| total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 154                                                                | 82                                              |
| Percent sodium<br>Pardness as CaCO3 in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                   | 28                                                                 | 23<br>86<br>01.0                                |
| Parbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                   | 3.                                                                 | 0.9                                             |
| Coliform in most probable number per milliliter (Not<br>Measured)<br>Iddicactivity in micro-micro curies per liter<br>Dissolved sipha<br>Solid slipha<br>Dissolved bets<br>Solid state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                   | 1.20<br>1.63<br>3.59<br>8.82                                       | .17<br>0109<br>00<br>0.00                       |

WATER QUALITY VARIATIONS



## NAVARRO RIVER NEAR NAVARRO (STA. 8b)

Sampling Point Navarro River sampling Station 8b is located in Section 7 of Township 15 North, Range 16 West, Mt. Diablo Base and Meridian.

Monthly grab samples were collected from the left bank at the USGS gage 2.7 miles downstream from North Fork, 5.4 miles upstream from the mouth and 6.6 miles west of Navarro.

Period of Record January 1959 through December 1959.

Water Quality Characteristics Past analyses show water at this station to be excellent in quality, calcium bicarbonate to calcium-magnesium bicarbonate in character, class 1 for irrigation, slightly to moderately hard, and within drinking water standards for mineral content.

| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATER QUALITY RAN  | GES               |                                                                           |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------------------------------------------------------------|---------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record | Minimum of Record | Maximum   1959                                                            | Minimum - 195             |
| Specific conductance (micromnos et 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | See 1959          | See 1949          | 31.7                                                                      | -88                       |
| Temperature in Oy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                   | 2-1                                                                       | 10                        |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 18 10                                                                     | # 8<br>91                 |
| PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   | 772                                                                       | 7.0                       |
| #Interest constituence in parts per million Calcium (Calcium (Calc |                   |                   | 10<br>12<br>24<br>2.0<br>0.<br>155<br>25<br>29<br>1 3<br>0.2<br>0.3<br>21 | 1A<br>7 2 8.5<br>1 0<br>0 |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 188                                                                       | 121                       |
| Narchess as CaOO <sub>3</sub> in parts per million<br>Total<br>Noncerbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 126<br>3                                                                  | 77 0 0                    |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   | 620                                                                       | 045                       |
| Radioactivity in micro-micro curies per liter<br>Dissolved slpha<br>Solld elpha<br>Dissolved bets<br>Solld bets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   | 0 09<br>0 42<br>2.16<br>6.73                                              | 0.00                      |

WATER QUALITY VARIATIONS



# GUALALA RIVER, SOUTH FORK NEAR ANNAPOLIS (STA. 9a)

Sampling Point Station 9a is located in Section 21 of Township 10

North, Range 14 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank at the USGS gage, 1,000 feet downstream from Wheatfield Fork Gualala River, 4.8 miles west of Annapolis, and about 8 miles upstream from the mouth.

Period of Record January 1959 through December 1959.

Water Quality Characteristics Gualala River is calcium-magnesium bicarbonate in character, class 1 for irrigation, slightly to moderately hard, and within drinking water standards for mineral content.

| WATER QUALITY RANGES                            |                   |                   |              |               |
|-------------------------------------------------|-------------------|-------------------|--------------|---------------|
| Ite                                             | Hazimum of Record | Minimum of Record | Maximum 1959 | Minisus - 194 |
| Specific conductance (micromnos at 25°C)        | See 177           | Tax P.            | -            | 160           |
| Temperature in °F                               |                   |                   | 7            | W             |
| Dissolved oxygen in parts per million           |                   |                   | h p          | 9             |
| Percent saturation                              |                   |                   | 16.1         | >3            |
| PH                                              |                   |                   | 8            | 1.1           |
| Mineral constituents in parts per million       |                   |                   |              |               |
| Celcium (Ca)                                    |                   |                   | 35           | H             |
| Hagnorium (Hg)                                  |                   |                   | 11           | 7             |
| Sodium (Na)<br>Potaestum (K)                    |                   |                   | 7            | 7 €           |
| Potaesium (X)<br>Carbonate (CO <sub>1</sub> )   |                   |                   |              | 9             |
| Bicarbonate (ROO3)                              |                   |                   | 1765         | Fee           |
| Sulfate (SO:)                                   |                   |                   | 17           | 7             |
| Chloride (CI)                                   |                   |                   | 14           | 7.0           |
| Nitrate (NO1)                                   |                   |                   |              |               |
| Fluorida (F)                                    |                   |                   | 1            | 3.0           |
| Boron (B)                                       | 1                 |                   | 1            | 0.0           |
| Silica (SiO2)                                   |                   |                   | 17           | 14            |
|                                                 |                   |                   |              |               |
| Total dissolved solide in parts per million     |                   |                   | 199          | 11            |
| Percent sodium                                  |                   |                   | 55           | 17            |
| Hardness as CaCO; in parts per million          |                   |                   |              |               |
| Total                                           |                   |                   | 140          | 79            |
| Noncerbonate                                    |                   |                   | 8            |               |
| Purbidity                                       |                   |                   | 2            | 0.3           |
| Coliform in most probable number per milliliter |                   |                   | -            |               |
| sollions in most broomers unmost ber willitter  |                   |                   |              | . 45          |
| Radioactivity in micro-micro curiss per liter   |                   |                   |              |               |
| Dissolved alpha                                 |                   |                   | 10.51        | .00           |
| Solid slpha                                     |                   |                   | 0.63         | 2.00          |
| Dissolved beta                                  |                   |                   | 0.00         | 2.30          |
| Solid beta                                      |                   |                   | 4.37         | 0.00          |

WATER QUALITY VARIATIONS



# Russian River Basin

The Russian River Basin lies in the southern end of the North Coastal Region (No. 1) and covers about 1,500 square miles, of which approximately 1,200 are mountains and foothills and the remainder valley and mesa lands. The watershed is bounded on the east by the Cow Mountain Range and on the west by the Coastal Range. Waters draining from the watershed flow into the Pacific Ocean at Jenner, approximately 15 miles downstream from Guerneville. The Russian River has a total annual flow of approximately 1,500,000 acre-feet.

Approximately 180,000 acre-feet of Eel River water is imported annually from Lake Pillsbury for power generation at Potter Valley Powerhouse within the Russian River watershed.

The most prominent uses of surface waters in this basin are recreational and industrial. The Russian River valley area contains a large number of recreational facilities for boating, swimming, and fishing. Logging and lumber operations and food processing comprise the major industrial uses of water. Approximately 300 square miles of the Russian River drainage basin are potential agricultural lands.

Most water users in the Russian River Basin discharge wastes to the river in quantities less than 0.5 mgd (million gallons per day). Three users, the Masonite Corporation, the City of Ukiah, and the City of Santa Rosa, discharge wastes in quantities over 0.5 mgd to the Russian River or its tributaries. During the nine-year period of quality record on the Russian River, none of these wastes discharges has seriously impaired the quality of surface waters.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed.

| Monitoring Station                        | Page Number of<br>Station Discussion |
|-------------------------------------------|--------------------------------------|
| Russian River near Hopland                | 78                                   |
| Russian River near Healdsburg             | 80                                   |
| Russian River at Guerneville              | 82                                   |
| Russian River, East Fork at Potter Valley |                                      |
| Powerhouse                                | 84                                   |

# RUSSIAN RIVER NEAR HOPLAND (STA. 8a)

Sampling Point Station 8a is located in Section 36 of Township 14 North, Range 12 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected at Largo Road bridge site, 0.6 mile east of Highway 101, and 3.8 miles north of Hopland.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Past analyses show Russian River at Station 8a to be generally calcium bicarbonate in character, soft to moderately hard, and chemically suitable for drinking water. The quality of water at Station 8a does not differ significantly from the quality at Potter Valley Powerhouse (Station 10a). Boron frequently causes the water at Station 8a to be class 2 for irrigation. Highly mineralized spring runoff and solution of minerals from geologic formations in tributary streams are the source of the boron in this river.

Significant Water Quality Changes For the first year since 1953, boron,

which reached the maximum of 0.5 ppm in December 1959, did not exceed the limit for class 1 irrigation water.

| WATER QUALITY RANGES                                                                                            |                                                                                 |                                                                |                                                                       |                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| It-m                                                                                                            | Maximum of Record                                                               | Minimum of Record                                              | Masimum - 1959                                                        | Minimum = 1955                                                          |  |
| Specific conductance (micromhos at 25°C)                                                                        | 274                                                                             | 120                                                            | 197                                                                   | 168                                                                     |  |
| Peoperature in °F                                                                                               | 84                                                                              | 45                                                             | 71                                                                    | 48                                                                      |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                     | 16.<br>150                                                                      | 7+0<br>68                                                      | 11.0                                                                  | 7.0                                                                     |  |
| liq                                                                                                             | · li                                                                            | 6.4                                                            | 7.9                                                                   | 7.1                                                                     |  |
| # # # # # # # # # # # # # # # # # # #                                                                           | 10<br>10<br>10<br>11<br>11<br>11<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 11<br>5.5<br>4.1<br>0.5<br>0.0<br>62<br>1.0<br>1.0<br>0.3<br>0 | 20<br>7.9<br>8.7<br>1.7<br>.0<br>11<br>8.6<br>9.<br>1.2<br>0.1<br>0.5 | 18<br>7.7<br>4.3<br>1.4<br>0.0<br>78<br>1.4<br>3.2<br>2.6<br>3.3<br>0.2 |  |
| otal dissolved solids in parts per million                                                                      | 161                                                                             | 71                                                             | 116                                                                   | 99                                                                      |  |
| ercent sodium                                                                                                   | 20                                                                              | 10                                                             | 19                                                                    | 10                                                                      |  |
| Sardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonate                                     | 116                                                                             | 5.2<br>0.0                                                     | 86<br>8                                                               | 70<br>0.0                                                               |  |
| Partidity                                                                                                       | 600                                                                             | 0.0                                                            | 30                                                                    |                                                                         |  |
| Coliform in most probable number per milliliter                                                                 | >7,000,                                                                         | Ø.0.5                                                          | 2,400.                                                                | 0.045                                                                   |  |
| tadicactivity in micro-micro curies per liter<br>Dissolved slphs<br>Solid slphs<br>Dissolved beta<br>Solid beta | 12<br>2.59<br>13.91<br>14.21                                                    | .02<br>.50<br>.23                                              | 0.51                                                                  | .19                                                                     |  |





#### RUSSIAN RIVER NEAR HEALDSBURG (STA. 9)

Sampling Point Healdsburg station is located in Section 22 of Township 9
North, Range 9 West, Mt. Diablo Base and Meridian. Monthly water samples
were collected from the left bank at the USGS gage, 2 miles east of
Healdsburg and 3.5 miles upstream from Dry Creek.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Russian River water at Station 9 is, with the exception of boron, good to excellent in quality, calcium bicarbonate to magnesium bicarbonate in character, ranges from soft to moderately hard and meets drinking water standards for mineral content. Prior to 1956, boron concentrations often exceeded the limit for class 1, and at times class 2, irrigation water. The major source of excess boron was detected to be an industrial discharge, which was discontinued in September 1956. Following its removal, boron concentrations have remained below 1.0 ppm. Dissolved minerals are found in slightly higher concentrations (averaging about 70 micromhos) at Station 9 than at the upstream Station 8a.

Significant Water Quality Changes During 1959 the water improved in quality with respect to boron. The boron limit for class 1 irrigation water was exceeded only twice, in February and August, with 0.6 ppm reported each month. The continuation of boron concentrations of less than 1.0 ppm during 1959 indicates that the boron content in this water has been stabilizing since the discontinuance of the degrading industrial waste discharge.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |                                                                 |                                                                |                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                 | Minimum of Record                                               | Maximum - 1959                                                 | Hinimam - 1959                                                  |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wale                                                              | 106                                                             | Male                                                           | 190                                                             |
| Temperature in °7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                                | 145                                                             | 77                                                             | 53                                                              |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11,-2                                                             | 7.0<br>70                                                       | 107                                                            | 7.6<br>83                                                       |
| PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.6                                                               | 6.3                                                             | 7.9                                                            | 7.3                                                             |
| Minaral constituents in parts per million Calcium (Calcium (Calciu | 11<br>16<br>19<br>3-2<br>6<br>179<br>14<br>14<br>0-1<br>4-5<br>98 | 10<br>5.1<br>3.2<br>0.8<br>0<br>58<br>2.9<br>1.5<br>0.00<br>5.6 | 24<br>16<br>19<br>1.5<br>179<br>6.6<br>14<br>1.6<br>0.1<br>0.6 | 23<br>12<br>0.9<br>1.4<br>0.0<br>75<br>7.2<br>0.0<br>0.0<br>0.0 |
| total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 204                                                               | 6Li                                                             | 50.9                                                           | 119                                                             |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36                                                                | 11                                                              | 23                                                             | 12                                                              |
| Mandanes as CaCO) in parts per million<br>Total<br>Moncarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11;2<br>16                                                        | 46<br>0.0                                                       | 142<br>16                                                      | 78<br>0.0                                                       |
| Turbild1 by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | λ,000                                                             | 0.                                                              | 40                                                             | 3                                                               |
| coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7,000.                                                           | 0.406                                                           | 2,100.                                                         | 0.13                                                            |
| Madioactivity in micro-micro curies per liter<br>Missolved alpha<br>Solid alpha<br>Missolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.30                                                              | , 33<br>, 00<br>, 30                                            | 3<br>-u/<br>- \(\frac{1}{2}\)                                  | . 9                                                             |

WATER QUALITY VARIATIONS



#### RUSSIAN RIVER AT GUERNEVILLE (STA. 10)

Sampling Point Station 10 is located in Section 32 of Township 8 North, Range 10 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected at the State Highway 12 bridge in Guerneville, and about 13 miles upstream from the mouth.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Water at Station 10 is calcium-magnesium bicarbonate in character, soft to very hard, and within drinking water standards for mineral content. As at all stations in the Russian River Basin, boron concentrations have often been in excess of class 1 irrigation limits. Prior to 1957, boron was frequently found in excess of class 2 requirements. After source of excess boron mentioned in the discussion of Station 9 was removed in September 1956, boron concentrations decreased significantly. During 1957 and 1958 the maximum concentration reported was 1.1 ppm, as contrasted to the maximum for the period of record of 3.0 ppm reported in October 1955. An average increase in conductivity of about 15 micromhos occurs between Stations 9 and 10 indicating only a slight increase in the amount of mineral constituents.

Significant Water Quality Changes During 1959 boron was not detected in excess of the 0.5 ppm limit for class 1 irrigation water at Station 10. The low boron concentrations at this station substantiate the conclusion, as stated in the discussion of Station 9, that the boron content of Russian River waters is approaching a steady state.

| WATER QUALITY RANGES                                                                                                                                                                                                                        |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| It-m                                                                                                                                                                                                                                        | Haximum of Hecord           | Minimum of Record | Maximum . 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hinters 190            |
| Specific conductance (micromnos at 25°C)                                                                                                                                                                                                    |                             | 17                | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tex                    |
| Temperature in °F                                                                                                                                                                                                                           | 200                         | ist.              | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All                    |
| Basolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                  | 1 1                         | 1 of              | 1(.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -29                    |
| No                                                                                                                                                                                                                                          |                             | 1.1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                    |
| Hiseral constituents in parts per million Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Carbonais (CO)) Carbonais (CO) Sulfats (CO) Sulfats (CO) Chioride (CT) Nitrats (WO) Fisoride (F) Stron (B) Silice (Silvg) | 10                          |                   | 100 mg / 100 | 7.,                    |
| otal dissolved solids in parts per million                                                                                                                                                                                                  | 426                         | -6.               | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                     |
| ercent modium                                                                                                                                                                                                                               |                             | 11                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                     |
| ardness as CeCO3 in parts per million<br>Total<br>Moncarbonsts                                                                                                                                                                              | 32<br>37                    | u.t.<br>Oa        | 147<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95<br>0 <sub>4-3</sub> |
| turbidity                                                                                                                                                                                                                                   | 1,000                       | 0                 | ¥1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                      |
| oliform in most probable number per milliliter                                                                                                                                                                                              | 7,300.                      | 3.045             | 62 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - u5                   |
| adioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                              | 3.81<br>-31<br>23.27<br>9.4 | 0.<br>3.<br>3.00  | 0.30<br>0.21<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.11<br>11             |





Sampling Point Station 10a is located in Section 6 of Township 17 North, Range 11 West, Mt. Diablo Base and Meridian. Monthly water samples for quality analyses were collected from the tailrace of the PG&E powerhouse, 3 miles northeast of the town of Potter Valley.

Period of Record June 1951 through December 1959.

Water Quality Characteristics Water at Station 10a is calcium bicarbonate in character, soft to moderately hard and within drinking water standards for mineral content. As at Station 8a, boron frequently causes the water to be class 2 for irrigation use. Water at this station is comprised of water exported from the Eel River Basin. Boron in waters at this station originates from geologic formations and mineralized springs along the upper reaches of Eel River.

Significant Water Quality Changes Radioactivity was significantly higher during 1959 than during past years of record with the exception of May 1953 when  $34.6~\mu\mu\text{c}/1$  total activity were reported. The total activity in May 1959 was reported as  $24.3~\mu\mu\text{c}/1$  and  $24.7~\mu\mu\text{c}/1$  in September.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                |                   |                             |               |                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|---------------|------------------------------|--|
| It-                                                                                                                                                                                                                                                                 | Maximum of Record | Minimum of Record           | Hestman - US9 | Minimum - 1955               |  |
| Specific conductance   micromhos at 25°C                                                                                                                                                                                                                            | 111               | 76                          | 208           | 114                          |  |
| Temperature in °F                                                                                                                                                                                                                                                   |                   | la la                       | 7             | 4                            |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                         |                   | 1,,                         | 194           | 157                          |  |
| pR                                                                                                                                                                                                                                                                  | 3.                | 1 -4                        | 1.0           | . 1                          |  |
| Mineral constituents in parts per million Calcium is. Calcium is. Magnesium (mg/ Sodium   Mg   Potas dium (%) Bleathorate (DD) Bleathorate (DD) Bleathorate (RD) Bleathorate (RD) Filterate (ND) Filterate (ND) Filterate (ND) Filterate (ND) Blice (SD) Stite (SD) |                   | 1.<br>1.<br>2.<br>3.<br>5.5 | 1             | 19                           |  |
| Total dissolved solids in parts per million                                                                                                                                                                                                                         | 13                | -                           | 125           | 68                           |  |
| Percent sodium                                                                                                                                                                                                                                                      | 17                | - 6                         | 16            | 17                           |  |
| Bardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonats                                                                                                                                                                                         | 102               | 42<br>0.=                   | 9 la<br>8     | 5la<br>O=0                   |  |
| Turbidity                                                                                                                                                                                                                                                           | 190               | 4.1                         | 70            | .8                           |  |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                     | 47,100.           | 10.UL                       | 610.          | 0.34                         |  |
| Radioactivity in micro-micro curias per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                     | 6<br>1            | 0.0°                        |               | 0.50<br>-11<br>11.70<br>7.65 |  |









STREAM SAMPLING STATIONS

NORTH COASTAL REGION (NO. 1)

#### Station Number

#### Station Name

Klamath River near Copco Shasta River near Yreka Scott River near Fort Jones Klamath River above Bamburg Reservoir Site Butte Creek near MacDoel Antelope Creek near Tennent Klamath River at Somesbar Salmon River at Somesbar Klamath River near Seiad Valley Klamath River near Klamath Smith River near Crescent City Redwood Creek at Orick Trinity River near Roopa Trinity River at Leviston Trinity River near Burnt Ranch Eel River near McCann Van Duzen River near Bridgeville Outlet Creek near Longvale Eel River, Middle Fork at Dos Rios Eel River near Dos Rios Rel River at Scotia Mad River near Arcata Eel River, South Fork near Miranda Mattole River near Petrolia Russian River near Hopland Navarro River near Navarro Big River near Mouth Russian River near Realdeburg Gualala River, South Fork near Annapolis Russian River at Guerneville Russian River, East Fork at Potter Valley Powerhouse Noyo River near Fort Bragg

44460



## San Francisco Bay Region (No. 2)

One of the most highly industrialized regions of California is encompassed by the boundaries of the San Francisco Bay Region. This region contains approximately 4,400 square miles in the north central coastal portion of California and includes the industrial and municipal complexes of the City of San Francisco, the Peninsula, and East Bay communities.

Prominent among the physical features of the region is the outstanding natural harbor consisting of San Francisco Bay, San Pablo Bay and that portion of Suisun Bay below Antioch. This harbor is the focal point of numerous valley basins drained by the vatercourses tributary to the bay. These valleys are interspersed and parallel the mountains and foothills of the Coast Range, which rise from sea level to elevations of over 4,000 feet and cover two-thirds of the bay region.

Estimated mean annual surface runoff is 1,245,000 acre-feet in this region. To maintain a surveillance on quality of surface runoff in this area, five monitor stations are maintained on five streams. The monitored streams and the number of the station on each (in parentheses) are as follows:

Napa River (1) Coyote Creek (1)
Alameda Creek (1) Los Gatos Creek (1)
Arroyo del Valle (1)

Analyses of samples collected from streams in the San Francisco Bay Region indicate bicarbonate type waters with generally no predominant cation. These waters are suitable for domestic and most industrial uses and range from class 1 to 2 for irrigation. Although precipitation during 1959 was generally below normal in this region, only minor changes in quality were detected by the surface water monitoring program.



## San Francisco Bay Region (No. 2)

One of the most highly industrialized regions of California is encompassed by the boundaries of the San Francisco Bay Region. This region contains approximately 4,400 square miles in the north central coastal portion of California and includes the industrial and municipal complexes of the City of San Francisco, the Peninsula, and East Bay communities.

Prominent among the physical features of the region is the outstanding natural harbor consisting of San Francisco Bay, San Pablo Bay and that portion of Suisun Bay below Antioch. This harbor is the focal point of numerous valley basins drained by the watercourses tributary to the bay. These valleys are interspersed and parallel the mountains and foothills of the Coast Range, which rise from sea level to elevations of over 4,000 feet and cover two-thirds of the bay region.

Estimated mean annual surface runoff is 1,245,000 acre-feet in this region. To maintain a surveillance on quality of surface runoff in this area, five monitor stations are maintained on five streams. The monitored streams and the number of the station on each (in parentheses) are as follows:

Napa River (1) Coyote Creek (1)
Alameda Creek (1)
Arroyo del Valle (1)

Analyses of samples collected from streams in the San Francisco Bay Region indicate bicarbonate type waters with generally no predominant cation. These waters are suitable for domestic and most industrial uses and range from class 1 to 2 for irrigation. Although precipitation during 1959 was generally below normal in this region, only minor changes in quality were detected by the surface water monitoring program.

### Napa River Basin

Napa River drains a watershed area of 417 square miles located at the north end of San Francisco Bay Region. The river flows southward through Napa Valley and discharges into San Fablo Bay. Average annual discharge of Napa River is estimated to be 186,300 acre-feet.

Napa River Basin includes approximately 157 square miles of fertile valley and mesa land. Agricultural pursuits are the major users of water and are the dominant economic enterprises of the basin. However, industrial and urban development has accelerated rapidly in the last decade and these are playing a proportionately larger role in the economy of the valley.

Numerous wastes from individual domestic, industrial and agricultural sources, and several community collection systems discharge into Napa River. None of these waste discharges individually exceed 0.3 mgd, except for the Napa County Sanitation District discharge of 4.1 mgd.

A surface water sampling station is maintained on Napa River near St. Helena to monitor quality of runoff from this basin.



#### NAPA RIVER NEAR ST. HELENA (STA. 72)

Sampling Point Station 72 is located in Section 32 of Township 8 North, Range 5 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected at the center of the stream, from the highway bridge 0.2 mile downstream from the USGS water stage recorder. This gage is located 1.0 mile east of Highway 128 and 2.5 miles southeast of St. Helena. Period of Record December 1951 through December 1959.

Water Quality Characteristics Chemical classification of past analyses show Napa River, at this station, to vary in character from calcium bicarbonate to calcium-sodium bicarbonate. Flow past Station 72 has met the criteria for class 1 irrigation supply, except for boron which generally ranges from 0.1 ppm to 1.0 ppm. Boron in waters entering Napa River is porbably derived from the geologic formations comprising the earth's mantle in this watershed. Hardness ranges from soft to moderately hard and concentrations of minerals in this water are within the limits for drinking water.

<u>Significant Water Quality Changes</u> During September 1959 the stream was dry and comprehensive analysis usually performed on the sample collected that month was omitted.

| WATER QUALITY RANGES                                        |                   |                   |                |                |  |
|-------------------------------------------------------------|-------------------|-------------------|----------------|----------------|--|
| Item                                                        | Haximum of Record | Minimum of Record | Maximum - 1959 | Minimum - 1955 |  |
| Specific conductance (micromhom at 25°C)                    | 433               | 108               | 395            | 57 W           |  |
| Temperature in OF                                           | An                | las.              | Ao.            | 50             |  |
| Dissolved oxygen in parts per million<br>Percent saturation | 15.0<br>175       | 5,5<br>60         | 13.2           | 6.2            |  |
| pR                                                          | 8.2               | 6,8               | 7.9            | 7.1            |  |
| Rineral constituents in parts per million                   |                   |                   |                |                |  |
| Calcium (Ca)                                                | 3.8               | 11                | 26             |                |  |
| Magnerium (Mg)                                              | 19                | h.0               | 11             |                |  |
| Sodium (Wa)                                                 | 32                | 6.6               | 24             | 16             |  |
| Potarsium (K)                                               | 8.3               | 1.8               | 3.4            |                |  |
| Carbonate (00g)                                             | 26                | 0,0               | 2              | 0,0            |  |
| Bicarbonate (ROO3)                                          | 210               | h.h.              | 196            | Ro             |  |
| Sulfate (SOL)                                               | la la             | la la             | 17             |                |  |
| Chloride (CI)                                               | 45                | 5.0               | 34             | 11             |  |
| Witrate (WO3)                                               | 6.2               | 0.5               | 2.1            |                |  |
| Fluoride (F)                                                | 0.5               | 0.1               | 7.5            |                |  |
| Boron (B)                                                   | 1.1               | 0.05              | 0.6            | 0.4            |  |
| Silice (310 <sub>2</sub> )                                  | 42                | 14                | 3A             |                |  |
| Total dissolved solids in parts per million                 | 988               | 71                | 263            | 145            |  |
| Percent sodium                                              | 41                | 15                | 38             | 5.7            |  |
| Hardness as CaCO; in parts per million                      |                   |                   |                |                |  |
| Total                                                       | 169               | 37                | 158            | 70             |  |
| Honcarbonate                                                | 30                | 0.0               | 50             | 0,0            |  |
| Turbidity                                                   | 70                | 0.0               | 60             | 0,0            |  |
| Coliform in most probable number per milliliter             | >7,000.           | <0.045            | 7,000.         | 2,62           |  |
| Radioactivity in micro-micro curies per liter               |                   |                   |                |                |  |
| Dissolved alpha                                             | 0.38              | 0,00              | 0.21           |                |  |
| Solid slpha                                                 | 0.48              | 0.00              | 0.29           |                |  |
| Dissolved beta                                              | 17.4              | 0,00              | 1.88           |                |  |
| Solid hata                                                  | 8 89              | 0.00              | h. 15          |                |  |

WATER QUALITY VARIATIONS



#### Alameda Creek Basin

Alameda Creek watershed is located east of and drains into the southern arm of San Francisco Bay. The drainage basin encompasses about 272 square miles of mountains and foothills of the Diablo Range and 157 square miles of valley and mesa lands. Mean seasonal natural runoff for Alameda Creek Basin is about 130,700 acre-feet. There are numerous water supply developments in this watershed which greatly affect the runoff characteristics of Alameda Creek.

Agricultural development is still significant in the valley areas of the basin; however, urban, industrial, and commercial growth has been given considerable impetus by the expanding East Bay economy. Surface water in the basin is insufficient to meet present demands, and additional imported water supplies will be needed to sustain the present rate of growth.

Numerous waste discharges, originating from industrial and municipal developments, are discharged into the Alameda Creek watershed waterways. A list of the major waste discharges in this watershed and their daily outflows are:

| City of Livermore                             | 1.0 mgd       |
|-----------------------------------------------|---------------|
| City of Pleasanton                            | 0.6 mgd       |
| Holly Sugar Company at Alvarado, California   | 1.6 mgd       |
| Pacific States Steel, Niles, California       | 70.5 mgd      |
| Parks Air Force Base                          | 0.5 mgd       |
| Rickenbacker Dairy                            | 0.32-1.29 mgd |
| Union Sanitary District, Fremont, California  | 70.5 mgd      |
| West Vaco Chemical Company, Newark, Californi | la 1.34 mgd   |

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed.

# Monitoring Station

## Page Number of Station Discussion

Alameda Creek near Niles Arroyo del Valle at V.A. Hospital 94 96

### ALAMEDA CREEK NEAR NILES (STA. 73)

Sampling Point The sampling point for this station is located in Section 15, Township 4 South, Range 1 West, Mt. Diablo Base and Meridian. Monthly water samples were collected from the right bank at the concrete control structure of the USGS gaging station located 0.2 mile downstream from the railroad bridge and 1.2 miles northeast of Niles.

Period of Record December 1951 through December 1959. The stream is dry a portion of each year; consequently, data are not available for all months.

Water Quality Characteristics Since inception of a monitoring station on this stream the water has been bicarbonate in character with none of the major cations, calcium, magnesium, or sodium, being predominant.

Due to fluctuation of electrical conductivity, concentrations of total dissolved solids, or boron, singly or in combination, this water ranges from class 1 to class 2 for irrigation use. The source of boron originates from springs in the north and western portions of the watershed. The water is moderate to very hard. From the standpoint of mineral constituents, this water meets the criteria for domestic use.

Significant Water Quality Changes None.

| WATER QUALITY RANGES                                                                                                                                                                                                                      |                                                                        |                                                                              |                                                                              |                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------|--|
| It-                                                                                                                                                                                                                                       | Maximum of Record                                                      | Minimum of Record                                                            | Hazimum - 1959                                                               | Minimum - 1959         |  |
| Specific conductance (micromace at 25°C)                                                                                                                                                                                                  | 1,500                                                                  | 246                                                                          | 1,060                                                                        | £160                   |  |
| Temperature in OF                                                                                                                                                                                                                         | 76                                                                     | 41                                                                           | 74                                                                           | 44                     |  |
| Diasolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                               | 17.0<br>158                                                            | 6.3<br>54                                                                    | 12.5<br>10A                                                                  | 8.4                    |  |
| Hq                                                                                                                                                                                                                                        | 8.5                                                                    | 7.0                                                                          | A.1                                                                          | 7.5                    |  |
| Mineral constituents in parts per million<br>Calcium (C.)<br>Magnesium (Mg)<br>Sodium (Ma)<br>Potardium (C)<br>Carbonatu (CO)<br>Smirta (SO)<br>Smirta (SO)<br>Smirta (SO)<br>Fluoride (CT)<br>Hitrate (MC)<br>Fluoride (P)<br>Potron (B) | 70<br>136<br>16<br>16<br>83<br>870<br>150<br>210<br>6.1<br>0.4<br>1.80 | 5.7<br>1P<br>1h<br>1.7<br>0.0<br>110<br>90<br>0<br>0.B<br>0.0<br>0.21<br>2.9 | 63<br>hp<br>90<br>3,h<br>0.0<br>14h<br>140<br>PP<br>0.0<br>0.2<br>1.1<br>2.9 | 36<br>0.0<br>201<br>In |  |
| Total dissolved solids in parts per million                                                                                                                                                                                               | 91.5                                                                   | 150                                                                          | 646                                                                          | 390                    |  |
| Percent sodium                                                                                                                                                                                                                            | 38                                                                     | 20                                                                           | 35                                                                           | 5#                     |  |
| Hardness as $C_6\infty_3$ in parts per million Total Noncarbonate                                                                                                                                                                         | 474<br>366                                                             | 56<br>5                                                                      | 396<br>184                                                                   | 24.2<br>36             |  |
| Turbidity                                                                                                                                                                                                                                 | 550                                                                    | 0.3                                                                          | 30                                                                           | 1                      |  |
| Coliform in most probable number per milliliter                                                                                                                                                                                           | 7,000.                                                                 | 0.045                                                                        | 230.                                                                         | 0.06                   |  |
| Madioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid sipha<br>Dissolved beta<br>Solid beta                                                                                                                           | 0.42<br>2.82<br>13.47                                                  | 0.00<br>0.00<br>0.00<br>0.00                                                 | 0.41<br>0.62<br>2.25<br>0.31                                                 |                        |  |

WATER QUALITY VARIATIONS



Sampling Point The location of this station is Section 4, Township 4

South, Range 2 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank at the USGS gage, adjacent to Arroyo Road. The gage is located immediately upstream from the Veterans Administration Hospital bridge, approximately 4.5 miles south of Livermore.

<u>Period of Record</u> July 1958 through December 1959. Arroyo del Valle is dry during a portion of each year and water quality data are not available for all months.

Water Quality Characteristics A review of available analyses show this water to consistently exhibit a bicarbonate characteristic; however, no specific cation is predominant. Calcium, magnesium, and sodium are present in significant amounts; and in approximately equal equivalents per million. With the exception of a single boron determination of 2.7 ppm in August 1959, this water has met class 2 irrigation criteria. Although the water is very hard, it meets the limits for mineral constituents in drinking water.

Significant Water Quality Changes None.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                                                        |                                                   |                                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|--|
| It-m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Haximum of Record                                  | Minimum of Record                                      | Naximum - 1959                                    | Hinisum - 1955                                                                        |  |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N,A11                                              | \$76                                                   | 1,390                                             | h7f                                                                                   |  |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ak                                                 | 59                                                     | 68                                                | =>                                                                                    |  |
| Diasolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 . 2                                              | h+1<br>h1                                              | 1 109                                             | h.5<br>bA                                                                             |  |
| pit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.1                                                | 7.3                                                    | 8.1                                               | Tah                                                                                   |  |
| Wherel constituents in parts per million Calcium (Calcium | 11 - f h 1 h 2 8.6 R h 5 9 169 159 3.5 0.h 2.7 3 h | 27<br>28<br>20<br>1.7<br>221<br>55<br>15<br>0.0<br>0.3 | A1 (h 140 A.6 A A A A A A A A A A A A A A A A A A | 20<br>20<br>20<br>1 7<br>1 7<br>20<br>21<br>55<br>15<br>0 0<br>0 0<br>0 0<br>0 1<br>3 |  |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 870                                                | 288                                                    | Ageo                                              | 288                                                                                   |  |
| Percent sodius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43                                                 | 17                                                     | h3                                                | 17                                                                                    |  |
| Hardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 526<br>150                                         | 210                                                    | 3°#<br>68                                         | 210<br>0.0                                                                            |  |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See 1959                                           | See 1959                                               | 0.5                                               |                                                                                       |  |
| Coliform in most probable member per alliliter (Mot<br>Measured)<br>Radioactivity in micro-micro curies per liter<br>Dissolved slpba<br>Solid slpba<br>Dissolved bata<br>Solid bata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.52<br>0.62<br>6.18<br>3.84                       | u.e8<br>0.00<br>5.10<br>€.71                           | 0.52<br>0.62<br>5.10<br>1.96                      |                                                                                       |  |





#### Coyote Creek Basin

Coyote Creek originates in the Diablo Range in the southeast corner of the San Francisco Region. It flows northeasterly through a portion of Santa Clara Valley and discharges into San Francisco Bay. Coyote Creek Basin drains 404 square miles of which approximately one-fourth is valley and mesa lands. The creek has a total annual flow of about 89,000 acre-feet.

Land use in the valley areas of this basin is devoted to intensive agricultural production. There has been considerable recent industrial development in the vicinities of San Jose and Milpitas, accompanied by a large population growth.

Several waste discharges are tributary to Coyote Creek. Most of these discharges are of minor quantities. The significant waste discharges are the outflow of the primary treatment plant receiving industrial and domestic waste from the City of San Jose which exceeds 20 million gallons per day (mgd) and the Milpitas Sanitary District which discharges about 1.0 mgd from its secondary treatment plant.

A surface water sampling station is maintained on Coyote Creek near Madrone to monitor quality of runoff from this basin.



#### COYOTE CREEK NEAR MADRONE (STA. 82)

Sampling Point The station is located in Section 9, Township 9 South, Range 3 East, Mt. Diablo Base and Meridian, and lies in the northwest corner of the San Jose Grant. Monthly water samples were obtained from the right bank at the USGS gaging station, 0.2 mile downstream from the county road bridge, 2.8 miles northeast of Madrone.

Period of Record January 1952 through December 1959.

Water Quality Characteristics Past chemical analyses of Coyote Creek near Madrone show it to be characteristically a calcium-magnesium type water. This water consistently meets the criteria for a class 1 irrigation supply and the mineral constituent standards for drinking water. Water at this station ranges from slightly hard to very hard with quality fluctuations throughout the year being relatively small.

Significant Water Quality Changes None.

| WATER QUALITY RANGES                                                                                                                                                                                                                        |                                                                       |                                                                                     |                                                     |                                                                                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Ites                                                                                                                                                                                                                                        | Maximum of Remord                                                     | Minimum of Record                                                                   | Maximum 1959                                        | Rinima I I M                                                                      |  |
| Specific conductance (atcromhos at 25°C)                                                                                                                                                                                                    | 100                                                                   | 200                                                                                 | 10                                                  | 191                                                                               |  |
| Desperature in °F                                                                                                                                                                                                                           | 70                                                                    | Air                                                                                 | All                                                 | /1                                                                                |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                 | 25.0                                                                  | 7 1                                                                                 | 11.4                                                | 9.7<br>AR                                                                         |  |
| pH                                                                                                                                                                                                                                          | 8.9                                                                   | 7.                                                                                  | B <sub>1</sub>                                      | 7.5                                                                               |  |
| Withers; constituents in parts per million Calcium (Ca. ) Ragnestum (Mg   Sodium (Mg   Sodium (Mg   Fotas size (C2)) Cashboarts (C2); Cashboarts (C3); Cashboarts (C3); Chloride (C1); Hitrets (WG); Fluoride (F) Botron (B) Silice (Shory) | \$1<br>24<br>12<br>18<br>18<br>16<br>16<br>44<br>25<br>4<br>0.5<br>16 | 2h<br>1<br>1, 8<br>0,0<br>105<br>207<br>5.5<br>1, 5<br>1, 0<br>2, 0<br>2, 0<br>4, 5 | 11<br>17<br>2.5<br>18Å<br>12<br>25<br>1.<br><br>0.2 | 32<br>1 h<br>12<br>1 - 9<br>. 0<br>1 k/<br>27<br>8 . 2<br>8 . 2<br>0 . 0<br>5 . 8 |  |
| btal dismolved solids in parts per million                                                                                                                                                                                                  | 394                                                                   | 133                                                                                 | 211                                                 | 186                                                                               |  |
| Percent sodium                                                                                                                                                                                                                              | 21                                                                    | 14                                                                                  | Su                                                  | 16                                                                                |  |
| Mardones as CaDJ in parts per million<br>Total<br>Bencarbonats                                                                                                                                                                              | 322<br>76<br>330                                                      | an<br>1.0                                                                           | 161<br>30                                           | 137                                                                               |  |
|                                                                                                                                                                                                                                             |                                                                       |                                                                                     |                                                     |                                                                                   |  |
| Coliform in most probable number per milliliter Madioactivity in micro-micro curies per liter Missolved alpha Missolved beta Solid beta                                                                                                     | 97,000.<br>0.62<br>8.16<br>17, hh<br>11,44                            | .00<br>.00<br>.00<br>.00<br>.00                                                     | 620.62<br>0.62<br>8.56                              | 0.23<br>0.19<br>0.19<br>0.00<br>2.05                                              |  |

WATER QUALITY VARIATIONS



#### Los Gatos Creek Basin

Los Gatos Creek watershed encompasses approximately 65 square miles in the southwestern portion of the San Francisco Bay Region. Los Gatos Creek originates in the Santa Cruz Mountains and flows northeasterly a distance of about 20 miles to join Guadalupe River at the City of San Jose. Mean seasonal runoff from this basin is about 35,800 acre-feet.

Due to mountainous terrain along the upper reaches of Los Gatos Creek, development is almost exclusively confined to the drainage area tributary to its lower ten-mile reach. Land use is largely urban, interspersed with light industry. Land devoted to agriculture in this watershed has diminished rapidly in the past decade and only scattered orchards and vineyards remain.

Numerous waste discharges enter Los Gatos Creek in minor quantities. There are no waste discharges in excess of 0.5 mgd being disposed of directly into the waterway of Los Gatos Creek.

A surface water monitoring station is maintained on Los Gatos Creek immediately above the community of Los Gatos.



#### LOS GATOS CREEK AT LOS GATOS (STA. 74)

Sampling Point Station 74 is located in Section 29, Township 8 South, Range 1 West, Mt. Diablo Base and Meridian. Monthly water samples were collected from the left bank at the USGS gage about 0.75 mile upstream from Los Gatos, approximately 0.25 mile below Lexington Dam. This point is 10.5 miles above the mouth of the creek.

Period of Record December 1951 through December 1959.

Water Quality Characteristics A review of past analyses reveals that this stream has a bicarbonate characteristic, and calcium and magnesium are its principal cations with neither consistently predominant. Los Gatos Creek water at this station meets the requirements for class 1 irrigation water (except for one boron determination of 1.0 ppm in 1956), ranges from slightly hard to very hard, and contains mineral concentrations within the limits for drinking water.

Significant Water Quality Changes None.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                                               |                                                                                                          |                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record                                             | Minimum of Record                                             | Hasimum - 1959                                                                                           | Hinisum - 195                                            |  |
| Specific conductance (microwhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2                                                           | 203                                                           | 8m6                                                                                                      | phs                                                      |  |
| Demperature in °7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79                                                            | ht                                                            | 79                                                                                                       | 41                                                       |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13,4<br>118                                                   | 7.6                                                           | 12                                                                                                       | 7.6<br>81                                                |  |
| Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A.3                                                           | 6.8                                                           | 7.)                                                                                                      | 7.3                                                      |  |
| Nameral constituents in parts per million Calctims (Ca) Magnestum (Ng) Sodium (Na) Potanatium (E) Carbonates (CO) Bicarbonates (ROO) Carbonates (ROO) Carbonate | 85<br>39<br>3, 9<br>13<br>488<br>103<br>6, 4<br>1, 4<br>9, 25 | 18<br>77<br>6.<br>0.8<br>0.0<br>69<br>13<br>3.6<br>0.1<br>0.1 | P1<br>P2<br>P2<br>P3<br>P3<br>P3<br>P4<br>P4<br>P5<br>P5<br>P5<br>P5<br>P5<br>P5<br>P5<br>P5<br>P5<br>P5 | 19<br>19<br>9.7<br>0.8<br>101<br>49<br>3.7<br>0.5<br>0.1 |  |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 546                                                           | 124                                                           | 146                                                                                                      | 176                                                      |  |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29                                                            | 12                                                            |                                                                                                          | 12                                                       |  |
| ardness as CaCO3 in parts per million<br>fotal<br>Koncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 471<br>120                                                    | 60<br>2.0<br>0.4                                              | 471<br>120<br>180                                                                                        | 194<br>41                                                |  |
| oliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77,000.                                                       | 2.06                                                          | 2,400                                                                                                    | .21                                                      |  |
| adioactivity in micro-micro curies per liter<br>Dismolved alpha<br>Solid alpha<br>Dismolved bate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.52<br>1.30<br>17.44                                         | 0.00<br>0.00<br>0.00                                          | 0.52<br>0.62<br>3. 7                                                                                     | 7,00<br>2,19<br>2,60                                     |  |
| Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18,24                                                         | 0,00                                                          | 6.92                                                                                                     | 3,46                                                     |  |







STRE!

SAN FRANC

| Station |         |
|---------|---------|
| Number  |         |
|         |         |
| 15c     | Sacrame |
| 28a     | Carquin |
| 71      | Arroyo  |
|         | Hosp:   |
| 72      | Napa R  |
| 73      | Alamedi |
| 74      | Los Ga  |
| 82      | Coyote  |

STREAM SAMPLING STATIONS

SAN FRANCISCO BAY REGION (NO. 2)

#### Station Number 15c 28s 71

#### Station Name

Secremento River at Mallard Slough Carquines Strait at Martine Hospital Hospital Napa Hiver near Saint Helena Alameda Creek at Los Gatos Coyote Creek at Los Gatos Coyote Creek at Los Gatos

44460



## Central Coastal Region (No. 3)

The Central Coastal Region contains approximately 11,000 square miles of coastal valleys and mountain ranges. The region extends 220 miles north-south from the southern boundary of Pescadaro Creek Basin (about 35 miles south of the City of San Francisco) to the northeastern boundary of Rincon Creek Basin (approximately 70 miles north of Los Angeles).

Valley and mesa areas cover over 2,000 square miles of this region, with the valley fill along Salinas River comprising over 40 percent of these lands. The coast line is rocky and rugged except for a few river deltas. Mountain peaks in excess of 5,000 feet elevation exist in most of the ranges with Savmill Mountain at the head of Santa Maria River reaching 8,750 feet.

Mean seasonal runoff from this region is 2,447,600 acre-feet. Principal hydrographic units in the Central Coastal Region include the San Lorenzo, Pajaro, Salinas, Carmel, Santa Maria, and Santa Ynez. In the Central Coastal Region (No. 3) 14 sampling stations are being monitored to maintain a surveillance on quality of surface waters. The monitored streams and the number of stations on each (in parentheses) are presented in the following tabulation:

San Lorenzo River (1)
Soquel Creek (1)
Pajaro River (1)
Uvas Creek (1)
San Benito River (1)
Salinas River (3)

Nacimiento River (1)
San Antonio Creek (1)
Carmel River (1)
Cuyama River (1)
Santa Ynez River (2)

The upper reaches of the Salinas, Nacimiento, Cuyama and Santa Ynez Rivers, and San Antonio Creek are in Southern California and will be discussed in Part II of this bulletin.



# Central Coastal Region (No. 3)

The Central Coastal Region contains approximately 11,000 square miles of coastal valleys and mountain ranges. The region extends 220 miles north-south from the southern boundary of Pescadaro Creek Basin (about 35 miles south of the City of San Francisco) to the northeastern boundary of Rincon Creek Basin (approximately 70 miles north of Los Angeles).

Valley and mesa areas cover over 2,000 square miles of this region, with the valley fill along Salinas River comprising over 40 percent of these lands. The coast line is rocky and rugged except for a few river deltas. Mountain peaks in excess of 5,000 feet elevation exist in most of the ranges with Savmill Mountain at the head of Santa Maria River reaching 8,750 feet.

Mean seasonal runoff from this region is 2,447,600 acre-feet. Principal hydrographic units in the Central Coastal Region include the San Lorenzo, Pajaro, Salinas, Carmel, Santa Maria, and Santa Ynez. In the Central Coastal Region (No. 3) 14 sampling stations are being monitored to maintain a surveillance on quality of surface waters. The monitored streams and the number of stations on each (in parentheses) are presented in the following tabulation:

San Lorenzo River (1)

Soquel Creek (1)

Pajaro River (1)

Uvas Creek (1)

San Antonio Creek (1)

Carmel River (1)

Cuyama River (1)

San Benito River (1)

Santa Ynez River (2)

The upper reaches of the Salinas, Nacimiento, Cuyama and Santa Ynez Rivers, and San Antonio Creek are in Southern California and will be discussed in Part II of this bulletin.

### San Lorenzo River Basin

The San Lorenzo River Basin drains an area of 137 square miles in the northwest corner of the Central Coastal Region. The river flows north to south and discharges into Monterey Bay at the City of Santa Cruz.

The San Lorenzo River watershed is generally mountainous with only seven square miles being identified as valley or mesa lands. Urban and light industrial development are prominent in the Santa Cruz area. Along the upper reaches of the river, recreation, a few lumber mills, and resort facilities support the economy of the area. Natural mean seasonal runoff is estimated to be 125,100 acre-feet in this basin.

Waste discharges entering San Lorenzo Basin waterways are not of significant quantity. Several gravel wash discharges of about 0.10 mgd constitute the only notable source of possible impairment under present development.

A surface water sampling station is maintained on San Lorenzo River at Big Trees to monitor quality of runoff from this basin.



#### SAN LORENZO RIVER AT BIG TREES NEAR FELTON (STA. 75)

Sampling Point The sampling point for this station is located in Section 26,
Township 10 South, Range 2 West, Mt. Diablo Base and Meridian, Canada del
Rincon Grant. Monthly grab samples were collected from the right bank at
Sequoia Gardens Resort, 1.7 miles south of Felton and east of State Highway 9.

Period of Record December 1951 through December 1959.

Water Quality Characteristics A review of past analyses of San Lorenzo River show it to be characterized by a calcium bicarbonate type water, relatively low in total dissolved solids, and slightly to moderately hard. During the period of record these waters have consistently qualified as a class 1 irrigation water. Likewise, concentrations of mineral constituents meet the criteria for domestic uses. The City of Santa Cruz uses San Lorenzo River water as a source of municipal supply. Significant Water Quality Changes None.

| WATER QUALITY RANGES                           |                   |                   |                |               |  |
|------------------------------------------------|-------------------|-------------------|----------------|---------------|--|
| It-                                            | Maximum of Record | Minimum of Record | Maximum - 1959 | Minimum - 195 |  |
| Specific conductance (micromhos at 25°C)       | 15                | 168               | 380            | 11.1          |  |
| Pemperature in OF                              | 71                | L v               | 67             | ls 3          |  |
| Dissolved oxygen in parts per million          | G-1               | 8,5               | 11.8           | 9.2           |  |
| Percent seturation                             | 176               | (6)               | 112            | 93            |  |
| И                                              | 8,2               | 1.8               | 1.9            | 7.3           |  |
| ineral constituents in parts per million       |                   |                   |                |               |  |
| Calcium (Ca)                                   | 4.5               | 1.9               | L              | 19            |  |
| Hagnesium (Hg)                                 | 1.2               | 1.0               | 8,5            | 6.9           |  |
| Sodium (Na)                                    | 19.               | 14                | 28             | 17            |  |
| Potangium (K)                                  | 2.7               | 1.4               | 7.1            | 1.8           |  |
| Carbonate (CO3)                                | Α.                | 0.0               |                |               |  |
| Bicarbonate (RCO)                              |                   | 48                | 150            | BE            |  |
| Sulfate (SOL)                                  |                   | 24                | 60             | 24            |  |
| Chloride (CI)                                  | 32                | 6.5               | 32             | 16            |  |
| Nitrata (NO)                                   | 0.7               |                   | . 7            | 0.4           |  |
| Fluoride (F)                                   | 0.3               | D, (19            | 871            | 1.1           |  |
| Boron (B)                                      | ,21               | 6,0               | 1.1            | 0.0           |  |
| Silica (SiO2)                                  | 10                | 20                | 27             | 20            |  |
| tal dissolved solids in parts per million      | 24.               | 109               | 231            | 189           |  |
|                                                |                   |                   |                |               |  |
| ercent sodium                                  | 31                | 20                | 31             | 22            |  |
| ardness as CaCO; in parts per million          |                   |                   |                |               |  |
| Total                                          | 145               | 59                | 140            | 114           |  |
| Moncerbonate                                   | 1,2               | 8                 | 75             | 14            |  |
| arbidity                                       | 7,400             | .6                | 50             | 1             |  |
| oliform in most probable number per milliliter | >7,000.           | 0.19              | 7,000          | 1.3           |  |
| adioactivity in micro-micro curies per liter   |                   |                   |                |               |  |
| Dissolved slpha                                | 0.70              | FLOC              | 9.20           | .17           |  |
| Solid slpha                                    | 1.73              | 0.00              | 0.20           | 0.17          |  |
| Dissolved beta                                 | 15.31             | 0.00              | 7.74           | 3.11          |  |
| Solid beta                                     | 7. 12             | 0.0               | 5,80           | 0,00          |  |





### Soquel Creek Basin

Soquel Creek drains an area of 91 square miles immediately south of the San Lorenzo River Basin in the northwest portion of the Central Coastal Region. Soquel Creek watershed has a mean annual runoff of about 63,500 acre-feet. Topography in the creek changes along its entire reach. The river originates in rugged mountains and flows southward through a gradual transition to rolling hills and finally, at the edge of the Pacific Ocean, it traverses a marine terrace.

Development in the river basin is primarily concentrated along the marine terrace bordering the lower reaches. Urban, agricultural, and light industrial development combine to sustain the growing population of the area.

Waste discharges from present development are minor and have not created notable impairment problems. A sand and gravel borrow area is located in the stream bed upstream from the town of Soquel and occasionally causes considerable turbidity in Soquel Creek.

A surface water sampling station is maintained on Soquel Creek at Soquel to monitor quality of runoff from this basin.



### SOQUEL CREEK AT SOQUEL (STA. 76)

Sampling Point Soquel Creek is sampled in Section 10, Township 11 South, Range 1 West, Mt. Diablo Base and Meridian. Monthly water samples were collected from the left bank at the USGS gage, which is located 0.25 mile upstream from the bridge on old Santa Cruz highway and about 1.2 miles from the mouth.

Period of Record December 1951 through December 1959.

Water Quality Characteristics Water samples collected at this station exhibit a bicarbonate characteristic with no specific cation being consistently predominant, although the calcium or calcium and magnesium ions have displayed a predominance. This water qualifies as class 1 for irrigation, has mineral concentrations meeting the drinking water standards and a hardness ranging from slightly hard to very hard.

Significant Water Quality Changes None.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                 |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum of Record                       | Maximum 19t)                                                    | Minimum - 190                                    |
| Specific confuctance (micromnos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 278                                     | 81                                                              | 554                                              |
| Temperature in OP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I <sub>a</sub>                          | 68                                                              |                                                  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7_ 1<br>71                              | 11.5                                                            | 7.                                               |
| Но                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.1                                     | 8,1                                                             | 7                                                |
| #ineral constituents in parts per million Calcium (Calcium (Calciu | 8U,<br>3S,<br>7 1,<br>6.8,<br>107,<br>117,<br>117,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0,<br>11.0 | 28<br>2.7<br>15<br>1.1<br>78<br>75<br>1 | 76<br>27<br>47<br>11<br>200<br>11<br>97<br>17<br>14<br>12<br>17 | 7.<br>27.<br>9.<br>18.<br>7.<br>2.<br>12.<br>27. |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 175                                     | 511                                                             | 350                                              |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                      | 32                                                              | 21                                               |
| ardness as CaCO3 in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 324<br>118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72                                      | 309<br>118                                                      | 215<br>39                                        |
| arbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,0                                     | 8                                                               | 0.7                                              |
| oliform in most probable number per millilitar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.62                                    | 2,400.                                                          | 1.3                                              |
| adioactivity in aicro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.41<br>1.04<br>14.1<br>7.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00<br>0.00<br>0.00                    | 11.41<br>1.04<br>5.56<br>7.09                                   | 0.00<br>1.15<br>0.00<br>3.38                     |





## Pajaro River Basin

The Pajaro River drainage basin encompasses 1,303 square miles in the northwestern portion of the Central Coastal Region. Llagas Creek, Pacheco Creek and several other smaller streams combine to form the Pajaro River in the lower end of South Santa Clara Valley. The confluence of the San Benito and Pajaro Rivers is located just east of Pajaro Gap and less than ten miles downstream from Pajaro River formation point. Only 116 square miles of drainage area contribute to the runoff to the Pajaro River below Pajaro Gap. The Pajaro River Basin has an average annual runoff of about 222,500 acre-feet.

Mountains and foothills cover almost 80 percent of the land area in this basin. The three valley fill areas, Pajaro, South Santa Clara and Hollister, comprise 280 square miles of potential or already developed agricultural lands. Agriculture is the predominant user of water and is the major factor in economic development in the area.

Waste discharges entering waterways of this basin originate from urban, light industrial, and individual domestic sources. Excepting for the waste outflows from the Cities of Gilroy (2.75 mgd) and Hollister (0.50 mgd) these discharges do not exceed 0.50 mgd. Irrigation return flows are the major source of quality impairment in the Pajaro River Basin.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed.

| Monitoring Station                                          | Page Number of<br>Station Discussed |
|-------------------------------------------------------------|-------------------------------------|
| Pajaro River near Chittenden<br>Uvas Creek near Morgan Hill | 118<br>120                          |
| San Benito River near Bear Valley Fire<br>Station           | 122                                 |



## PAJARO RIVER NEAR CHITTENDEN (STA. 77)

Sampling Foint Station 77 is located in Section 12, Township 12 South,
Range 3 East, Mt. Diablo Base and Meridian. Monthly grab samples were
collected from the right bank at the bridge crossing on Chittenden Road
at the Santa Cruz-San Benito County Line. The sampling point is located
1 mile southeast of Chittenden and 2.5 miles downstream from the San
Benito River confluence.

Period of Record December 1951 through December 1959.

Water Quality Characteristics Since inception of a monitoring station on Pajaro River analysis of the water reveals bicarbonate to be the predominant anion and calcium, magnesium, and sodium cations to be nearly equal in equivalents per million. The water at this station is generally class 2 for irrigation. In 1954, a boron concentration of 2.0 ppm was found, which is the upper limit for a class 2 water. In 1957 a chloride concentration of 374 ppm made waters from Pajaro River class 3. Pajaro River water also has, on occasion, exceeded the mineral criteria for drinking water and generally ranges from moderately hard to very hard. Significant Water Quality Changes During 1959, in May, September, and December, standard mineral and heavy metals analyses, concentrations of certain mineral constituents were found to exceed the criteria for drinking water. In particular, manganese was found to be 6.5 ppm, which greatly exceeded the previously recorded maximum of 0.02 ppm. The cause of this extreme has not been ascertained. The water, during 1959, was consistently very hard, substantiating an apparent trend that Pajaro River water is becoming harder each year.

| WATER QUALITY RANGES                                                                                                                                                                                                               |                                                                        |                                                                      |                                                                        |                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|
| Item                                                                                                                                                                                                                               | Hazimum of Record                                                      | Minimum of Record                                                    | Maximum 1959                                                           | Hiniaum = 1765                                               |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                           | 2,2%                                                                   | 768                                                                  | 1,1,80                                                                 | 6 %                                                          |
| Imperature in OF                                                                                                                                                                                                                   | 77                                                                     | l <sub>6</sub> 5                                                     | 76                                                                     | 50                                                           |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                        | 14.7<br>12                                                             | 36                                                                   | 9.9<br>1 =                                                             | 0.8<br>77                                                    |
| pil Sq                                                                                                                                                                                                                             | .4                                                                     | 1.3                                                                  | 8.1                                                                    | 7.                                                           |
| Minneral constituents in parts per million Calcium (C.) Adagmastum (Mg) Soddium (Mg) Potassium (Y) Carbonate (CO) Silface (SO) Chloride (Cf) Nitrate (SO) Fluoride (Cf) Nitrate (MO) Fluoride (P) Boro (S) Silica (SO) Silica (SO) | 11/9<br>9L<br>273<br>12<br>4L<br>620<br>30L<br>17L<br>15<br>0.6<br>2.0 | 28<br>17<br>29<br>1.7<br>1.7<br>122<br>67<br>6<br>0.1<br>0.0<br>0.18 | 11%<br>755<br>177<br>12<br>13<br>620<br>298<br>1 2<br>15<br>0.3<br>0.7 | 65<br>3<br>1,0<br>207<br>67<br>37<br>0,8<br>0,1<br>0,3<br>21 |
| Total dismolved solids in parts per million                                                                                                                                                                                        | 1,400                                                                  | 169                                                                  | 935                                                                    | Lee                                                          |
| Percent sodium                                                                                                                                                                                                                     | 75                                                                     | 21                                                                   | 48                                                                     | 71                                                           |
| Hardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Soncerbonats<br>Turbidity                                                                                                                                           | 625<br>3h0                                                             | 106<br>0.0                                                           | 625<br>No<br>35                                                        | 251<br>0, =                                                  |
|                                                                                                                                                                                                                                    | -                                                                      |                                                                      |                                                                        | 0.10                                                         |
| Coliform in most probable number per milliliter Radioactivity in micro-micro curies per liter Missolved alpha Missolved beta Solid beta                                                                                            | 0.86<br>0.59<br>11.73<br>9.69                                          | 0,23<br>0,00<br>0,00<br>0,00<br>0,00                                 | 2,400.<br>0.00<br>0.41<br>5.55<br>9.29                                 | 0.62<br>0.00<br>0.18<br>li.00<br>1.8                         |





## UVAS CREEK NEAR MORGAN HILL (STA. 96)

Sampling Point Uvas Creek is sampled in Section 18, Township 10 South, Range 3 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected immediately below Uvas Dam at the outlet, about 0.6 mile downstream from Eastman Canyon and 4.8 miles southwest of Morgan Hill. Period of Record July 1952 through December 1959.

water Quality Characteristics Chemical classification of past analyses of this water revealed a predominant bicarbonate anion and the principal cations to be calcium and magnesium, neither of which is consistently predominant. Uvas Creek water is class 1 for irrigation, meets the drinking water mineral limits, and ranges from slightly hard to very hard. This water is a source of municipal supply for the City of Gilroy.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                                                 |                                                                     |                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|
| Itan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                       | Minimum of Record                                               | Haximum - 1959                                                      | Minimum - 195                                                    |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 151                                                                     | 181                                                             | 34#                                                                 | 2 10                                                             |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                                                                      | 45                                                              | 73                                                                  | 47                                                               |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110                                                                     | 5.6<br>60                                                       | 11.9<br>106                                                         | 7.3                                                              |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3                                                                     | 7.0                                                             | 7.7                                                                 | 7.1                                                              |
| Minaral, constituents in parts per million Calcium (Calcium (Calci | 52<br>ls2<br>ls1<br>3.7<br>122<br>238<br>lsi<br>11<br>0.2<br>0.27<br>26 | 1)<br>10<br>5.6<br>0.6<br>0.0<br>96<br>4.5<br>0.0<br>0.0<br>0.0 | 34<br>13<br>11<br>2.4<br>2<br>183<br>21<br>9.0<br>1.5<br>0.0<br>0.2 | 25<br>12<br>6.7<br>1.3<br>0.0<br>115<br>9.6<br>5.0<br>0.3<br>0.0 |
| Total dissolved solide in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 278                                                                     | 113                                                             | #30.                                                                | 140                                                              |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                      | 9                                                               | 15                                                                  | 12                                                               |
| Mardness as CaCO3 in parts per million<br>Total<br>Moncarbonsts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222<br>28                                                               | 82                                                              | 172                                                                 | 104<br>7                                                         |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 140                                                                     | 0.0                                                             | 95                                                                  | 2                                                                |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7,000.                                                                 | <0.045                                                          | 2,400.                                                              | 0.23                                                             |
| Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid bata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.90<br>0.50<br>6.40<br>6.65                                            | 0.00<br>0.00<br>0.00                                            | 0.90<br>0.00<br>4.40<br>6.6                                         | 0.10<br>0.00<br>0.00<br>0.00                                     |





#### SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION (STA. 77a)

Sampling Point The location of this sampling station is in Section 28,
Township 15 South, Range 7 East, Mt. Diablo Base and Meridian. Monthly
water samples were collected from the left bank about 1.7 miles downstream
from Willow Creek, 10.4 miles northwest of San Benito, and 3.0 miles
north of Bear Valley Fire Station.

Period of Record July 1958 through December 1959.

Water Quality Characteristics A review of past analyses shows the principal cations in San Benito River to be magnesium and sodium, and the principal anions to be bicarbonate and sulfate. This water is usually class 2 for irrigation except for one boron determination of 2.3 ppm which occurred in August 1959, making it class 3 at that time. Sulfate and total dissolved solids concentrations make this water unsatisfactory for domestic use. This water is extremely hard with a range from 476 ppm to 596 ppm total hardness.

| -                                                          |                   |                   |                |                |
|------------------------------------------------------------|-------------------|-------------------|----------------|----------------|
| Item                                                       | Maximum of Record | Minimum of Record | Maximum - 1959 | Minimum = 1951 |
| pecific conductance (micromhoe at 25°C)                    | 2,110             | 1,290             | 2,130          | 1,290          |
| expersion in 07                                            | 86                | 49                | 85             | 50             |
| Essolved oxygen in parts per million<br>Percent asturation | 12.6<br>128       | 8.0<br>88         | 11.2<br>126    | 8 0<br>94      |
| A                                                          | 8.4               | 8.0               | 8.3            | 8.1            |
| ineral constituents in parts per million                   |                   |                   |                |                |
| Calcium (Ca)                                               | 52                | 2 4               | 5.9            | 2 h            |
| Hagnestum (Hg)                                             | 114               | 9A                | 114            | Sec.           |
| Sodium (Na)                                                | 505               | 114               | 292            | 114            |
| Potassium (K)                                              | 7.2               | 9.7               | 7.2            | 2.7            |
| Carbonate (CO3)                                            | 29                | 0.0               | 29             | 0.0            |
| Bicarbonate (RCO3)                                         | 526               | h17               | 526            | 417            |
| Sulfate (SO:)                                              | 404               | 199               | 968            | 100            |
| Chloride (CI)                                              | 195               | 64                | 195            | 64             |
| Nitrate (NO)                                               | 1.9               | 0.0               | 1.9            | 0.0            |
| Fluoride (F)                                               | 0.5               | 0.2               | 0.5            | 0.2            |
| Boron (B)                                                  | 2.1               | 0.6               | 2.3            | 1.0            |
| Silica (\$102)                                             | 16                | 4.0               | 16             | 4.0            |
| otal dissolved solide in parts per million                 | 1,390             | 756               | 1,390          | 756            |
| ercent sodium                                              | 52                | 33                | 52             | 33             |
| ardness as CaCO; in parts per million                      |                   |                   |                |                |
| Trot.al                                                    | 596               | h76               | 596            | 476            |
| Moncarbonate                                               | 233               | 64                | 147            | 64             |
| arbidity                                                   | 9                 | 1                 | 9              | 1              |
| oliform in most probable number per milliliter             | 230.              | 0.23              | 230.           | 0.23           |
| adioactivity in micro-micro curies per liter               |                   |                   |                |                |
| Dissolved alpha                                            | 0.00              |                   |                |                |
| Solid alpha                                                | 80.0              |                   |                |                |
| Dissolved bets                                             |                   |                   |                |                |
| Solid beta                                                 | 0.20              |                   |                |                |





SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION (STA. 77a)

#### Salinas River Basin

The Salinas River system drains an area of about 4,400 square miles which cover the central portion of the Central Coastal Region.

Mountains and foothills cover approximately 3,480 square miles and valley and mesa land occupy the remaining 220 square miles. From its coast line along Monterey Bay the basin extends southeasterly about 150 miles.

Mean seasonal runoff in the Salinas River watershed is 713,800 acre-feet.

The Salinas River meanders along its course through Salinas Valley for nearly 100 miles. The economy of the basin is based on the agricultural complex which has developed on the fertile valley floor. Water requirements of the basin for domestic, municipal, industrial and irrigation are supplied mostly from ground water. In recent years several small dams on tributaries to the Salinas River have provided surface water supplies to the upper end of the valley.

Waste disposal and irrigation return water have not created serious deleterious effects on the quality of water in the basin.

Significant waste discharges entering this stream system are for the most part outflows from community sewerage systems. Prominent among these are Alisal Sanitary District (1.3 mgd), King City (0.4 mgd), City of Salinas (2.93 mgd), and Soledad Prison (0.5 mgd).

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed.

Salinas River at Paso Robles\*
Salinas River near Bradley\*
Salinas River near Spreckels
Nacimiento River near San Miguel\*
San Antonio River at Pleyto\*

126

<sup>\*</sup> Monitoring stations are in Southern California and will be discussed in Part II of this bulletin.

## SALINAS RIVER NEAR SPRECKELS (STA. 43)

Sampling Point Station 43 is located in Section 8, Township 15 South, Range 3 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at the USGS gaging station 50 yards upstream from the bridge 4 miles south of Salinas and 2.0 miles west of Spreckels.

<u>Period of Record</u> April 1951 through May 1957 and April 1958 through December 1959. Salinas River at this station is dry during a portion of most years and data are not available for all months.

Water Quality Characteristics Antecedent data reveal water at this station to be characteristically a bicarbonate type with the cations nearly evenly divided between calcium, magnesium and sodium. From an irrigation standpoint Salinas River water is class 2 due to boron and dissolved solids concentrations. Total dissolved solids also exceed the limits recommended for a domestic supply. This water ranges from moderately hard to very hard. Effluent from Alisal Sanitary District Sewage Treatment Plant is discharged to the river about 100 yards upstream.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                                                           |                                                                |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|
| It-m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                         | Minisum of Record                                                         | Maximum - 1959                                                 | Hinimum - 1955          |
| Specific conductance (micromhoe at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,7* 3                                    | 307                                                                       | 1.8%                                                           | 352                     |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1                                        | 48                                                                        | 1                                                              | -                       |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.2<br>136                               | 7.7                                                                       | 36                                                             | 5)7<br>=3               |
| Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.3                                       | 6.6                                                                       | 8.0                                                            | Tal                     |
| Mineral constituents in parts per million Calcium (Calcium (Calciu | 11P 98 176 38 21 900 2006 109 2 2.0 0.6 4 | 72<br>13<br>1<br>1.8<br>0,<br>13h<br>60<br>14<br>0,0<br>0,2<br>0,2<br>7.0 | 132<br>ho<br>140<br>10<br>3<br>877<br>100<br>100<br>0.3<br>0.5 | 1,<br>0,0<br>1,3<br>1,4 |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,030                                     | 180                                                                       | 987                                                            | 206                     |
| Parcent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56                                        | 19                                                                        | 56                                                             | 19                      |
| Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 650<br>263                                | 132<br>0.0                                                                | 69h<br>9f3                                                     | 146                     |
| Purbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lon.                                      | 0.0                                                                       | F0.                                                            | 0.5                     |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62,000.                                   | 0.06                                                                      | 7,000.                                                         | 0,06                    |
| Ladicactivity in micro-micro curies per liter<br>Dissolved slpha<br>Solid slpha<br>Dissolved bata<br>Solid bata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.72<br>0.47<br>27.48                     | 0.00<br>0.00<br>0.00<br>0.00                                              | 0.20<br>0.41<br>0.00<br>2.39                                   |                         |





## Carmel River Basin

In the north central portion of the Central Coastal Region and immediately south of Monterey Bay lies the Carmel River watershed. The area of this basin is 254 square miles, of which nearly 249 square miles comprise foothills and mountains. The Carmel River Basin has a mean annual discharge of about 142,300 acre-feet.

Development in this area is centered around Carmel Valley and in the widely known resort area on Monterey Peninsula. Irrigated lands in the valley, and urban and domestic requirements of the peninsula, are the major water users in the basin.

Wastes in this basin, for the most part, are discharged to the Pacific Ocean. Wastes entering Carmel River are minor in quantity and do not create serious impairment problems.

A surface water sampling station is maintained on Carmel River at Robles del Rio to monitor quality of runoff from this basin.



## CARMEL RIVER AT ROBLES DEL RIO (STA. 83)

Sampling Foint Station 83 is located in Section 17, Township 16 South,
Range 1 East, Mt. Diablo Base and Meridian. The station was sampled
monthly from mid-stream from Robles del Rio bridge in the town of
Robles del Rio.

<u>Period of Record</u> January 1952 through December 1959. Carmel River has been dry on several occasions during this period, therefore, data are not available for all months.

Water Quality Characteristics A review of past analyses reveals that the water at Station 83 exhibits no predominant cation or anion.

Calcium, magnesium and sodium are all present in significant proportions, while the principal anions are bicarbonate and sulfate. The water consistently qualifies as class 1 for irrigation and meets the mineral standards for drinking water. Waters at this station have ranged from slightly hard to very hard.

Significant Water Quality Changes During 1959, samples of Carmel River water revealed the previous recorded maximum concentrations of conductivity, total dissolved solids and hardness were exceeded. Extremely low flows were encountered in June and July, possibly accounting for the excessive mineral concentrations found in samples collected during these two months. The river was dry during the last five months of 1959.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                          |                                  |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------|-------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record                       | Minimum of Record                        | Maxin -                          | #inimum 955 |
| Specific conductance (micromnos at 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                     |                                          |                                  | - 10        |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 14                                    | 100                                      |                                  | -           |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.4                                    |                                          | 83                               | 9.          |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.1                                     | 7.                                       | Eal                              | 71          |
| Wineral constituents in parts per million Calcium (Calcium (Calciu | 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2<br>5. 1<br>1.5<br>6. 8<br>16<br>6<br>6 | 16<br>51<br>1<br>197<br>68<br>56 | 1 30<br>14  |
| Total dissolved solide in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 431                                     | 87                                       | k31                              | 162         |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43                                      | 22                                       | 31                               | 22          |
| Hardness as CoOO3 in parts per million<br>Total<br>Moncarbonsts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>256</b><br>95                        | 64.<br>7                                 | 256<br>#5                        | 99          |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90                                      | 0.0                                      | 10                               | 1           |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,000.                                  | <0.045                                   | 230.                             | 0.19        |
| Radioactivity in micro-micro curiss per liter<br>Dissolved sipha<br>Solid sipha<br>Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.42<br>0.17<br>7.0                     | 0.00<br>0.00<br>0.00                     | 0.30<br>0.31<br>4.08             |             |

## WATER QUALITY VARIATIONS







STREAM SAMPLING STATIONS CENTRAL COASTAL REGION (NO. 3)

Station

#### Number Station Name

Salines River near Spreckela San Lorenzo River at Big Trees near Felton Soquel Creek at Soquel Pajaro River near Chittendep San Benito River near Bear Valley Fire Station Carmol River at Robles del Rio Uvas Creek near Morgan Hill



# Central Valley Region (No. 5)

The Central Valley Region occupies about one-third of the total area of California and is comprised of all stream basins which drain into the Sacramento and San Joaquin Valleys. The basin extends from the Oregon-California border in the northeastern corner of the State to the crest of the Tehachapi Mountains 60 miles north of the City of Los Angeles. In order to facilitate discussion of this region it was subdivided into four separate areas as listed below:

| Name of Areas                | Numerical | Designation |
|------------------------------|-----------|-------------|
| Sacramento River Valley      |           | 5a          |
| San Joaquin River Valley     |           | 5b          |
| Sacramento-San Joaquin Delta |           | 5c          |
| Tulare Lake Drainage         |           | 5d          |

To monitor quality of water in this basin samples are collected from 119 stations on 50 separate watercourses and 1 lake as shown on Plate 1. The four areas and their respective watercourses are as listed:

# Sacramento River Valley (5a)

Sacramento River Stony Creek Clear Lake Colusa Trough Cache Creek McCloud River Pit River Putah Creek Clear Creek Antelope Creek Mill Creek Cow Creek Big Chico Creek Cottonwood Creek Butte Creek Battle Creek Paynes Creek Feather River Indian Creek Redbank Creek Yuba River Elder Creek Bear River Thomes Creek American River

# San Joaquin River Valley (5b)

San Joaquin River Bear Creek
Salt Slough Merced River
Fresno River Tuolumne River
Chovchilla River Stanislaus River



# Central Valley Region (No. 5)

The Central Valley Region occupies about one-third of the total area of California and is comprised of all stream basins which drain into the Sacramento and San Joaquin Valleys. The basin extends from the Oregon-California border in the northeastern corner of the State to the crest of the Tehachapi Mountains 60 miles north of the City of Los Angeles. In order to facilitate discussion of this region it was subdivided into four separate areas as listed below:

| Name of Areas                | Numerical Designation | Ω |
|------------------------------|-----------------------|---|
| Sacramento River Valley      | 5a                    |   |
| San Joaquin River Valley     | 5b                    |   |
| Sacramento-San Joaquin Delta | 5c                    |   |
| Tulare Lake Drainage         | 5d                    |   |

To monitor quality of water in this basin samples are collected from 119 stations on 50 separate watercourses and 1 lake as shown on Plate 1. The four areas and their respective watercourses are as listed:

# Sacramento River Valley (5a)

| Sacramento River | Stony Creek     |
|------------------|-----------------|
| Colusa Trough    | Clear Lake      |
| McCloud River    | Cache Creek     |
| Pit River        | Putah Creek     |
| Clear Creek      | Antelope Creek  |
| Cow Creek        | Mill Creek      |
| Cottonwood Creek | Big Chico Creek |
| Battle Creek     | Butte Creek     |
| Paynes Creek     | Feather River   |
| Redbank Creek    | Indian Creek    |
| Elder Creek      | Yuba River      |
| Thomes Creek     | Bear River      |
|                  | American River  |

# San Joaquin River Valley (5b)

| San Joaquin River | Bear Creek       |
|-------------------|------------------|
| Salt Slough       | Merced River     |
| Fresno River      | Tuolumne River   |
| Chowchilla River  | Stanislaus River |

## Sacramento-San Joaquin Delta (5c)

Lindsey Slough
Sacramento River
Delta Cross Channel
Little Potato Slough
San Joaquin River
Stockton Ship Channel
Old River
Grant Line Canal

Delta-Mendota Canal Italian Slough Indian Slough Rock Slough Cosummes River Mokelumme River Calaveras River

## Tulare Lake Drainage (5d)

Kings River Kaweah River Tule River Kern River

Five new stations were added to the surface water monitoring program in Region 5 during 1959. Sampling was commenced in January on Big Chico Creek at Chico (85a), Redbank Creek at Foothills (88d), Elder Creek at Gerber (95a), Thomes Creek near mouth (95b), and Bear Creek at Merced (111a). These stations were established to determine base level quality conditions at proposed water conservation project sites and to provide water quality monitoring on streams where coverage was deficient.

Waters in the Central Valley Region vary in quality from excellent to poor, depending on locality, flow and degradents encountered. Waters emanating from the Sierra Nevada, Cascade and Trinity Mountains were generally of excellent quality, while surface runoff from the Tehachapi Mountains in the south and the coastal ranges along the western perimeter varied from excellent to poor. Waters in the Sacramento Valley and foothill slopes of the San Joaquin, Sacramento-San Joaquin Delta, and Tulare Lake drainage were generally calcium bicarbonate in character. Waters in the San Joaquin Valley floor and in the Sacramento-San Joaquin Delta proper were usually sodium chloride in character due to the effect of such degradents as irrigation returns, ground water accretions, and sea-water incursion.

Sparse precipitation during 1959 resulted in an increase in most chemical constituents in waters of the Central Valley Region.

However, with the exception of the delta area, the increase was usually not significant. In the delta, the paucity of tributary inflow and the continued heavy diversions for irrigation use in the delta uplands area resulted in significant degradation to surface waters from ground water accretions, irrigation returns, and sea-water incursion.

# Sacramento River Valley (5a)

The Sacramento River Valley embraces all of the vatersheds tributary to Sacramento River upstream from the southern drainage boundaries of Putah Creek and the American River hydrographic units.

The basin extends north-south approximately 270 miles and contains over 26,000 square miles of highly variable terrain.

Mountains and foothills cover about 65 percent of the area, with the Sierra Nevada dominating the eastern portion, the Coastal Range to the west, and the Klamath Mountains and Cascade Range on the north.

Bountiful valley and mesa lands exist in this area, with the extensive agricultural lands of the Sacramento Valley being predominant in this land class.

Mean seasonal surface runoff exceeds 22,300,000 acre-feet in the area. To facilitate discussion of the numerous drainage areas in this area, they are segregated into the following units with the number of sampling station of each in parentheses:

Sacramento River Unit (10)
McCloud River Basin (1)
Pit River Basin (4)
Redding Stream Unit (7)
West Side Stream Unit (12)
Sacramento Valley Northeast Stream Unit (6)
Feather River Basin (4)
Yuba-Bear Rivers Unit (4)
American River Basin (4)

Sacramento River Unit. The Sacramento River Unit extends from the northwesternmost corner of the Central Valley Region through the entire length of the Sacramento River Valley. The unit includes the drainage area of the Sacramento River above Shasta Reservoir, and the valley floor area of Sacramento Valley below Red Bluff. Mountainous terrain occupies all but a few of the 618 square miles along the reach of the river above Shasta Reservoir; while along its course below Red Bluff only Sutter Buttes breaks the 4,946 square miles of flat, gently rolling valley floor. Mean seasonal natural runoff for this unit is about 1,220,000 acre-feet.

Development along the upper reach is primarily associated with recreation or lumbering. Along the valley floor, agriculture and its allied food-processing industries are the primary economic endeavors.

Mining, production of natural gas, recreation, and in recent years development related to military and aircraft programs, provide additional economic stability to the valley. These developments use considerable quantities of surface and ground water in their operations. Continued growth of the industrial and urban complex centers as well as irrigated agricultural expansion depend upon controlling, quantitatively and qualitatively, the water supply of the unit.

Waste discharges originating from industrial and municipal developments enter this major waterway along its entire length. In the upper reaches lumbermill effluent and sanitary sewage from resort communities constitute the major waste sources. In the valley floor area, lumber by-product industries, cities and towns, light industries, food product plants, and a considerable volume of irrigation return flow

all combine to impose a significant waste load on the Sacramento River.

A study is presently being conducted by the Department of Water Resources to evaluate the present effect of waste discharges and to determine the waste assimilating capacity of the Sacramento River. The major discharges entering the river and their approximate quantities in million gallons per day (mgd) are listed:

| City of Redding                              | 2.0 mgd  |
|----------------------------------------------|----------|
| City of Red Bluff                            | 1.0 mgd  |
| Diamond Gardner International Corporation    | 5.0 mgd  |
| City of Corning (Intermittently)             | 0.3 mgd  |
| Natomas Drain (McClellan Air Force Base,     |          |
| City of Rio Linda, and North Sacramento)     | 6.3 mgd  |
| City of Sacramento                           | 50.0 mgd |
| City of Mountain View                        | 6.0 mgd  |
| City of Rio Linda                            | 0.05 mgd |
| City of West Sacramento                      | 2.4 mgd  |
| American Crystal Sugar Refining (Clarksburg) | 5.0 mgd  |

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed.

| Monitoring Station                     | Page Number of<br>Station Discussion |
|----------------------------------------|--------------------------------------|
|                                        |                                      |
| Sacramento River at Delta              | 140                                  |
| Sacramento River at Keswick            | 142                                  |
| Sacramento River at Bend (Red Bluff)   | 144                                  |
| Sacramento River near Hamilton City    | 146                                  |
| Sacramento River at Butte City         | 148                                  |
| Sacramento River at Colusa             | 150                                  |
| Sacramento River at Knights Landing    | 152                                  |
| Sacramento River at Sacramento         | 154                                  |
| Colusa Trough near Colusa              | 156                                  |
| Sacramento Slough near Knights Landing | 158                                  |



# SACRAMENTO RIVER AT DELTA (STA. 11)

Sampling Point Station 11 is located in Section 35 of Township 36 North,
Range 5 West, Mt. Diablo Base and Meridian. Monthly grab samples were
collected from the right bank at the USGS gage 0.2 mile downstream from
Dog Creek and 0.6 mile southeast of Delta.

Period of Record April 1951 through December 1959.

Water Quality Characteristics During periods of higher surface runoff, the water is magnesium bicarbonate in character. In summer months, however, when flows are comparatively low, calcium, magnesium, and sodium are about equal in importance. Very little variation in quality is noted at this point, and the water is of excellent quality for all uses. On rare occasions the water is slightly hard; however, it is soft the majority of the time. Total radioactivity reached 25.2 micro-micro curies per liter in May 1956, which is the highest value noted during the period of record.

Significant Water Quality Changes During 1959 total hardness reached 62 ppm, and noncarbonate hardness 6 ppm. These values are significant only inasmuch as they are the extremes for the period of record.

| WATER QUALITY RANGES                            |                   |                   |                |                |  |
|-------------------------------------------------|-------------------|-------------------|----------------|----------------|--|
| Item                                            | Haximum of Record | Minimum of Record | Maximum - 1959 | Rinisum - 1955 |  |
| Specific conductance (micromhom at 25°C)        | 9 19              | 59.7              | 169            | Rg 7           |  |
| Temperature in 07                               | Ro                | 16                | 74             | No.            |  |
| Dissolved oxygen in parts per million           | 15.3              | 6.2               | 19.5           | A p            |  |
| Percent saturation                              | 124               | 68                | 107            | RK.            |  |
| pill                                            | 8.4               | 7.1               | 8.3            | 7.3            |  |
| Mineral constituents in parts per million       |                   |                   |                |                |  |
| Calcium (Ca)                                    | 11                | 3.4               | 7.6            | 5.8            |  |
| Hagnesium (Hg)                                  | 8,5               | 4.0               | 8.5            | 6.0            |  |
| Sodium (Ha)                                     | 15                | 1.4               | 19             | 2.2            |  |
| Potassium (K)                                   | 2.2               | 0.1               | 1 7            | 0 3            |  |
| Carbonate (00g)                                 | 3                 | 0.0               | 3              | 0.0            |  |
| Bicarbonate (800g)                              | 87                | 19                | 83             | lue .          |  |
| Sulfate (30)                                    | 5.0               | 1.0               | 2.9            | 9.0            |  |
| Chloride (CI)                                   | 12                | 0.0               | 11             | 2.5            |  |
| Sitrate (MOz)                                   | 0.6               | 0.0               | 0.2            | 0.0            |  |
| Fluoride (F)                                    | 0.3               | 0.0               | 0.1            | 0.0            |  |
| Boron (B)                                       | 0.3               | 0.0               | 0.3            | 0.0            |  |
| Silica (310 <sub>2</sub> )                      | 41                | 12                | 34             | 20             |  |
| Total dissolved solids in parts per million     | 170               | NO.               | 117            | 58             |  |
| Percent sodium                                  | 38                | 9                 | 33             | 11             |  |
| Hardness as CaCO; in parts per million          |                   |                   |                |                |  |
| Total                                           | 62                | 26                | 62             | 2.6            |  |
| Honcarbonate                                    | 6                 | 0.0               | 6              | 0.0            |  |
| Turbidity                                       | NO.               | 0.0               | 20             | 1              |  |
| Coliform in most probable number per milliliter | 7,000.            | 0.62              | 230.           | 0.23           |  |
| Radioactivity in micro-micro curies per liter   |                   |                   |                |                |  |
| Diesolved alpha                                 | 1.32              | 0.00              | 0.58           | 0.36           |  |
| Solid elpha                                     | 2.81              | 0.00              | 0.59           | 0 1A           |  |
| Dissolved beta                                  | 19.6              | 0.00              | 1 %            | 0.00           |  |
| Solid beta                                      | 9.18              | 0.00              | 6.73           | 2 16           |  |





SACRAMENTO RIVER AT DELTA (STA. 11)

## SACRAMENTO RIVER AT KESWICK (STA. 12)

Sampling Point Station 12 is situated in Section 28 of Township 32 North, Range 5 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank at the USGS gage, 0.6 mile downstream from Keswick Dam, 0.6 mile upstream from Middle Creek and 10 miles downstream from Shasta Dam.

Period of Record April 1951 through December 1959.

water Quality Characteristics Antecedent data show the water at Station 12 to be of excellent quality, soft to slightly hard, and to vary only slightly in mineral content. However, on several occasions during recent years, comparatively large concentrations of heavy metals coming from Spring Creek have been sufficient to kill fish in the vicinity of this station. Streams draining the Spring Creek watershed frequently are acidic and have undesirable heavy metal concentrations and other toxic salts leached from tailings of both operating and abandoned mines. This situation has been partially corrected through increased releases from Shasta Reservoir coincident with increases of surface runoff in Spring Creek. The water at Station 12 is bicarbonate in type with calcium slightly dominant over other cations. This water is class 1 for irrigation, and excellent for domestic and industrial uses.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                                                   |                                                                         |                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Ita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record                                                    | Minimum of Record                                                 | Maximum - 1959                                                          | Minimum - 1959                                                           |  |
| Specific conductance (micromhoe at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 139                                                                  | 86.5                                                              | 134                                                                     | 107                                                                      |  |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                   | 41                                                                | 59                                                                      | 50                                                                       |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.4                                                                 | 6.₽<br>57                                                         | 11.7<br>99                                                              | 8.0                                                                      |  |
| pili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.7                                                                  | 6.5                                                               | 7.7                                                                     | 7.0                                                                      |  |
| Wherel constituents in parts per million Calcium (G. Alamestum (Mg) Sodium (Mg) Sodium (Mg) Potas dim (CO) Carbonsts (CO) Sodium (Mg) Sodi | 18<br>6.3<br>9.8<br>1.9<br>0.0<br>11.0<br>6.0<br>12.0<br>0.3<br>0.18 | 8.3<br>1.9<br>3.9<br>0.7<br>0.0<br>47<br>2.9<br>0.0<br>0.0<br>0.0 | 11<br>6.3<br>8.5<br>1.4<br>0.0<br>76<br>9.6<br>4.0<br>1.0<br>0.3<br>0.1 | 8.8<br>4.3<br>3.9<br>1.1<br>0.0<br>52<br>4.8<br>2.2<br>0.5<br>0.1<br>0.0 |  |
| total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 102                                                                  | 67                                                                | 105                                                                     | 79                                                                       |  |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                   | 15                                                                | 26                                                                      | 15                                                                       |  |
| Hardness as CaCO3 in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66<br>6                                                              | 36<br>0.0                                                         | 53<br>5                                                                 | 40<br>0.0                                                                |  |
| Partid di ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80                                                                   | 0.0                                                               | 35                                                                      | 33                                                                       |  |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,000.                                                               | <0.045                                                            | 23.                                                                     | 10.045                                                                   |  |
| ladicactivity in micro-micro curies per liter<br>Missolved slphs<br>Solid slphs<br>Missolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.33<br>0.92<br>13.8<br>24.9                                         | 0.00<br>0.00<br>0.00                                              | 0.58<br>0.47<br>8.26<br>3.30                                            | 0.00<br>0.29<br>2.42<br>0.70                                             |  |

WATER QUALITY VARIATIONS



SACRAMENTO RIVER AT KESWICK (STA. 12)

#### SACRAMENTO RIVER AT BEND (STA. 12c)

Sampling Point Bend station is located in Section 20 of Township 28 Morth, Range 3 West, Mt. Diablo Base and Meridian. Daily composite and monthly grab samples were collected from the left bank 100 yards downstream from Bend Road bridge, 4.0 miles upstream from the mouth of Paynes Creek and approximately 6.0 miles north of Red Bluff.

Period of Record May 1955 through December 1959.

Water Quality Characteristics Sacramento River at Station 12c is bicarbonate in type with calcium the predominant cation, soft to slightly hard, class 1 for irrigation use and suitable for domestic and industrial use. Only minor variations in quality have been noted at this point during the period of record. There is no significant difference in quality of Sacramento River water between Station 12 near Redding and the Bend station.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                    |                                                                         |                                                                          |                                                                        |                                                                   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| Item                                                                                                                                                                                                                                                                                                                    | Maximum of Record                                                       | Minimum of Record                                                        | Masimum - 1959                                                         | Hinimum - 1955                                                    |  |  |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                | 179                                                                     | 71.2                                                                     | 3.45                                                                   | 73.2                                                              |  |  |
| Temperature in OF                                                                                                                                                                                                                                                                                                       | 60                                                                      | 54                                                                       | 60                                                                     | 4.5                                                               |  |  |
| Dissolved oxygen in parts per million<br>Percent esturation                                                                                                                                                                                                                                                             | 10.5                                                                    | 9.6                                                                      | 10.5                                                                   | 9.6                                                               |  |  |
| pit                                                                                                                                                                                                                                                                                                                     | 8.0                                                                     | 6.2                                                                      | 7.8                                                                    | 6.2                                                               |  |  |
| Mineral constituents in parts per million<br>Galcium (Ga)<br>Magnesium (Mg)<br>Sodium (Ma)<br>Potandium (1)<br>Europeasts (OD)<br>Bicarbonats (SDD)<br>Starbonats (SDD)<br>Starbonats (SDD)<br>Starbonats (SDD)<br>Starbonats (SDD)<br>Filantia (ND)<br>Filantia (ND)<br>Filantia (ND)<br>Filantia (ND)<br>Silica (SDD) | 15<br>7.1<br>11<br>3.0<br>0.0<br>8.b<br>16<br>8.0<br>4.2<br>0.3<br>0.46 | 7.6<br>9.h<br>3.2<br>0.6<br>0.0<br>28<br>1.9<br>0.1<br>0.0<br>0.0<br>0.0 | 13<br>6.7<br>8.7<br>2.1<br>0.0<br>79<br>16<br>6.0<br>1.7<br>0.2<br>0.1 | 8.0<br>1.6<br>1.2<br>0.7<br>0.0<br>28<br>3.0<br>1.8<br>0.0<br>0.0 |  |  |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                             | 141                                                                     | 148                                                                      | 120                                                                    | 48                                                                |  |  |
| Percent sodice                                                                                                                                                                                                                                                                                                          | 26                                                                      | 16                                                                       | 27                                                                     | 18                                                                |  |  |
| Hardness as CeCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                             | 66<br>7                                                                 | 26<br>0.0                                                                | 60<br>7                                                                | 30<br>0.0                                                         |  |  |
| Tarbidity (Not Heasured)                                                                                                                                                                                                                                                                                                |                                                                         |                                                                          |                                                                        |                                                                   |  |  |
| Coliform in most probable number per milliliter (Not<br>Neasured)<br>Radioactivity in micro-micro curies per liter<br>Dissolved slpha<br>Dissolved bata<br>Solid slpha<br>Dissolved bata                                                                                                                                | 0.0<br>2.27<br>8.26<br>4.81                                             |                                                                          | 0.0<br>2.27<br>8.26<br>4.81                                            |                                                                   |  |  |

WATER QUALITY VARIATIONS



## SACRAMENTO RIVER NEAR HAMILTON CITY (STA. 13)

Sampling Point Station 13 is located in Section 20 of Township 22

North, Range 1 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from a state highway bridge 10.5 miles west of Chico, 1.2 miles northeast of Hamilton City, and about 6.0 miles upstream from the mouth of Stony Creek.

Period of Record April 1951 through December 1959.

<u>Water Quality Characteristics</u> Past analyses show the water at the sampling point to be bicarbonate in type with calcium usually predominant. The water is soft to slightly hard, class 1 for irrigation, meets drinking water requirements for mineral content, and is excellent for industrial use. There have been no significant variations noted at this point during the period of record.

Significant Water Quality Changes There were no significant changes in water quality at this point during 1959 with the exception of total radioactivity. In the September sample, 18.4 micro-micro curies per liter were present, which represents the highest value reported at this point for the period of record. This value, however, is well below the recommended safe limit.

| WA                                                                                                             | TER QUALITY RAN          | GES                                   |                              |               |
|----------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|------------------------------|---------------|
| Item                                                                                                           | Haxisum of Hecord        | Minimum of Record                     | Maximum / 2                  | Minimum - 177 |
| Spe-ifi   omfuctance   micromhos at 2 WC                                                                       | 161                      | 7"                                    | 100                          | 11.5          |
| Pumperature in °F                                                                                              |                          | 41                                    | 400                          | 67            |
| Dissolved oxygen in parts per million<br>Percent saturation                                                    | 19.7                     | 300                                   | 17.1                         | 45            |
| Н                                                                                                              | 111                      |                                       |                              | 7.2           |
| Mineral matitumes in perta per million maintium (m. maintium (m. m. m         |                          | , , , , , , , , , , , , , , , , , , , | 7 C 0 C 0 .1                 | 24            |
| Total dissolved solids in parts per million                                                                    | LI6                      | A.A                                   | 1107                         | Ro            |
| Percent sodium                                                                                                 | 25                       |                                       | PR                           | 16            |
| Nardness as Ce203 in parts per million<br>Total<br>Noncerbonate                                                | 48<br>6                  | 17                                    | A-2<br>2                     | h3            |
| Parbidity                                                                                                      | 350                      | 0.0                                   | 30                           | 0             |
| Coliform in most probable number per milliliter                                                                | >7 000                   | 1.06                                  | 7,000                        | 6.2           |
| adioactivity in aicro-aicro curies per liter<br>Dissolved alpha<br>Solid elpha<br>Dissolved beta<br>Solid bets | 1, 43<br>1, 200<br>14,08 | nn<br>,nn<br>n nn<br>n,nn             | 0 09<br>0 30<br>9 85<br>8 20 | 1 20<br>1 24  |





#### SACRAMENTO RIVER AT BUTTE CITY (STA. 87a)

Sampling Point Station 87a is located in Section 32 of Township 19 North,
Range 1 West, Mt. Diablo Base and Meridian. Monthly grab and daily
composite samples were collected at the highway bridge just downstream
from the gaging station and 0.5 mile south of Butte City.

Period of Record May 1955 through December 1959.

Water Quality Characteristics Analyses of daily composite samples show the water at Station 87a to be bicarbonate in type with calcium the major cation, soft to slightly hard, class 1 for irrigation use, and within drinking water requirements for mineral content. Comparison of analyses of samples from this station with those from the Sacramento River at Hamilton City (Station 13) reveal no significant difference in mineral quality.

| WA                                                          | TER QUALITY RAN   | GES               |                |               |
|-------------------------------------------------------------|-------------------|-------------------|----------------|---------------|
| It.                                                         | Maximum of Record | Minimum of Record | Maximum - 1959 | Hinima - 1959 |
| Specific conductance (micromhoe at 25°C)                    | 174               | 88.2              | 164            | RA 9          |
| Temperature in OF                                           |                   |                   |                |               |
| Dissolved oxygen in parts per million<br>Percent saturation |                   |                   |                |               |
| pil                                                         | 8 1               | 6.6               | 8.1            | 6.8           |
| dineral constituents in parts per million                   |                   |                   |                |               |
| Calcim (Ca)                                                 | 17                | 8.0               | 15             | 1             |
| Magnomium (Mg)                                              | 8.6               | 3.2               | 7 7            | 3.2           |
| Sodiam (Ne)                                                 | 8.9               | h 1               | 9 3            | 5.1           |
| Potassium (K)                                               | 2.0               | 0.8               | ₽.0            | 1.3           |
| Carbonate (00y)                                             | 0.0               | 0.0               | 0.0            | 0.0           |
| Bicarbonate (8003)                                          | 89                | 40                | 84             | NO            |
| Salfate (30)                                                | 16                | 1 9               | 1.6            | 3.7           |
| Chloride (CI)                                               | 8.5               | 1.0               | 8.5            | 2.6           |
| Witrate (MO3)                                               | h.5               | 0.0               | 3.1            | 0.0           |
| Fluorida (7)                                                | 0.7               | 0.0               | 0.3            | 0.0           |
| Boron (B)                                                   | 0.1               | 0.0               | 0 1            | 0.0           |
| 8ilica (\$10 <sub>2</sub> )                                 | 35                | 14                | 35             | 20            |
| Total dissolved solide in parts per million                 | 128               | 65                | 120            | 72            |
| Percent sodium                                              | 27                | 18                | 27             | 21            |
| Mardness as CaCO; in parts per million                      |                   |                   |                |               |
| Total                                                       | 70                | 35                | 64             | 3,8           |
| Soncarbona te                                               | 11                | 0.0               | 11             | 0.00          |
| Parkidity                                                   |                   |                   |                |               |
| Coliform in most probable number per milliliter             |                   |                   |                |               |
| Radioactivity in micro-micro curies per liter               |                   |                   |                |               |
| Dissolved alpha                                             |                   |                   |                |               |
| Solid sloha                                                 |                   |                   |                |               |
| Discolved beta                                              |                   |                   |                |               |
| Solid beta                                                  |                   |                   |                |               |

WATER QUALITY VARIATIONS



# SACRAMENTO RIVER AT COLUSA (STA. 13b)

Sampling Point Colusa station is located within Section 32 of Township
19 North, Range 1 West, Mt. Diablo Base and Meridian. Monthly grab
samples were collected from the right bank at the River Road bridge at
Colusa.

Period of Record October 1958 through December 1959.

Water Quality Characteristics Water at this station is excellent in quality, bicarbonate in type, with calcium somewhat dominant over the cations. It is soft to slightly hard, class 1 for irrigation, and meets drinking water requirements. Comparison of data shows a minor increase in mineral concentration (10 to 50 micromhos) in the 157 miles between Keswick Dam (Station 12) and Colusa (Station 13b).

| WATER                                                             | QUALITY RAN       | IGES              |                |                |
|-------------------------------------------------------------------|-------------------|-------------------|----------------|----------------|
| Itom                                                              | Maximum of Record | Minimum of Record | Masimum - 1959 | Hinimum - 1955 |
| Specific conductance (micromhos et 25°C)                          | 160               | 113               | 160            | 116            |
| Temperature in °7                                                 | 68                | k7                | 68             | 1/2            |
| Dissolved oxygen in parts per million<br>Parcent saturation       | 10.6<br>97        | A.A<br>Ay         | 10.6<br>97     | 8.8            |
| pR                                                                | 7.8               | 7.1               | 7.8            | 7.2            |
| Mineral constituents in parts per million                         |                   |                   |                |                |
| Calolum (Ca)                                                      | 14                | 9.6               | 14             | 9.6            |
| Hagnestum (Hg)                                                    | 7.8               | 3.3               | 7.8            | 3.3            |
| Sodium (Na)                                                       | 1.1               | 4.0               | 11             | 4.0            |
| Potassium (K)                                                     | 1.9               | 0.9               | 1.9            | 0.9            |
| Carbonate (CO3)                                                   | 0,0               | 0.0               | 0.0            | 0.0            |
| Bicerbonate (8003)                                                | Rs.               | 44                | 85             | 4.1            |
| Sulfete (SOL)                                                     | 15                | 2.9               | 15             | 3.0            |
| Chloride (CI)                                                     | 8.0               | 2.2               | 8.0            | 2.2            |
| Nitrate (NO3)                                                     | 2.0               | 0.0               | 2.0            | 0.0            |
| Fluoride (F)                                                      | 0.2               | 0.0               | 0.2            | 0.0            |
| Boron (B)                                                         | 0.1               | 0.0               | 0.1            | 0.0            |
| 3111c+ (510 <sub>2</sub> )                                        | 3.9               | 18                | 3.3            | 18             |
| otal dissolved solids in parts per million                        | 123               | 76                | 123            | 76             |
| Percent sodium                                                    | 27                | 17                | 27 '           | 17             |
| Bardness as CaCO; in parts per million                            |                   |                   |                |                |
| Total                                                             | 67                | h2                | 67             | 12             |
| Woncarbona ta                                                     | 7                 | 0.0               | 7              | 0.0            |
| Partid dity                                                       | 9                 | 1                 | 9              | 1              |
| Coliform in most probable number per milliliter (Bot<br>Measured) |                   |                   |                |                |
| adioactivity in micro-micro curies per liter                      |                   |                   |                |                |
| Dissolved slpha                                                   | 0.68              | 0.00              | 0,68           | 0.00           |
| Solid slphs                                                       | 0,20              | 0.00              | 0.20           | 0.00           |
| Dissolved beta                                                    | 3, 44             | 3,08              | 3.hh           | 1.08           |
| Solid bets                                                        | 7.86              | 2.18              | 7.86           | 2.18           |

WATER QUALITY VARIATIONS



#### SACRAMENTO RIVER AT KNIGHTS LANDING (STA. 14)

Sampling Point Knights Landing station is located in Section 14 of Township 11 North, Range 2 East, Mt. Diablo Base and Meridian. Daily composites and monthly grab samples were collected at the Southern Pacific Railroad bridge, at Knights Landing, just downstream from the gaging station and about 34 miles upstream from Sacramento.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Water in Sacramento River at Knights
Landing is bicarbonate in type with calcium and magnesium the predominant
cations. The water is slightly hard to moderately hard, meets drinking
water requirements for mineral content, and is generally class 1 for
irrigation. In August 1954 boron reached 0.86 ppm placing this water
in class 2 for irrigation. Comparison of analyses of samples from
Station 14 with those of water from the Colusa station show that mineral
concentrations become considerably higher (on the order of 160 micromhos)
in Sacramento River at Knights Landing. Numerous irrigation drainage
waters entering the river between these two stations accounts for the
higher mineral concentrations at Station 14.

| WA                                              | TER QUALITY RAN   | GES               |                |              |
|-------------------------------------------------|-------------------|-------------------|----------------|--------------|
| Itm                                             | Maximum of Record | Minimum of Record | Maximum - 1959 | Hinimum - 12 |
| Specific conductance (micromhos at 25°C)        | · 16              | 196               | (5)            | 1) (-        |
| Temperature in OF                               | 81                | I <sub>k</sub> (  |                | <b>5</b> 7   |
| Diesolved oxygen in parts per million           | 12 8              | A-III             | 1= -           | 4.0          |
| Percent saturation                              | 100               | 42                | get.           | 71           |
| Ho                                              | 8 3               | 6 B               | 1.7            | 3.6          |
| lineral constituents in parts per million       |                   |                   |                |              |
| Calcium (Ca)                                    | 38                | 8.8               | 14             | 14           |
| Hagnosium (Hg)                                  | 80                | 3 h               | 8 3            | 6.8          |
| Sodium (Wa)                                     | A5                | 2.5               | 34             | 110          |
| Potassium (K)                                   | 6.8               | 0.65              | 1.4            | 1.2          |
| Carbonsts (CO3)                                 | 0.0               | 10.0              | 0.0            | 70-0         |
| Bicarbonate (800g)                              | 263               | 36                | 131            | 36           |
| Sulfate (SOL)                                   | 52                | 2.4               | 1.5            | 9            |
| Chloride (CI)                                   | 57                | 2.0               | 17             | 3,1          |
| Witrate (NO)                                    | 1.2               | 0.0               | 5.1            | 0.0          |
| Fluoride (F)                                    | 0.5               | 0.0               | 0 1            | 0.0          |
| Boron (B)                                       | 0.86              | 0.0               | EE 20          | 0.0          |
| Silica (S102)                                   | u                 | 15                | 27             | 59           |
| otal dissolved solide in parts par million      | 423               | 59                | 505            | 74           |
| Percent sodjum                                  | 52                | 13                | hh             | 21           |
| lardness as CaCO; in parts per million          |                   |                   |                |              |
| Tot al.                                         | 169               | 16                | 96             | 42           |
| Honcarbona te                                   | 16                | 0.0               | 12             | 0.0          |
| Parbidity                                       | 600               | 0.0               | 85             | 0.0          |
| coliform in most probable number per milliliter | >7,000.           | 0.046             | 230.           | 2 3          |
| ladioactivity in micro-micro curies per liter   |                   |                   |                |              |
| Dissolved alpha                                 | 0.42              | 0.00              | 0.38           | 0.18         |
| Solid alpha                                     | 0.67              | 0.00              | 0 40           | 0.09         |
| Dissolved beta                                  | 6.86              | 0.00              | 6.86           | 0.00         |
| Solid beta                                      | 14.75             | 0.00              | 3 83           | 0.00         |

WATER QUALITY VARIATIONS



#### SACRAMENTO RIVER AT SACRAMENTO (STA. 15)

Sampling Point Station 15 is located in Section 35 of Township 9 North, Range 4 East, Mt. Diablo Base and Meridian. Daily composites and monthly grab samples were collected at Tower Bridge. 0.4 mile downstream from the gaging station at Sacramento, and about 1.3 miles downstream from the confluence of the American River.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Past analyses show the water to be bicarbonate in type with calcium and magnesium about equal in predominance as the major cations, soft to slightly hard, class I for irrigation, suitable for all but the most exacting industrial uses, and within drinking water requirements for mineral content. Mineral concentrations are lower (30 to 60 micromhos) at Sacramento as compared to Knights Landing due to the influence of the American and Feather Rivers inflow.

| WA                                              | TER QUALITY RAN   | GES               |                |               |
|-------------------------------------------------|-------------------|-------------------|----------------|---------------|
|                                                 |                   |                   |                | _             |
| Item                                            | Haximum of Record | Rinimum of Record | Maximum - 1959 | Hinimum - 195 |
| Specific constictance (micromhom at 25°C)       | 5-3s              | 17 1              | 26 *           | Ag            |
| Temperature in OF                               | 7                 | 43                | *4             | 47            |
| Dissolved oxygen in parts per million           |                   | 7 7               |                | 7             |
| Percent saturation                              | 116               | 19                | 1/%            | 86            |
| Не                                              | 1.2               | 6.4               | A =            | 1 7           |
| tineral constituents in parts per million       |                   |                   |                |               |
| Calcium (Ca)                                    | 19                | 12.4              | 18             | 7.6           |
| Hagneslum (Hg)                                  | 12                | 1.8               | 11             | 3.77          |
| Sodium (We)                                     | 25                | 1.9               | 211            | 3. 3.         |
| Potaesium (X)                                   | 2 3               | 6                 | 21             | 100           |
| Carbonsts (CO3)                                 |                   | 0.0               | 0.0            |               |
| Bicarbonate (8003)                              | 132               | 24                | 194            | 40            |
| Sulfate (SOL)                                   | 50                | 1.0               | 19             | h .           |
| Chloride (CI)                                   | 34                | 7.0               | 3.6            | 3.2           |
| Witrate (NO3)                                   | 8.4               | 0.0               | 3.7            | 10.00         |
| Fluorida (F)                                    | 13                | 0.0               | 0.2            |               |
| Boron (B)                                       | 0.39              | 0.0               | 0.1            | 0.5           |
| Silica (SiO <sub>2</sub> )                      | 34                | 10                | 20             | 15            |
| total dissolved solids in parts per million     | 179               | 41                | 165            | 64            |
| ercent sodium                                   | 37                | 14                | 34             | 2'            |
| lardness as CaCO; in parts per million          |                   |                   |                |               |
| Tot al                                          | qr qr             | 22                | AA             | 37            |
| Nonearbona to                                   | 11                | 0.0               | 11             | 2             |
| Partidity                                       | 170               | 4                 | 70             | 5             |
| Coliform in most probable number per milliliter | 7,000.            | 0.21              | 7,000          | 2 21          |
| ladioactivity in micro-micro curies per liter   |                   |                   |                |               |
| Missolved alona                                 | 1 67              | 0.00              | 0.09           | - 00          |
| Solid alpha                                     | 0.56              | 0.00              | 0.30           | 0.00          |
| Diasolved bata                                  | 6.5               | 0.00              | 5.50           | 2 41          |
| Solid beta                                      | 12.96             | 0,00              | 12 %           | 3 64          |

WATER QUALITY VARIATIONS



#### COLUSA TROUGH NEAR COLUSA (STA. 87)

Sampling Point Station 87 is located in Section 34, Township 16 North, Range 2 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected near the surface, along the right bank, from State Highway 120 bridge 3 miles west of Colusa.

Period of Record July 1952 through December 1959.

water Quality Characteristics Past analyses show Colusa Trough water to be predominantly a mixed sodium-magnesium-calcium bicarbonate-sulfate type with concentrations of dissolved solids approaching the upper limit of class 1 for irrigation. Hardness ranged from moderately hard to very hard, limiting some domestic and industrial use. During the irrigation season this water is chiefly return flow from Colusa Basin and reflects the mineralized conditions of waters used and reused for agricultural purposes.

| WA                                                          | ATER QUALITY RAN  | GES               |                |              |
|-------------------------------------------------------------|-------------------|-------------------|----------------|--------------|
| It.                                                         | Maximum of Record | Minimum of Record | Maximum - 1959 | Hinimm - 195 |
| Specific conductance (micromhos at 25°C)                    | 1.670             | 269               | 1 200          | 35.9         |
| Temperature in OF                                           | 81                | 43                | 79             | No.          |
| Dissolved oxygen in parts per million<br>Percent saturation | 1P 4              | h, 9              | 10 0           | 6 B          |
| PR                                                          | 8.6               | 6.8               | 8.1            | 7.4          |
| Mineral constituents in parts per million                   |                   |                   |                |              |
| Calcium (Ca)                                                | 70                | 15                | 54             | 19           |
| Magneelum (Mg)                                              | 73                | 9.h               | 63             | 1.6          |
| Sodium (Na)                                                 | 83.6              | 26                | 155            | 35           |
| Potansium (K)                                               | 5.4               | 1 1               | 3.5            | 1 1 1        |
| Carbonate (CO2)                                             | 1.6               | 0.0               | , ,            | 0.1          |
| Bicarbonats (800a)                                          | 363               | Q/ <sub>1</sub>   | 327            | 142          |
| Sulfate (SOL)                                               | 220               | 21                | 226            | 21           |
| Chloride (CI)                                               | 172               | 11                | 93             | 14           |
| Witrate (NO1)                                               | 5.8               | 0.0               | 5.8            |              |
| Fluoride (F)                                                | 0.6               | 0.0               |                | 0.0          |
| Boron (B)                                                   |                   |                   | 0.5            | 0 1          |
| 311ice (3102)                                               | 0.37              | 0.0               | 0 3            | 0.1          |
| 311164 (3102)                                               | 30                | 9.9               | 30             | 13           |
| fotal dissolved solids in parts per million                 | 990               | 160               | 741            | 218          |
| Percent sodium                                              | 58                | 34                | 50             | 35           |
| Sardness as CaCO; in parts per million                      |                   |                   |                |              |
| Total                                                       | 418               | 76                | 312            | 104          |
| Noncarbona te                                               | 129               | 0.0               | hh             | (10)         |
| Terbidity                                                   | 520               | 9                 | 60             | 2            |
| Coliform in most probable number per milliliter             | 2,400.            | 5                 | 2,400          | 1)           |
| ladioactivity in micro-micro curies per liter               |                   |                   |                |              |
| Dissolved sloha                                             | See 1959          | See 1959          |                |              |
|                                                             |                   |                   | 5.63           | 0.58         |
| Solid alpha                                                 |                   |                   | 0.10           | 10 00        |
| Dissolved bets                                              |                   |                   | 5.35           | 3 87         |
| Solid bets                                                  |                   |                   | 1.88           | 0 00         |

WATER QUALITY VARIATIONS



#### SACRAMENTO SLOUGH NEAR KNIGHTS LANDING (STA. 14a)

Sampling Point The station is within Section 20, Township 11 North,
Range 2 East, Mt. Diablo Base and Meridian. Monthly grab samples were
collected near the surface from the center of the stream, from a bridge
crossing Sutter Bypass, near the discharge pipes from Reclamation District
1500 pumping plant about 4 miles east of Knights Landing.

Period of Record June 1951 through December 1959.

Water Quality Characteristics Past analyses show this water to be predominantly a mixed magnesium-calcium-sodium bicarbonate type, with low to moderate concentrations of dissolved solids, and class 1 for irrigation use. Water from Sacramento Slough is moderately hard and of limited use for some domestic and industrial uses. Flow in this slough is chiefly irrigation return and local drainage from Reclamation District 1500.

| WA                                             | ATER QUALITY RAN  | IGES              |                |               |
|------------------------------------------------|-------------------|-------------------|----------------|---------------|
| Item                                           | Maximum of Record | Minimum of Record | Maximum - 1959 | Hinimum - 195 |
| Specific conductance (micromhoe at 25°C)       | 799               | 106               | 562            | 24.R          |
| Temperature in OF                              | Rh                | 41                | 78             | 146           |
| Dissolved oxygen in parts per million          | 12.5              | 5,8               | 10 1           | 6.1           |
| Percent saturation                             | 107               | 65                | ge             | 79            |
| pll                                            | f.2               | 6.9               | 8.0            | 7.0           |
| fineral constituents in parts per million      |                   |                   |                |               |
| Calcium (Ca)                                   | 4.9               | 11                | 14             | 18            |
| Hagnesium (Ng)                                 | 30                | 4.9               | 26             | 12            |
| Sodium (Na)                                    | 66                | 5.0               | 50             | 13            |
| Potassium (E)                                  | 3.2               | 0.9               | 2.0            | 1.7           |
| Carbonate (CO3)                                | 9.0               | 0.0               | 0.0            | 0.5           |
| Bicarbonate (8003)                             | 272               | 53                | 214            | 129           |
| Sulfata (SOL)                                  | 53                | 3.8               | 26             | 1.8           |
| Chloride (31)                                  | 114               | 3.2               | 5.0            | 9.2           |
| Witrate (WO1)                                  | 1.8               | 0.0               | 1.8            | 0.0           |
| Fluoride (F)                                   | 0.4               | 0.0               | 0.2            | 0.0           |
| Boron (B)                                      | 0.19              | 0.0               | 0.1            | 0.0           |
| 311ica (3102)                                  | 36                | 15                | 36             | 19            |
| 3111ca (3102)                                  | 16                | 15                | 36             | 19            |
| otal dissolved solids in parts per million     | 440               | 64                | 937            | 154           |
| ercent sodium                                  | 48                | 18                | 37             | 21            |
| Mardness as CaCO; in parts per million         |                   |                   |                |               |
| Total                                          | 218               | 3.4               | 192            | No.           |
| Woncarbonate                                   | 37                | 0.0               | 1              | 0.0           |
|                                                |                   |                   |                |               |
| Purbidity                                      | 310               | 5                 | 75             | 13            |
| oliform in most probable number per milliliter | >7,000.           | 0.62              | 7,000.         | 2.3           |
| adjoactivity in micro-micro curies per liter   |                   |                   |                |               |
| Dissolved alpha                                | 0.48              | 0.00              | 0, 58          | 0.09          |
| Solid slpha                                    | 0,60              | 0.00              | 0.60           | 0.37          |
| Dissolved beta                                 | 3.64              | 0.00              | 1.64           | 0.00          |
| Solid beta                                     | 9.23              | 0.00              | 2.77           | 2.36          |

WATER QUALITY VARIATIONS



McCloud River Basin. McCloud River watershed lies immediately north of Shasta Reservoir in the northern portion of the Central Valley Region. The river basin drains a heavily forested, predominantly mountainous terrain. Valley and mesa lands cover about 15 percent of the 685 square miles in the McCloud River Basin. Estimated mean seasonal runoff is 1,403,000 acre-feet.

Timber production provides the major stimulus for the economy of this basin. Livestock raising and recreation provide a supplement to the economic development. Water use and waste discharges of these developments are comparatively minor and have not created problems of any consequence.

To maintain surveillance on quality of runoff from this basin a monitoring station is located on McCloud River above Lake Shasta.



#### McCLOUD RIVER ABOVE SHASTA LAKE (STA. 18)

Sampling Point Station 18 is located in Section 31 of Township 36 North, Range 3 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank, just above the backwater of Shasta Lake, 11 miles east of the town of Delta.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Past analyses show the water to be generally calcium bicarbonate in character, class 1 for irrigation, soft and within drinking water standards for mineral content. The station is generally inaccessible during the winter months and, therefore, samples are usually collected only during the spring, summer and fall months.

Significant Water Quality Changes None.

| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATER QUALITY RAN                                                         | GES                                                      |                                                                 |                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record                                                        | Minimum of Record                                        | Masimum = 1959                                                  | Rinimum - 195                                                     |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150                                                                      | 79                                                       | 129                                                             | RR b                                                              |
| Pesperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                       | 12                                                       | 5.7                                                             | 42                                                                |
| Resolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 h . 1<br>12 h                                                          | 7 4<br>61                                                | 1 9<br>109                                                      | 96                                                                |
| Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.1                                                                      | 7.1                                                      | 7.17.                                                           | 7                                                                 |
| Hiseral constituents in parts per million Calcium (Calcium (Calciu | 13<br>5,1<br>9,19<br>2,5<br>0,0<br>8,6<br>7,5<br>8<br>1,0<br>0,2<br>0,72 | 8.<br>2.1<br>3.1<br>0.6<br>0.0<br>1<br>0.0<br>0.0<br>0.0 | 8 8 8 9 6 1 5 9 6 1 5 9 7 0 7 0 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 0<br>3 1<br>1 1<br>0 0<br>67<br>0 0<br>1 1<br>2 0<br>2 0<br>2 0 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 174                                                                      | 66.<br>1h                                                | 105                                                             | 73                                                                |
| Percent sodium  Lardness as CaCO <sub>J</sub> in parts per million  Total  Boncarbonsts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5h<br>0.0                                                                | 31<br>0.0                                                | 51<br>0.0                                                       | 14<br>75<br>0 0                                                   |
| Purblidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                       | 0.0                                                      | 35                                                              | 0.0                                                               |
| coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7,000.                                                                  | ~0.nh5                                                   | 230.                                                            | 79.065                                                            |
| Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.51<br>0.55<br>10.80<br>5.96                                            | 0.00<br>0.17<br>0.00<br>0.00                             | 0.55<br>3.07                                                    | 0.00<br>0 22<br>2 10<br>0.11                                      |





Pit River Basin. Runoff from 5,758 square miles in California (including Goose Lake Basin) drains into the Pit River. Goose Lake Basin in California comprises 412 square miles which, during extremely wet years, spills over into the Pit River. Included with the Pit River Unit Basin are some 2,270 square miles of valley and mesa lands. Prominent among the valley fill areas are South Fork Pit River, Big Valley, Goose Lake, and Fall River. Estimated mean annual runoff of Pit River Basin is 3,426,000 acre-feet.

Topography of the area is characterized by several large upland valley areas, ranging in elevation from 2,500 to 5,000 feet, surrounded by rugged, volcanic peaks of the Cascade Range. These mountain and valley lands are used extensively for dry range for livestock and also support irrigated agriculture, timber production, mining, and recreation.

Waste discharges from several small communities, lumbermills, and local light industries enter the Pit River along its course. These wastes are minor, the largest being less than 0.5 mgd from the City of Alturas, and do not create any significant pollution or impairment problems:

The following tabulation presents the names of station maintained to monitor quality of surface water in this basin and the page on which each is discussed:

|                                   | Page Number of     |
|-----------------------------------|--------------------|
| Monitoring Station                | Station Discussion |
|                                   |                    |
| Pit River near Canby              | 166                |
| Pit River near Bieber             | 168                |
| Pit River near Montgomery Creek   | 170                |
| Pit River, South Fork near Likely | 172                |



## PIT RIVER NEAR CANBY (STA. 17a)

Sampling Point The Camby station is situated in Section 10 of Township 41 North, Range 9 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the center of the channel of flow from the Highway 299 bridge 4.5 miles southwest of Camby.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Pit River at Station 17a is sodium-calcium bicarbonate, class 1 for irrigation and soft to slightly hard. Iron occasionally exceeds the recommended maximum for iron and manganese combined in drinking water. All other minerals are within drinking water standards. A significant increase (70 to 140 ppm) in the concentration of minerals occurs between the South Fork Pit River near Likely station and the Canby station.

Significant Water Quality Changes The iron concentration of 0.33 ppm reported in September 1959 exceeded the recommended maximum for iron and manganese together in drinking water.

| W                                               | TER QUALITY RAN   | GES               |             |             |
|-------------------------------------------------|-------------------|-------------------|-------------|-------------|
| Item                                            | Maximum of Record | Minimum of Record | Basimum - 1 | 21 mm - 1 2 |
| Specific conductance (micromhos at 25°C)        | 176               | 1.77              | 176         | = A         |
| Temperature in OF                               | 79                | 33                | 78          | 33          |
| Diamolwed oxygen in parts per million           | 12.5              | 6.0               | 12.5        | 7.2         |
| Percent saturation                              | QA.               | 68                | 98          | 77          |
| pH                                              | A h               | 6,8               | A 3         | 1.4         |
| Mineral constituents in parts per million       |                   |                   |             |             |
| Calclum (Ca                                     | 24                | 11                | 24          | 20          |
| Hagnesium (Hg                                   |                   | h,h               | 11          | A 3         |
| Sodium (Na                                      | 47                | R,h               | 47          | 20          |
| Potantium (K)                                   | 7.7               | 2.3               | 7.0         | 1.6         |
| Carbonate (CO3)                                 | 6                 | 0,0               | 6           | -24         |
| Bicarbonats (HCO)                               | 192               | 76                | 192         | 8.13        |
| Sulfate (SOL                                    | 25                | h. 9              | 25          | 9.0         |
| Chloride (CI)                                   | 20                | 0.0               | 20          | 4.5         |
| Mitrate (NO3)                                   | 2.2               | 0.6               | 1.1         | 1.0         |
| Fluorida (F)                                    | 0,6               | 0.0               | 0.3         | 0           |
| Boron (8)                                       | 0.3               | 0.0               | 03          | 010         |
| Silica (SiO <sub>2</sub> )                      | 38                | 29                | 33          | 30          |
| Total dissolved solids in parts per million     | 263               | 89                | 261         | 159         |
| Percent sodium                                  | 51                | 26                | 51          | 35          |
| Hardness as CaCO; in parts per million          |                   |                   |             |             |
| Tot al                                          | 106               | 50                | 106         | 67          |
| Noncarbons te                                   | 0.0               | 0.0               | 0.0         | 0.0         |
| Turbidity                                       | 140               | 3                 | 150         |             |
| Coliform in most probable number per milliliter | >7,000.           | 0.23              | 2, kon      | 0.5         |
|                                                 |                   |                   |             |             |
| ladioactivity in micro-micro curies per liter   |                   |                   |             |             |
| Dissolved alpha                                 | 0.19              | 0.00              | 0.19        | 0.17        |
| Solid alpha                                     | 1.43              | 0.00              | 0.40        | 0.09        |
| Dissolved beta                                  | 10.43             | 0.00              | 6 72        | 4.64        |
| Solid beta                                      | 8.15              | 0.00              | 8.5         | 0.00        |

WATER QUALITY VARIATIONS



PIT RIVER NEAR CANBY (STA. 17a)

## PIT RIVER NEAR BIEBER (STA. 17e)

Sampling Point Station 17e is located within Section 34 of Township 37 North, Range 7 East, Mt. Diablo Base and Meridian. Monthly water samples were collected from the right bank, at the USGS gage 1.5 miles upstream from Spring Gulch and 8 miles south of Bieber.

Period of Record October 1958 through December 1959.

Water Quality Characteristics Water at this station is sodium-calcium bicarbonate in character, class 1 for irrigation, soft and within mineral standards for drinking water. There is no significant difference in conductivity of Pit River between the Canby station and the Bieber station. Significant Water Quality Changes None.

| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QUALITY RAN                                                         | GES                                                             |                                                                 |                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|
| Itam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum of Record                                                   | Minimum of Record                                               | Maximum 1959                                                    | Minimum - 1959                                                         |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 383                                                                 | 155                                                             | 3/11                                                            | 155                                                                    |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77                                                                  | 33                                                              | 77                                                              | 11                                                                     |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14 6<br>174                                                         | 7 7                                                             | 14 6<br>174                                                     | 7 7<br>76                                                              |
| pil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rq                                                                  | 7.3                                                             | R.y.                                                            | 7.4                                                                    |
| Winners constituents in parts per million Calcium (Calcium (Calcium (Calcium (Mg))) Magnesium (Mg) Sodium (Ws) Potas mium (N) Bicarbonate (RO3) Sicarbonate | 28<br>12<br>68<br>8 8<br>53<br>130<br>60<br>27<br>1.3<br>0.5<br>0.3 | 17<br>h q<br>1h<br>P 6<br>n n<br>77<br>7.5<br>0 n<br>0.9<br>0.0 | 28<br>12<br>68<br>8 8 8<br>53<br>180<br>23<br>1 3<br>0 5<br>0 7 | 17<br>h 9<br>1 h<br>2 6<br>n 0<br>R0<br>13<br>3 5<br>0.0<br>0.2<br>0.0 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 246                                                                 | 122                                                             | 246                                                             | 122                                                                    |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68                                                                  | 34                                                              | 6A                                                              | 75                                                                     |
| Mardness as CaOO3 in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110<br>0.0<br>See 1959                                              | 53                                                              | 11n<br>0 0                                                      | 57 0 0                                                                 |
| In cross A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See 1959                                                            | See 1959                                                        | Ton                                                             | 13                                                                     |
| Coliform in most probable number per milliliter (Mot<br>Measured)<br>Ladioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sec 1959                                                            | See 1959                                                        | 0.70                                                            | 0 00<br>0 00                                                           |
| Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |                                                                 | 7 16                                                            | 6 15                                                                   |

WATER QUALITY VARIATIONS



# PIT RIVER NEAR MONTGOMERY CREEK (STA. 17)

Sampling Point Station 17 is located in Section 32 of Township 35

North, Range 1 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at the USGS gage 1 mile upstream from Cow Creek and 3.5 miles west of the town of Montgomery Creek.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Past analyses show the character of the water at Station 17 to be calcium-magnesium bicarbonate, class 1 for irrigation, soft to slightly hard, and within the recommended limits for mineral content in drinking water. The concentration of most dissolved minerals in the Pit River normally decrease significantly (about 100 micromhos) between the Bieber station and Montgomery Creek station because of tributary inflow of better quality water.

| W                                               | ATER QUALITY RAN  | GES               |                |                |
|-------------------------------------------------|-------------------|-------------------|----------------|----------------|
| It-                                             | Maximum of Record | Minimum of Record | Maximum - 1959 | Hinimum - 1959 |
| Specific conductance (micromhom 4t 25°C)        | 181               | 70                | 169            | 119            |
| Temperature in OF                               | 70                | 36                | 66             | 49             |
| Dissolved oxygen in parts per million           | 13.8              | 6,9               | 11 9           | 4.4            |
| Percent seturation                              | 130               | 73                | 99             | 94             |
| pH                                              | 8.4               | 7.1               | 8.1            | Tal            |
| Mineral constituents in parts per million       |                   |                   |                |                |
| Calcium (Ca)                                    | 1.4               | 6.9               | 11             | 11             |
| Magnerium (Mg)                                  | 7.3               | 2.3               | 5.9            | 6.4            |
| Sodium (Ne                                      | 1.6               | 2.6               | 1.4            | 7.4            |
| Potassium (K)                                   | 3.2               | 0.8               | 2.1            | 7 %            |
| Carbonate (CO <sub>2</sub> )                    | 0.0               | 0.0               | 0.0            | 0.0            |
| Bicarbonate (ROD3)                              | OR.               | 6.6               | 91             | 63             |
| Sulfete (SOL)                                   | 3.8               | 0.9               | à A            | 1.0            |
| Chloride (CI)                                   | A                 | 0.8               | 5.5            | 1.5            |
| Witrate (NO)                                    | 1.0               | 0.0               | 3.0            | 0.4            |
| Fluoride (F)                                    | 0.2               |                   |                |                |
|                                                 |                   | 0.0               | 0.2            | 0.1            |
| Boron (B)                                       | 0.3               | 0.0               | 0.2            | 0.0            |
| Silics (SiO <sub>2</sub> )                      | 1A                | 17                | 14             | 20             |
| Total dissolved solids in parts per million     | 1 77              | 58                | 127            | BS             |
| Percent sodium                                  | 35                | 15                | 35             | 24             |
| Hardness as CeCO; in parts per million          |                   |                   |                |                |
| Total                                           | 74                | 3.5               | 62             | 4.1            |
| Honcarbonate                                    | 3                 | 0.0               | 0.0            | 0.0            |
| Turbidity                                       | 60                | 0.5               | 50             | 1              |
| Coliform in most probable number per milliliter | >7,100            | <0.14s            | 130.           | n,nas          |
| Radioactivity in micro-micro curies per liter   |                   |                   |                |                |
| Dissolved slpha                                 | 0.09              | 0.00              | 0.09           | 0.09           |
| Solid slpha                                     | 0.78              | 0.00              | 0.50           | 0.17           |
| Dissolved beta                                  | 8.82              | 0.00              | R . R2         | 0.00           |
| Solid bata                                      | 1.66              | 0.00              | 0.64           | 0.28           |
| 30110 0010                                      | 1.00              | 0.00              | 0.00           | 11.24          |





## PIT RIVER, SOUTH FORK NEAR LIKELY (STA. 18a)

Sampling Point Station 18a is the upstream station on the Pit River
Basin and is located in Section 11 of Township 39 North, Range 13
East, Mt. Diablo Base and Meridian. Monthly grab samples were collected
from the left bank, at the USGS gage 1.3 miles downstream from West
Valley Creek and 3.5 miles east of Likely.

Period of Record August 1958 through December 1959.

Water Quality Characteristics South Fork Pit River near Likely is calcium-magnesium bicarbonate in character, class 1 for irrigation and soft. Although it meets drinking water standards for mineral content, iron concentrations occasionally exceed the recommended limit of 0.3 ppm for iron and manganese combined.

Significant Water Quality Changes During September 1959, iron exceeded the maximum recommended limit for iron and manganese combined in drinking water when 0.74 ppm was reported. The source of the excessive iron concentrations has not been determined.

| WATER QUALITY RANGES                           |                   |                   |                |                |  |
|------------------------------------------------|-------------------|-------------------|----------------|----------------|--|
| It-                                            | Maximum of Record | Minimum of Record | Masimum - 1959 | Hinimum - 1951 |  |
| specific conductance (micromhos at 25°C)       | 177               | 21.2              | 179            | 91.2           |  |
| Comparature in Cy                              | 78                | 20                | ΥR             | 12             |  |
| lissolved oxygen in parts per million          | 12.2              | 7.3               | 12.2           | 7 7            |  |
| Percent saturation                             | 97                | 79                | QPP            | 90             |  |
| Н                                              | 8,3               | 7.1               | A 3            | 7.1            |  |
| ineral constituents in parts per million       |                   |                   |                |                |  |
| Calcium (Ca)                                   | 15                | A h               | 15             | 8.4            |  |
| Hagnerium (Hg)                                 | 6.2               | 3.5               | F 1            | 2.4            |  |
| Sodium (Na)                                    | 12                | h.6               | 19             | is R           |  |
| Poteasium (K)                                  | h.7               | 1.9               | h.7            | 0              |  |
| Carbonate (CO3)                                | 0.0               | 0.0               | 0.0            | 0.0            |  |
| Bicarbonete (8003)                             | Ap.               | 5.6               | Ap.            | 5 %            |  |
| Sulfate (SOL)                                  | 8,6               | 0.0               | 6.             | 0              |  |
| Chloride (CI)                                  | 7.5               | 0.5               | 7.5            | 1.0            |  |
| Nitrate (NO3)                                  | 1.5               | 0.0               | 1.5            | 0.0            |  |
| Fluoride (F)                                   | 0.3               | 0.0               | 0.2            | 0.0            |  |
| Boron (B)                                      | 0.1               | 0.0               | 0.1            | 0.0            |  |
| Silica (310 <sub>2</sub> )                     | 40                | 11                | lin .          | *1             |  |
| otal dissolved solids in parts per million     | 137               | A <sub>1</sub>    | 137            | 81             |  |
| ercent sodium                                  | 26                | 17                | 28             | 17             |  |
| ardness as CaCO; in parts per million          |                   |                   |                |                |  |
| Trot al                                        | 63                | 36                | 63             | 16             |  |
| Noncarbona te                                  | 0.0               | 0.0               | 0.0            | 0.0            |  |
| arbidity                                       | 45                | 1                 | 45             | 1              |  |
| oliform in most probable number per milliliter | See 1959          | See 1959          | >7,000         | 0,094          |  |
| adioactivity in micro-micro curies per liter   |                   |                   |                |                |  |
| Dissolved alpha                                | 0.51              | 0.27              | 0.51           | 0.27           |  |
| Solid alpha                                    | 0.44              | 0.27              | 0.44           | 0.27           |  |
| Dissolved beta                                 | 9, 32             | 6.35              | 9.32           | 6.35           |  |
| Solid bata                                     | 0.57              | 0.00              | 0.00           | 0.00           |  |

WATER QUALITY VARIATIONS



Redding Stream Unit. The Redding stream unit is located on the northern extremity of Sacramento Valley and includes all major streams tributary to Sacramento River between Keswick Dam and Red Bluff. To the west of the Sacramento River, Cottonwood and Clear Creeks are the major tributaries, and Cow, Bear, Battle and Paynes Creeks contribute from the east. The unit drains an area of about 2,610 square miles of which 780 square miles is valley and mesa land. Mean annual runoff in the unit totals 2,740,000 acre-feet.

The terrain of the unit is comprised of a fertile valley floor, rolling grass-covered foothills, and rugged mountains at the eastern and western boundaries. Developments in this area are centered around agriculture and lumbering activities. Livestock raising, recreation, and light industry are also prevalent in the unit. The Sacramento River and the underlying ground water basin provide most of the water used in the unit.

Waste discharges of significant quantity in this unit include outflows from United States Plywood Corporation (.34 mgd), Anderson Sanitation District (.75 mgd), and City of Redding (2.5 mgd).

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed:

| Monitoring Station                 | Page Number of<br>Station Discussion |
|------------------------------------|--------------------------------------|
| Clear Creek near Igo               | 176                                  |
| Cow Creek near Millville           | 178                                  |
| Cottonwood Creek below North Fork  |                                      |
| Cottonwood Creek                   | 180                                  |
| Cottonwood Creek near Cottonwood   | 182                                  |
| Cottonwood Creek, South Fork above |                                      |
| Cottonwood Creek                   | 184                                  |
| Battle Creek near Cottonwood       | 186                                  |
| Paynes Creek near Red Bluff        | 188                                  |



#### CLEAR CREEK NEAR IGO (STA. 12d)

Sampling Point Station 12d is located in Section 27, Township 31 North, Range 6 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank at the Redding-Igo road bridge, 1.0 mile northeast of Igo, 8 miles southwest of Redding, and 10.5 miles upstream from the mouth of the creek.

Period of Record April 1958 through December 1959.

Water Quality Characteristics A review of past analyses show the water at Station 12d to be bicarbonate in type with no predominant cation, soft to slightly hard and meets the drinking water standards for mineral content. Mineral concentrations in this water identify it as class 1 for irrigation.

Significant Water Quality Changes Total radioactivity reached 28.4 micro-micro curies per liter in September 1959, which is a little higher than that normally found in streams of this unit.

| WATER QUALITY RANGES                                                                                                                                                                                      |                                                                      |                                                                   |                                                                      |                                                                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|--|
| Item                                                                                                                                                                                                      | Maximum of Record                                                    | Minimum of Record                                                 | Racimum   1919                                                       | Hinima - 19                                                    |  |
| Specific communicance (micromnos et 25°C)                                                                                                                                                                 | P15                                                                  | A6 4                                                              | 215                                                                  | 10.0                                                           |  |
| Temperature in OF                                                                                                                                                                                         | Ro                                                                   | M                                                                 | 77                                                                   | Ar.                                                            |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                               | 13.3<br>156                                                          | 6.5<br>7k                                                         | 13.3                                                                 | 7 9                                                            |  |
| pH                                                                                                                                                                                                        | 9.1                                                                  | 7 1                                                               | 7 9                                                                  | 7.1                                                            |  |
| Hiseral consistences in parte per million Calcium (GA) Kagneslum (Ng) Sodium (Ng) Potandium (GA) Carbonate (GA) Sabbanate (GA) Sulfate (GA) Chloride (Cf) Nitrate (NG) Flooride (F) Boron (B) Slike (SUp) | 19<br>5 1<br>18<br>1 1<br>0.0<br>70<br>17<br>26<br>1.7<br>.2<br>0.13 | 6.4<br>1.8<br>1.1<br>0.3<br>0.0<br>26<br>1.9<br>1.0<br>0.0<br>0.0 | 19<br>4 3<br>1A<br>1.1<br>0.0<br>70<br>17<br>26<br>1 7<br>0.1<br>0.1 | 6 6 2.1<br>3.3<br>0.3<br>0.0<br>28<br>3.0<br>0.0<br>0.0<br>0.0 |  |
| otal dissolved solids in parts per million                                                                                                                                                                | 130                                                                  | 40                                                                | 130                                                                  | 55                                                             |  |
| Percent sodium                                                                                                                                                                                            | 37                                                                   | 21                                                                | 37                                                                   | 21                                                             |  |
| Mardmees as CaCO3 in parts per million<br>fotal<br>Moncarbonate                                                                                                                                           | 65<br>21<br>10                                                       | 24<br>0.0                                                         | 65<br>91                                                             | 26<br>1                                                        |  |
| Coliform in most probable number per milliliter (Not<br>Measured)<br>Madioactivity in micro-micro curies per liter<br>Dissolved slpha<br>Solid slpha<br>Dissolved bata<br>Solid shata                     | 7.58<br>7.47<br>23.21<br>6.54                                        | 0.10<br>0.20<br>h,hh<br>h.62                                      | 0.58<br>0.57<br>21.21                                                | 0.10<br>0.20<br>4.54<br>6,62                                   |  |

WATER QUALITY VARIATIONS



# COW CREEK NEAR MILLVILLE (STA. 88a)

Sampling Point The sampling station is located in Section 32 of Township 31 North, Range 3 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at the USGS gage, 4.2 miles southwest of Millville, and 4.3 miles downstream from Little Cow Creek.

Period of Record April 1958 through December 1959.

Water Quality Characteristics Analyses show water at Station 88a to be a calcium bicarbonate type, soft to slightly hard, class 1 for irrigation and meets the drinking water standards for mineral content.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |                               |                                          |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|------------------------------------------|-------------------|
| Itan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                          | Minimum of Record             | Harimum 1919                             | Hintem - PS       |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-1                                                                        | 7F 6                          | pr .                                     | 14.4              |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RT                                                                         | hij                           | BT                                       | light.            |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19 7<br>106                                                                | 6 1<br>79                     | 19 7<br>1 4                              | 27                |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.1                                                                        | 6.8                           | 8.1                                      | 4.8               |
| Himeral constituents in parts per million Calcium (Calcium (Calciu | 20<br>7 8<br>12<br>2<br>104<br>12<br>9 .8<br>0 .9<br>0 .9<br>0 .2<br>0 .30 | 7 2 2 9 3 5 6 0 0 3 4 6 3 2 2 | 201<br>7 A<br>12<br>9<br>1 14<br>12<br>7 | ) 7<br>1 0<br>1 0 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 146                                                                        | 60                            | 146                                      |                   |
| Tarchaes as CaOO; in parts per million<br>Total<br>Boncarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80<br>9<br>See 1959                                                        | 30<br>30<br>See 1959          | 80<br>7<br>15                            | Я                 |
| coliform in most probable number per milliliter (Not<br>Newmaured)<br>idefinectivity in micro-micro curies per liter<br>filmsolved slpha<br>Solid slpha<br>filmsolved beta<br>Solid state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See   059                                                                  | See 19'9                      | 10                                       |                   |

WATER QUALITY VARIATIONS



# COTTONWOOD CREEK BELOW NORTH FORK COTTONWOOD CREEK (STA. 11a)

Sampling Point The monitoring station is located in Section 2, Township 29
North, Range 6 West, Mt. Diablo Base and Meridian. Monthly water samples
were collected from the left bank 13.5 miles west of the town of Cottonwood
along Gas Point Road about 1.0 mile downstream from the mouth of North
Fork Cottonwood Creek.

Period of Record October 1958 through December 1959.

Water Quality Characteristics Water at Station lla is bicarbonate in type, with no predominant cation, moderately hard, class 1 for irrigation, and meets drinking water standards for mineral content.

| WATER QUALITY RANGES                                           |                   |                   |                |               |  |
|----------------------------------------------------------------|-------------------|-------------------|----------------|---------------|--|
| Item                                                           | Haximum of Record | Minimum of Record | Hazimum - 1959 | Minimum - 195 |  |
| Specific conductance (eleromnes et 2500)                       | 990               | -16               | 290            | 116           |  |
| Temperature in OF                                              | 46                | 13                | AA .           | 11            |  |
| Dissolved oxygen in parts per million                          | 13.1              | 6.6               | 13.1           | 6.6           |  |
| Percent saturation                                             | 106               | 77                | 104            | 77            |  |
| Re                                                             | A 1               | 7 1               | 8.1            | Tak           |  |
| dineral constituents in parts per million                      |                   |                   |                |               |  |
| Calcium (Ca)                                                   | 3/1               |                   | 30             | 11            |  |
| Magnorium (Mg)                                                 | 15                | 3.9               | 15             | 3.9           |  |
| Sodium (Na)                                                    | 1.4               | h 1               | 1 h            | h 1           |  |
| Potassium (K)                                                  | 2_6               | 170.4             | 2.6            |               |  |
| Carbonata (003)                                                | 5                 | 1818              | 5              | 0.00          |  |
| Bicarbonate (HOD3)                                             | 161               | 33                | 161            | 33            |  |
| Sulfata (SO)                                                   | 27                | 4 B               | 27             | 5 A           |  |
| Chloride (CI)                                                  | 51                | 4.0               | 21             | 4.0           |  |
| Mitrate (NO3)                                                  | 3.5               | 0                 | 3.5            | = 0           |  |
| Fluorida (F)                                                   | 0.2               | - n               | 0.2            | 0.0           |  |
| Boron (B)                                                      | 0.1               | 0.0               | 0.1            | 0.0           |  |
| 31lica (310 <sub>2</sub> )                                     | 2 h               | 11                | 24             | 11            |  |
| Total dissolved solids in parts per million                    | 183               | Ro                | 183            | An.           |  |
| Parcent sodium                                                 | 30                | 9                 | 30             | 9             |  |
|                                                                |                   |                   |                |               |  |
| fardness as CaCO3 in parts per million                         |                   | NA .              |                | 1.0           |  |
| Total                                                          | 135               |                   | 115            | 2             |  |
| Moncarbonate                                                   | 50                | 1.0               | 20             |               |  |
| Partidity                                                      | 2                 | 1                 | 2              | 1             |  |
| Coliform in most probable number per milliliter (Not Measured) |                   |                   |                |               |  |
| Radioactivity in micro-micro curies per liter                  |                   |                   |                |               |  |
| Dissolved alpha                                                | 0.39              | 2 00              | 0.34           | 0.09          |  |
| Solid slpha                                                    | 0.82              | 0.62              | 0.82           | 0.62          |  |
| Dissolved beta                                                 | 6.24              | h. 27             | 6.24           | 1,27          |  |
| Solid beta                                                     | 4.92              | 3.41              | 4.92           | 3.85          |  |





#### COTTONWOOD CREEK NEAR COTTONWOOD (STA. 12b)

Sampling Point Station 12b is located in Section 7 of Township 29 North, Range 3 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at the USGS gage 2 miles east of the town of Cottonwood, and approximately 2.5 miles upstream from the mouth.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Water at Station 12b is bicarbonate in type with generally no predominant cation. However, a tendency has been noted for calcium to become the dominant cation during periods of high flow. Concentrations of dissolved minerals vary only slightly at this point and depend chiefly on the rate of surface runoff. Samples of water from this station are class 1 for irrigation, are slightly to moderately hard, meet drinking water standards for mineral content, and are suitable for nearly all industrial uses.

| WA                                              | TER QUALITY RAN   | GES               |              |               |
|-------------------------------------------------|-------------------|-------------------|--------------|---------------|
| Item                                            | Maximum of Record | Minimum of Record | Maximum 1957 | Hinimum - 195 |
| Specific conductance (micromhom st 250C)        | 389               | 89.               | 730          | [25           |
| Temperature in OF                               | 84                | NO.               | Bla          | 41            |
| Dissolved oxygen in parts per million           | 11.9              | 6.7               | 13.9         | A o           |
| Percent saturation                              | 147               | 71                | 147          | 93            |
| Bq.                                             | 8.2               | 6.8               | 8.1          | 7.1           |
| fineral constituents in parts per million       |                   |                   |              |               |
| Calcium (Ca)                                    | 37                | 8.1               | 18           | 15            |
| Hagnosium (Mg)                                  | 1 h               | 5.1               | 9.           | 8 4           |
| Sodium (Na)                                     | 18                | 2.9               | 13           | 6             |
| Potarxium (E)                                   | 2 7               | .7                | 1 7          | 1.0           |
| Carbonate (CO <sub>1</sub> )                    | 3                 | 0.                | 0            |               |
| Bicarbonate (800)                               | 148               | 67                | 113          | QP.           |
| Sulfate (SOL)                                   | 13                | b.0               | 5.8          | h.0           |
| Chloride (CI)                                   | 37                | 0.6               | 18           | 3.6           |
| Nitrate (NO <sub>3</sub> )                      | 9.1               | 0.1               | 0.9          | 1             |
| Fluoride (P)                                    | 0.3               | 0.0               | 0 1          | 0.0           |
| Boron (B)                                       | 0.20              | 0.0               | 0.1          | 0.0           |
| 3111ca (3102)                                   |                   |                   |              |               |
| 2117cm (2705)                                   | 28                | 18                | 27           | 5.9           |
| otal dissolved solids in parts per million      | 226               | 52                | 149          | 104           |
| Percent sodium                                  | 26                | 10                | 98           | 10            |
| lardness as CaCO in parts per million           |                   |                   |              |               |
| Total                                           | 150               | 6.1               | 100          | 72            |
| Woncarbonate                                    | 59                | 0.0               | 12           | 0.0           |
| Partidity                                       | 264               | 0.0               | 25           | 1             |
| coliform in most probable number per milliliter | >7,000.           | 0.046             | 2,400        | 0. 16         |
| ladioactivity in micro-micro curies per liter   |                   |                   |              |               |
| Dissolved alpha                                 | 1.18              | 0.00              | 0.00         |               |
|                                                 |                   | 0.00              | 0.97         | 0_00          |
| Solid alpha                                     | 0.89              | 0.00              |              | 0.26          |
| Dissolved beta                                  | 2.09              | 0.00              | 0.33         | 0.00          |
| Solid beta                                      | 10.7              | 0.00              | 2.87         | 1.82          |

WATER QUALITY VARIATIONS



# COTTONWOOD CREEK, SOUTH FORK ABOVE COTTONWOOD CREEK (STA. 11b)

Sampling Point The station is located in Section 17, Township 29 North,
Range 4 West, Mt. Diablo Base and Meridian. Monthly grab samples were
collected at mid-stream from the Evergreen Road bridge, approximately 3.2
miles west of State Highway 99 and 1 mile upstream from the mouth.

Period of Record November 1958 through December 1959.

Water Quality Characteristics Water at this station is calcium bicarbonate in character, moderately hard, and class 1 for irrigation. The water is suitable for most industrial purposes and meets drinking water requirements for mineral content.

| WATER                                                             | QUALITY RAN       | GES              |                |               |
|-------------------------------------------------------------------|-------------------|------------------|----------------|---------------|
| Item                                                              | Maximum of Record | Rinimm of Record | Hasimum - 1917 | Hinima - 1951 |
| Specific conductance (micromhos at 25°C)                          | ann.              | 224              | no#            | 225           |
| Tumpersture in OF                                                 | PQ.               | N.               | Rp             | No.           |
| Dissolved oxygen in parts per million                             | 2.8               | 5.3              | 12 8           |               |
| Percent saturation                                                | (03               | 13               | 100            | 61            |
| Ne                                                                | 7.9               | 7.2              | .7.9           | 7.3           |
| Mineral constituents in parts per million                         |                   |                  |                |               |
| Calcium (Ca)                                                      | 63                | 23               | 36             | 23            |
| Magnorium (Mg)                                                    | 15                | 7.7              | 11             | 7.7           |
| Sodium (Na)<br>Potassium (K)                                      | 17                | 8.4              | 14             | 6.4           |
|                                                                   | 2.0               | 3.5              | 2.0            | 71.5          |
| Carbonate (CO)                                                    | 5                 |                  | 2              | 2.5           |
| Bicarbonate (HOO3)                                                | 163               | 109              | 163            | 100           |
| Sulfate (SOL)                                                     | 23                | 7 9              | 1.0            | 7.9           |
| Chloride (CI)                                                     | 10                | A q              | 1.6            | 8.9           |
| Nitrate (NO <sub>3</sub> )                                        | 1125              | 7.0              | 0.5            | 0.0           |
| Fluoride (F)<br>Boron (B)                                         | 0.2               | = 0              | 0.2            | 1.0           |
|                                                                   | 7.2               | 70               | 0.2            | 1.0           |
| 3111ca (3102)                                                     | 22                | 10               | 27             | 3.0           |
| otal dissolved solids in parts per million                        | 219               | 1 16             | 200            | 114           |
| ercent sodium                                                     | pn                | 16               | 2"             | 16.           |
| Sardness as CaCO <sub>2</sub> in parts per million                |                   |                  |                |               |
| Total                                                             | 168               | 07               | 1.77           | Qr.           |
| Moncarbona te                                                     | 53                | 0.0              | 13             | 0.0           |
|                                                                   |                   | .,,,,            | 13             | 17.0          |
| hurbidi ty                                                        | la la             | 1                |                | 1             |
| Coliform in most probable number per milliliter (Not<br>Measured) |                   |                  |                |               |
| ladioactivity in micro-micro curies per liter                     |                   |                  |                |               |
| Dissolved alpha                                                   | 0.11              | 0.00             | 0.11           | 0 00          |
| Solid alpha                                                       | 0.47              | 0.09             | 0.47           | 0.09          |
| Dissolved beta                                                    | 3.30              | 2.18             | 3.30           | 2.18          |
| Solid beta                                                        | 2,43              | 0.96             | 2.13           | 0.96          |

WATER QUALITY VARIATIONS



COTTONWOOD CREEK, SOUTH FORK ABOVE COTTONWOOD CREEK (STA. 11b)

### BATTLE CREEK NEAR COTTONWOOD (STA. 88b)

Sampling Point Station 88b is located in Section 6, Township 29 North,
Range 2 West, Mt. Diablo Base and Meridian. Monthly grab samples were
collected on the right bank, at the USGS gaging station, 6.3 miles upstream
from the mouth, and 7.6 miles east of Cottonwood.

Period of Record April 1958 through December 1959.

Water Quality Characteristics The water at Station 88b is bicarbonate in type with no predominant cation, excellent in quality, class 1 for irrigation, soft, and meets the requirements for drinking water. Mineral concentrations in water at Station 88b do not vary appreciably due to the effects of controlled flow resulting from upstream power developments. Significant Water Quality Changes None.

| Maximum of Record  1%h 72 12 6 1 8.2 7,5                | Minimum of Record  71 7  42  6 3                                                         | Maximum - 1959  1    h   6h    12.6   107   H   2                                                                                                | #iniavam - 195           |
|---------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 72<br>12 6<br>1 7<br>8.2                                | 42<br>7 3<br>7                                                                           | 64<br>12.6<br>107                                                                                                                                | 62<br>8 7                |
| 8.2                                                     | f. 3                                                                                     | 12.6                                                                                                                                             | B 7                      |
| 8.2                                                     | 7.                                                                                       | 107                                                                                                                                              |                          |
| 12                                                      |                                                                                          | Н 2                                                                                                                                              | 7.h                      |
|                                                         |                                                                                          |                                                                                                                                                  |                          |
| 10<br>2.6<br>1<br>92<br>6.7<br>4.<br>1.3<br>0.2<br>0.20 | 6<br>3.6<br>4.1<br>1 3<br>42<br>1 0<br>0 0<br>0 0                                        | 2 7 h 2 6 92 6 h 5 7                                                                                                                             | 7 /<br>1 /<br>1 7<br>1 7 |
| 132                                                     | 71                                                                                       | 132                                                                                                                                              | ,                        |
| 30                                                      | 19                                                                                       | 30                                                                                                                                               | 22                       |
| 82                                                      | 30                                                                                       | 82                                                                                                                                               | te fa                    |
| See 1959                                                | See 1959                                                                                 | 20                                                                                                                                               | P                        |
| See 1959                                                | See 1950                                                                                 | 1 7<br>. for<br>ls . Oslo                                                                                                                        | 2 79                     |
|                                                         | 10<br>2.6<br>1<br>20<br>6.7<br>4.7<br>4.0<br>0.2<br>0.2<br>0.20<br>53<br>132<br>30<br>82 | 10 4.1<br>2.6 1 1<br>1 1<br>90 42<br>6.7 1 1<br>0.2 42<br>1.1 0.2<br>0.20 1<br>0.20 1<br>0.30 1<br>132 71<br>30 19<br>89 30<br>See 1959 See 1959 | 10                       |





#### PAYNES CREEK NEAR RED BLUFF (STA. 88g)

Sampling Point Red Bluff station is located in Section 3 of Township 28 North, Range 2 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, 100 yards upstream from Long Road bridge at Dales station, approximately 14 miles east of Red Bluff, and 7 miles upstream from the USGS gage, which is located 0.4 mile upstream from the mouth.

Period of Record October 1958 through December 1959.

Water Quality Characteristics Past analyses show water at this point to be magnesium bicarbonate in type, slightly hard and within drinking water standards. Boron concentrations occasionally cause the water to be class 2 for irrigation. Boron in this stream is attributable to the geologic formations inherent in the drainage basin.

Significant Water Quality Changes For several months during 1959 boron concentrations exceeded the limits of a class 1 irrigation water. Low flow conditions existing during 1959 did not provide enough dilution water to prevent boron concentrations from reaching class 2 irrigation limits.

| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QUALITY RAN                                     | GES                     |                                                                     |                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|---------------------------------------------------------------------|------------------------------------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Haximum of Record                               | Rinimum of Record       | Haximum - 1959                                                      | Hinimm - 1955                                              |
| Specific conductance (micromnos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.)                                            | 118                     | 253                                                                 | 104                                                        |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7h                                              | NA.                     | 70                                                                  | M                                                          |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 9<br>110                                     | 7.6<br>81               | 11 h                                                                | 7 6<br>83                                                  |
| pil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.2                                             | 7.0                     | 8.2                                                                 | 7.0                                                        |
| #Harari constituents in parts per million Calcium (Calcium (Calciu | 1/<br>12<br>24<br>2.8<br>125<br>1/<br>20<br>5.3 | 7 P b, b 6.5 1 1 b3 6.5 | 16<br>12<br>24<br>25<br>127<br>16<br>20<br>5.0<br>0.2<br>0.5<br>5.3 | 7 9<br>b, b<br>6 5<br>1 9<br>b3<br>6 5<br>0 0<br>0 1<br>27 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 186                                             | Ag                      | 186                                                                 | 83                                                         |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38                                              | 2                       | 38                                                                  | 27                                                         |
| Nardness as CaCO3 in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82                                              | 36<br>0                 | 82                                                                  | 36<br>0-0                                                  |
| Partitidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sec 1959                                        | See 1959                | 10                                                                  | 3                                                          |
| Coliform in most probable number per milliliter (Mot<br>Manager)<br>Radioactivity in micro-micro curies per liter<br>Dissolves also per micro curies per liter<br>Dissolves beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sec 1959                                        | See 1959                | 0.50<br>0.34<br>12.05                                               | 0.09                                                       |





West Side Stream Unit. The drainage area of the West Side stream unit occupies approximately 4,000 square miles along the west side of Sacramento Valley. Major streams draining the area include Redbank, Elder, Thomes, Stony, Cache, and Putah Creeks. Clear Lake is a large natural lake on Cache Creek and is a prominent feature of the drainage area. Foothills and mountains of the Coast Range cover about 75 percent of the unit. The aggregate natural runoff of the streams of the unit average about 1,900,000 acre-feet per year.

Commercial development in the unit is primarily based on agriculture and livestock raising. The foothills provide excellent grazing lands and the valley and mesa lands are suitable for numerous orchard and field crops. Recreation has been a major attraction in the Clear Lake area for many years and as water developments occur in other portions of this unit, recreation will command a more important place in their economy.

Several small communities, resort areas, and limited mining activities discharge wastes into the streams of this unit. Only minor impairment of water quality in these streams is attributable to this source.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this unit and the page on which each is discussed:

|                                         | Page Number of     |
|-----------------------------------------|--------------------|
| Monitoring Station                      | Station Discussion |
| Redbank Creek near Red Bluff            | 192                |
| Elder Creek near Paskenta               | 194                |
| Elder Creek at Gerber                   | 196                |
| Thomes Creek at Paskenta                | 198                |
| Thomes Creek near mouth                 | 200                |
| Stony Creek at Black Butte Dam Site     | 202                |
| Stony Creek near Hamilton City          | 204                |
| Clear Lake at Lakeport                  | 206                |
| Cache Creek near Lower Lake             | 208                |
| Cache Creek near Capay                  | 210                |
| Cache Creek, North Fork near Lower Lake | 212                |
| Putah Creek near Winters                | 214                |
|                                         |                    |

## REDBANK CREEK NEAR RED BLUFF (STA. 88d)

Sampling Point Station 88d is situated in Section 22 of Township 26

North, Range 5 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from a private bridge approximately 100 feet north of Lowery Road, at the DWR gage, 2 miles southeast of Redbank and 15 miles northwest of Red Bluff.

Period of Record January 1959 through December 1959.

Water Quality Characteristics Based on limited data, water at Station 88d is calcium-magnesium bicarbonate in character, class 1 for irrigation, moderately hard to very hard and within drinking water standards for mineral content.

| WATER                                                                                                                                                                                                                                                                                                              | QUALITY RAN       | GES               |                        |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|------------------------|-------------|
| Item                                                                                                                                                                                                                                                                                                               | Haximum of Record | Minimum of Record | Bartman - /            | finism   IV |
| Specific conductance (micromhoe at 25°C)                                                                                                                                                                                                                                                                           | See 1919          | See: 1125.2       | -                      | 1.0         |
| Temperature in OF                                                                                                                                                                                                                                                                                                  |                   |                   | -                      | 100         |
| Dissolved oxygen in parts per milition<br>Percent saturation                                                                                                                                                                                                                                                       |                   |                   | .2                     | ,           |
| PN                                                                                                                                                                                                                                                                                                                 |                   |                   |                        | 11.0        |
| Mineral constituents in parts per million Calcium (G. ) Magnesium (Mg.) Sodium (Ms.) Potas sium (N.) Bicarbonate (DD) Bicarbonate (DD) Bicarbonate (CT) Bitarto (CT) Bitarto (N) Filoride (CT) Bitarto (N) Filoride (F) Silica (SIO) Filoride (F) Silica (SIO) Filoride (F) Silica (SIO) Filoride (F) Silica (SIO) |                   |                   | 2" f 9 Pt: 7% 7% 71 21 | 200         |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                        |                   |                   | 206                    | 226         |
| Percent sodium                                                                                                                                                                                                                                                                                                     |                   |                   | 1.6                    | 12          |
| Hardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonsts                                                                                                                                                                                                                                        |                   |                   | 243<br>52              | 183<br>2°   |
| Turbidity (Not Measured)                                                                                                                                                                                                                                                                                           |                   |                   |                        |             |
| Coliform in most probable number per milliliter (Mot<br>Measured)<br>Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved bata<br>Solid shara                                                                                                                              |                   |                   |                        |             |





REDBANK CREEK NEAR RED BLUFF (STA. 88d)

### ELDER CREEK NEAR PASKENTA (STA. 13e)

Sampling Point The location of Station 13e is within Section 14 of Township 25 North, Range 6 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank, at the USGS gage, 2.5 miles downstream from South Fork, 8 miles northeast of Flournoy, and 11 miles north of Paskenta.

Period of Record October 1958 through December 1959.

Water Quality Characteristics Analyses of samples show the water at Station 13e to be a bicarbonate type with none of the cations predominant. The water is very hard, but within drinking water standards for mineral content. Occasionally, conductivity causes the water at Station 13e to be class 2 for irrigation. Low flows late in the year offer very little dilution for accretions of poorer quality ground waters, probably accounting for the high conductivity.

| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QUALITY RAN       | GES               |                |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------|----------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record | Minimum of Record | Macinum   1757 | Minimum - 1955 |
| Specific conductance (micromnos at 2500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 30              | 216               | 1 = pn         | 214            |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aut.              | 41                | RA.            | 41             |
| Dissolved oxygen in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.5              | 7.8               | 11.6           | 7 8            |
| Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115               | 92                | 115            | 92             |
| Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.3               | 7.6               | 8.3            | 7.6            |
| Mineral constituents in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                   |                |                |
| Calcium (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69                | 91                | 69             | 21             |
| Hagnesium (Ng)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51                | 12                | 52             | 12             |
| Sodium (Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 156               | 7.7               | 156            | 7.7            |
| Potassium (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.6               | 0,4               | 3.6            | 0.4            |
| Carbonate (CO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                 | 0.0               | 6              | 0.0            |
| Bicarbonste (HOO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 244               | 121               | 249            | 121            |
| Sulfate (SOL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                | 1 9               | 360            | 1 9            |
| Chloride (CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NOB.              | 12                | NOR.           | 12             |
| Nitrate (NO1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0               | 0.0               | 5 9            | 0.0            |
| Fluoride (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2               | 0.0               | 0.2            | 0.0            |
| Boron (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3               | 0.0               | 0.3            | 0.0            |
| Silica (SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5#                | 1 h               | 24             | 14             |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 770               | 134               | 779            | 134            |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52                | 17                | 52             | 17             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                |                |
| Hardness as CaCO3 in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                   |                |                |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 383               | 103               | 383            | 103            |
| Noncarbona te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 279               |                   | 279            | h              |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See 1950          | See 1959          | 15             | 1              |
| Coliform in most probable number per milliliter (Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |                |                |
| Heasured)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                   |                |                |
| Radioactivity in micro-micro curies per liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sen 1959          | See 1959          |                |                |
| Rigoral adultation and the second adultation adultation and the second adultation and the second adultation |                   |                   | 0.68           | 0.18           |
| Solid alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 0.27           | 0.20           |
| Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   | R 52           | 0,00           |
| Solid bets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                   | h1             | 2.27           |

WATER QUALITY VARIATIONS



## ELDER CREEK AT GERBER (STA. 95a)

Sampling Point Elder Creek station is located within Saucos Grant in Section 2 of Township 25 North, Range 3 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at the USGS gage, 3.5 miles upstream from the mouth, and 1.0 mile west of Gerber.

Period of Record January 1959 through December 1959.

<u>Water Quality Characteristics</u> Based on limited analyses, the water is magnesium-calcium bicarbonate in character, class 1 for irrigation, moderately hard, and within acceptable limits for mineral content in drinking water. Only minor changes in concentrations (about 20 micromhos) occur between the Paskenta station and the Gerber station.

| WATER                                                                                                                                                                               | QUALITY RAN       | GES              |                                                                   |                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|-------------------------------------------------------------------|------------------------------------------------------------------|
| Item                                                                                                                                                                                | Maximum of Record | Hinimm of Record | Haximum - 1959                                                    | History - 1955                                                   |
| specific conductance (micromhom at 25°C)                                                                                                                                            | See 1959          | See 1959         | hal                                                               | 947                                                              |
| Temperature in °F                                                                                                                                                                   |                   |                  | 7.6                                                               | 45                                                               |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                         |                   |                  | 11 7<br>1 b                                                       | 86                                                               |
| No.                                                                                                                                                                                 |                   |                  | 8.3                                                               | 7 4                                                              |
|                                                                                                                                                                                     |                   |                  | 36<br>27<br>17<br>1 h<br>10<br>296<br>23<br>29<br>7.6<br>0.2<br>4 | 20<br>16<br>9<br>0 6<br>0<br>1/1<br>4 8<br>12<br>0<br>0.0<br>0.1 |
| otal dissolved solids in parts per million                                                                                                                                          |                   |                  | 258                                                               | 154                                                              |
| tardness as CaOO <sub>3</sub> in parts per million<br>fotal<br>Boncarbonats                                                                                                         |                   |                  | 200<br>35<br>0.0                                                  | 118                                                              |
| Colifors in most probable number per milititer (Mot<br>Measured)<br>Radioactivity in micro-micro curies per liter<br>Dissolved slpha<br>Solid slpha<br>Dissolved beta<br>Solid ster |                   |                  | 0.30<br>0.37<br>0.62                                              |                                                                  |

WATER QUALITY VARIATIONS



## THOMES CREEK AT PASKENTA (STA. 13d)

Sampling Point Station 13d is located in Section 4 of Township 23 North, Range 6 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank, at the USGS gage, 0.25 mile upstream from Digger Creek and 0.3 mile upstream from the highway bridge at Paskenta.

Period of Record October 1958 through December 1959.

Water Quality Characteristics Analyses show the water at this station to be generally calcium bicarbonate in character, class 1 for irrigation, soft to moderately hard and within drinking water standards for mineral content.

| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QUALITY RAN                                                       | GES                                                                                          |                                                                    |                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Haximum of Record                                                 | Minimum of Record                                                                            | Maximum = 1959                                                     | Minimum - 1959                                                          |
| Specific conductance (micromhom et 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No. 1                                                             | 116                                                                                          | M1                                                                 | 116                                                                     |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rp                                                                | 42                                                                                           | Ap.                                                                | 10                                                                      |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 9<br>127                                                       | A.0                                                                                          | 12 9<br>127                                                        | A o                                                                     |
| pil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.1                                                               | 7.5                                                                                          | 8.1                                                                | 7.5                                                                     |
| Himeral constituents in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                                                              |                                                                    |                                                                         |
| Calotum (Ca) Magnes Dum (Mg) Soddum (Wa) Fota actum (C) Carbonatum (CO) Blaratum (SO) Sulfata (SO) Chloric (Cf) Blaratum (Kf) Fluoride (F) Boome (D) Soddum (D) Soddu | 52<br>21<br>21<br>2.0<br>6<br>1AR<br>b0<br>h3<br>0.6<br>0.1<br>17 | 16<br>3.9<br>9.6<br>0.3<br>0.0<br>61<br>3.8<br>9.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 52<br>17<br>21<br>7.0<br>6<br>188<br>60<br>41<br>0.6<br>0.3<br>0.3 | 16<br>3 2<br>2 6<br>0.3<br>0.0<br>61<br>3 8<br>7.0<br>0.0<br>0.0<br>0.0 |
| total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 267                                                               | 67                                                                                           | 267                                                                | 67                                                                      |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71                                                                | 9                                                                                            | P1                                                                 | 9                                                                       |
| Bardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Soncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 GR<br>57                                                        | 53                                                                                           | 198<br>57                                                          | 53                                                                      |
| Perbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See 1959                                                          | See 1959                                                                                     | 3                                                                  | 1                                                                       |
| Coliform in most probable number per milliliter (Not<br>Measured)<br>Radioactivity in micro-micro curies per liter<br>Dissolved slpbs<br>Solid slpbs<br>Missolved bata<br>Solid stets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | See 1959                                                          | %++ 1959                                                                                     | 0.5A<br>0.60<br>5.29                                               | 0.00<br>0-29<br>1.50<br>5.29                                            |





THOMES CREEK AT PASKENTA (STA 13d)

## THOMES CREEK NEAR MOUTH (STA. 95b)

Sampling Point Thomes Creek station is located in Section 35 of Township 25 North, Range 3 West, Mt. Diablo Base and Meridian. Monthly water samples were collected from the center of the channel of flow from the Highway 99W bridge at Richfield, 3 miles north of Corning, 14.5 miles south of Red Bluff, and 4.5 miles upstream from the mouth.

Period of Record January 1959 through December 1959.

Water Quality Characteristics Water at Station 95b is calcium bicarbonate in character, class 1 for irrigation, slightly to moderately hard, and within the recommended standards for mineral content in drinking water.

During the first half of the calendar year the concentration of constituents at this station are slightly higher than at Station 13d about 20 miles upstream. As irrigation commenced and natural runoff decreased in this area, the conductivity differential between the upstream station and Station 95b increased from a few micromhos to about 85 micromhos.

Significant Water Quality Changes None.

| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QUALITY RAN       | GES               |                                                  |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|--------------------------------------------------|-------------------------------------------|
| 1tm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record | Rinisms of Record | Maximus 1959                                     | Hinimum - 1915                            |
| Specific conductance (micromnom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | See 10" /         | See P.O           | 971                                              | 750                                       |
| Temperature in or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                   | 7*                                               | 4.5                                       |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 11.9                                             | 24                                        |
| pfl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                   | 8                                                | 7-1                                       |
| Whineral constituence in parte per million Calcium (Ca) Augmentum (Mg) Sodium (mg) Fotanadum (1) Carbonste (10) Suffate (50) Suffate (50) Suffate (50) Suffate (50) Fitanadum (F) Fitana |                   |                   | 33<br>12<br>9<br>1<br>144<br>30<br>12<br>6.<br>2 | 27<br>h /<br>1 3 3<br>3<br>2<br>11<br>2 5 |
| Total dissolved solids in parts par million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 167                                              | 91                                        |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   | 15                                               | 9                                         |
| Marchess as CaCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 130                                              | 71<br>5                                   |
| Turbidity (Not Heasured)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                   |                                                  |                                           |
| Colifors in most probable number per milliliter (Not<br>Redicactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                   | 30<br>0.00<br>2.08<br>3.69                       |                                           |





#### STONY CREEK AT BLACK BUTTE DAM SITE (STA. 13c)

Sampling Point Station 13c is situated within Section 29 of Township 23 North, Range 4 West, Mt. Diablo Base and Meridian. Monthly grab samples of water were collected from the right bank in the vicinity of the USGS gage, 120 feet downstream from the diversion dam, and 8.7 miles northwest of Orland.

Period of Record January 1958 through December 1959.

Water Quality Characteristics Stony Creek at Black Butte Dam Site is calcium-magnesium bicarbonate in character, class 1 for irrigation, ranges from slightly hard to very hard and meets drinking water standards for mineral content.

Significant Water Quality Changes A significant decrease in radioactivity was noted during 1959. The total activity decreased from 18.3  $\mu\mu$ c/l in May to 5.7  $\mu\mu$ c/l in September. The higher value reported is still well within safe limits.

| WATER                                               | QUALITY RAN       | GES               |               |            |
|-----------------------------------------------------|-------------------|-------------------|---------------|------------|
| It-                                                 | Maximum of Record | Rinimum of Record | Resimum - LFS | Hintma - 1 |
| Specific conductance (micromnos et 25°C)            | 619               | 96                | 614           | 2440       |
| Desperature in OF                                   | 78                | W                 | TR.           | 50         |
| Diemolved oxygen in parts per million               | 11 3              | 7 7               | 10 9          | 7.9        |
| Percent saturation                                  | 105               | Bry               | 104           | an         |
| No                                                  | 8.1               | 7.4               | 9.1           | 7 14       |
| Mineral constituents in parts per million           |                   |                   |               |            |
| Calcium (Ca)                                        | 5.5               | 26                | 55            | 28         |
| Hagnorium (Hg)                                      | 24                | 9.4               | 24            | 9 4        |
| Sodium (Na)                                         | 4.9               | 7 2               | 49            | 10         |
| Potensism (K)                                       | 2.1               | 0.4               | 1 6           | 2.5        |
| Carbonste (CO3)                                     | 4                 | 7.0               | h h           | 0.0        |
| Bicerbonate (8003)                                  | 229               | 100               | 229           | 121        |
| Sulfate (SO <sub>1</sub> )                          | 60                | 11                | 60            | 11         |
| Chloride (CI)                                       | 85                | 6.0               | Rel           | 13         |
| Witrate (MO3)                                       | 3.5               | 0.0               | 3.5           | 0.0        |
| Fluorida (F)                                        | 0.2               | 0.0               | 0.5           | 0.0        |
| Boron (8)                                           | 0.5               | 0.0               | 0.5           | 0.1        |
| Silice (5102)                                       | 24                | 9 1               | 25            | 9 1        |
| otal dissolved solids in parts per million          | 371               | 114               | 3.41          | 151        |
| Percent sodium                                      | 26                | 13                | 241           | 13         |
| lardness as CaCO; in parts per million              |                   |                   |               |            |
| Total                                               | 274               | 88                | 234           | 109        |
| Noncarbona to                                       | 89                | 0.00              | Rq            | 0.0        |
| Parkidity                                           | 150               | 3                 | 50            | 20         |
| oliform in most probable number per milliliter (Bot |                   |                   |               |            |
| Measured)                                           |                   |                   |               |            |
| adioactivity in micro-micro curies per liter        |                   |                   |               |            |
| Dissolved sloha                                     | 0.58              | 0.00              | 0.48          | 0.00       |
| Solid alpha                                         | 0.42              | 0.26              | 0.30          | 0.26       |
| Dissolved beta                                      | 5.21              | 1.59              | 5.21          | 9 94       |
| Solid beta                                          | 12.12             | 1.54              | 19.19         | 1.56       |

WATER QUALITY VARIATIONS



STONY CREEK AT BLACK BUTTE DAM SITE (STA 13c)

#### STONY CREEK NEAR HAMILTON CITY (STA. 13a)

Sampling Point Hamilton City station is located in Section 36 of Township 22 North, Range 2 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at the USGS gage, 8 miles east of Orland, 2.5 miles southwest of Hamilton City, and 4 miles upstream from the mouth.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Past analyses show the water at the station to be generally calcium bicarbonate to calcium-magnesium bicarbonate in character, slightly to moderately hard and within drinking water standards for mineral content. With one exception in respect to boron (August 1954 - 0.64 ppm), it has been class 1 irrigation water throughout the period of record.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATER QUALITY RAN                                                         | GES                                                                   |                                                                      |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|
| It.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record                                                        | Rinima of Record                                                      | Hegimum - 1959                                                       | Hinimas - 195          |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 503                                                                      | 157                                                                   | 523                                                                  | 269                    |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ph                                                                       | 41                                                                    | 71                                                                   | 4.0                    |
| Dissolved oxygen in parts per million<br>Percent asturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.1                                                                     | 9 6<br>66                                                             | 11_8<br>10P                                                          | 6 q                    |
| pli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5                                                                      | 7.0                                                                   | A.1                                                                  | 7.5                    |
| Whereal constituents in parts per million Calcium (Ca) Mappentum (Mg) Soddium (Ma) Potas atum (V) Brachonsto (COT) Brachonsto (BOO) Sulfato (SO) Calorido (CI) Sitrato (MI) Fluorido (F) Sitrato (MI) Si | kp<br>1R<br>98<br>2.3<br>8<br>197<br>92<br>31<br>0.8<br>0.7<br>0.6<br>18 | PP 6.3 6.6 0.6 0.6 0.0 Ak 17 k 0.0 0.0 0.0 10 0.0 0.0 0.0 0.0 0.0 0.0 | *6<br>17<br>28<br>0.4<br>0.0<br>166<br>14<br>64<br>0.0<br>0.0<br>0.2 | 13<br>0.0<br>130<br>17 |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                       | 14                                                                    | 301                                                                  | 166                    |
| Sardness as CaCO <sub>2</sub> in parts per million<br>for al<br>Monocarbons te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 199<br>67                                                                | 65<br>0.0                                                             | 199<br>67                                                            | 12h<br>R               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                       | 30                                                                   | 0                      |
| Colifors in most probable number per milliliter Radioactivity in micro-micro curies per liter Dissolved alpha Solid sloba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,400.<br>0 kR<br>1,18                                                   | 0.00                                                                  | 0 fb<br>0 fb                                                         | 2.3                    |
| Dissolved bate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.48                                                                     | 0.00                                                                  | 0.00                                                                 |                        |
| Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.62                                                                     | 0.00                                                                  | 5.46                                                                 | 4                      |

WATER QUALITY VARIATIONS



## CLEAR LAKE AT LAKEPORT (STA. 41)

Sampling Point Station 41, the only active station on Clear Lake during 1959, is located in Section 24 of Township 14 North, Range 10 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the end of the pier at the foot of Third Street at the north end of the park in Lakeport.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Antecedent data show the water of Clear Lake to be characteristically calcium-magnesium bicarbonate, slightly hard to moderately hard and within drinking water standards for mineral content. Boron, which has reached 1.23 ppm, frequently causes the water to be class 2 for irrigation use. Geologic formations and runoff from highly mineralized springs are considered to be the source of boron in Clear Lake.

Significant Water Quality Changes Boron continued to frequently exceed the 0.5 ppm maximum for class 1 irrigation use during 1959, causing the water in Clear Lake to be class 2 for eight months of 1959. Total radioactivity increased significantly from 1.2  $\mu\mu$ c/l found in May to 15.7  $\mu\mu$ c/l in September. However, the September value is still within safe limits.

| WATER QUALITY RANGES                            |                   |                   |                |               |
|-------------------------------------------------|-------------------|-------------------|----------------|---------------|
| Item                                            | Haximum of Record | Minimum of Record | Maximum - 1959 | Minimum - 195 |
| Specific conductance (micromhom at 25°C)        | 358               | 187               | 289            | 191           |
| Temperature in °F                               | 86                | 41                | 78             | 45            |
| Dissolved exygen in parts per million           | 16 3              | 1                 | 11.6           | 100           |
| Percent saturation                              | 192               | 12                | 1.16           | 40            |
| No.                                             | 8 7               | 6.8               | 8.5            | 7.1           |
| Gineral constituents in parts per million       |                   |                   |                |               |
| Calcium (Ca)                                    | 30                | 17                | 24             | 21            |
| Hagneslum (Hg)                                  | 20                | 10                | 13             | 11            |
| Sodium (Na)                                     | 17                | 6 4               | 15             | 6.7           |
| Potassium (K)                                   | 2.8               | 1.5               | 1.9            | 1 8           |
| Carbonata (CO3)                                 | 11                | 0.0               | 3              |               |
| Bicarbonate (HCO3)                              | 212               | 186               | 165            | 1 1 4         |
| Sulfate (SOL)                                   | 12                | 5.8               | 11             | 8             |
| Chloride (CI)                                   | 10                | 3.5               | 7.5            |               |
| Nitrate (NO1)                                   | h.                | 0.1               |                | 3.6           |
| Fluoride (F)                                    | 0.4               |                   | 1 9            | 0.5           |
| Boron (B)                                       |                   | 0.00              | 0.2            | 0.7           |
| 31lica (310 <sub>2</sub> )                      | 1 23              | .2                | 509            | 0.4           |
| 311104 (3107)                                   | 16                | 0.7               | .11            | 3.6           |
| otal dissolved solids in parts per million      | 199               | 105               | 162            | 107           |
| ercent sodium                                   | 19                | 13                | 18             | 14            |
| Mardness as CaCO; in parts per million          |                   |                   |                | 1             |
| Total                                           | 158               | 82                | 123            | 85            |
| Moncarbonate                                    | 3                 | 0.0               | 147            | 25            |
| Parbidity                                       | 140               | 0.4               | 140            | 6             |
| coliform in most probable number per milliliter | >7,000.           | kp.045            | 2,400          | Scot          |
| Radioactivity in micro-micro curies per liter   |                   |                   |                |               |
| Dissolved alpha                                 | 0.17              |                   |                |               |
| Solid slpha                                     | 0.10              | 0.00              |                | 0.10          |
| Dissolved beta                                  | 59                | 0. Y              | .26            | 7.20          |
| Solid bata                                      | 12.60             | 0.00              | 8.91           | 1 91          |
| SOLIG DECE                                      | 10.80             | 6.00              | 5.50           | 0.00.         |

WATER QUALITY VARIATIONS



#### CACHE CREEK NEAR LOWER LAKE (STA. 42)

Sampling Point Station 42, which monitors outflow from Clear Lake to Cache Creek, is situated in Section 6 of Township 12 North, Range 6
West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank at the USGS gage, approximately 500 feet downstream from Cache Creek Dam, 3.5 miles east of State Highway 53, and 5 miles southeast of Lower Lake.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Analyses show Cache Creek water to be similar to the water found in Clear Lake at Lakeport, calcium-magnesium bicarbonate in character, slightly hard to moderately hard, and to consistently meet drinking water standards for mineral content. Boron frequently causes this water to be class 2 for irrigation use and at times (December 1953 and January 1954) places it in the class 3 irrigation water category. Only minor differences have been noted between the concentration of most constituents found at the Lakeport station on Clear Lake and Station 42.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                   |              |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|--------------|-----------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                     | Minimum of Record | Nastmin L919 | Rinteres ( 180) |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lot                                   | 177               |              |                 |
| Temperature in Oy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                   |                   |              |                 |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180                                   | A I               | 12           | .01             |
| рИ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A 7                                   | - 0               |              |                 |
| Witheral constituents in parts per million Calcius (Calcius (Calci | 7,9<br>741<br>3<br>3<br>4<br>4<br>2,2 | , A<br>3          | 61           | <i>P</i>        |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 272                                   | 76                | 167          |                 |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23                                    | la.               | 20           |                 |
| Hardness se CaCO3 in parte per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200<br>_7                             | A.                | _134<br>11   | - NA            |
| Purtidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160                                   | 9                 | 20           | 1               |
| boliform in most probabla number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7,00                                 | 0.17              | 2 63         | 10              |
| tadicactivity in micro-micro curies per liter<br>Missolved slpha<br>Solid slpha<br>Missolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.51<br>23.8<br>8.08                  | 1.0               | 7 %          | 11.             |

WATER QUALITY VARIATIONS



#### CACHE CREEK NEAR CAPAY (STA. 80)

Sampling Point The Capay station is located in Section 8 of Township 10 North, Range 2 West, Mt. Diablo Rase and Meridian. Monthly grab samples of this water were collected from the right bank at the USGS gage, 2 miles upstream from the Clear Lake Water Company diversion dam, and 3 miles northwest of Capay.

Period of Record December 1951 through December 1959.

water Quality Characteristics Cache Creek water at Station 80, as at upstream stations, is magnesium-calcium bicarbonate in character, moderately hard to very hard, within mineral standards for drinking water, and varies from class 1 to 3 for irrigation due to boron. Boron causes the water to be class 2 or 3 for irrigation during the major part of the year, with only flows following heavy precipitation being diluted to class 1 for irrigation. The effects of North Fork tributary flow have perennially been reflected by significant increases in most constituents in Cache Creek between Lower Lake and Capay. Boron concentrations and conductivity have an average increase in this reach of about 0.6 ppm and 240 micromhos, respectively.

Significant Water Quality Changes During 1959, the total radioactivity increased from 6.4 μμc/l in May to 15.16 μμc/l in September. Although these levels are slightly higher than levels detected in previous years, they are within safe limits.

| WATER QUALITY RANGES                                                                              |                                                     |                                                                                                                          |                                              |                |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------|
| Item                                                                                              | Maximum of Record                                   | Minimum of Record                                                                                                        | Hestmun    9°9                               | Hinimum - 1915 |
| Specific conductance (micromhom at 25°C)                                                          | 1                                                   | 210                                                                                                                      | -61                                          | 264            |
| Temperature in OF                                                                                 |                                                     | 41                                                                                                                       | Ro                                           | -              |
| Dissolved oxygen in parts per million<br>Percent saturation                                       | 121                                                 | 7 8<br>87                                                                                                                | 1031                                         | RT7            |
| No                                                                                                | 8.4                                                 | 8                                                                                                                        | 8.2                                          | * 7            |
| <pre>fineral constituents in parts per million Calcium (Cal</pre>                                 | 18<br>31,6<br>31,7<br>56,140<br>2,4,6<br>0,3<br>5,0 | 11<br>12<br>2<br>114<br>1<br>9<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 9 5 8 9 9 15 9 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 | 2"<br>         |
| Total dissolved solids in parts per million                                                       | 5 NO                                                | 117                                                                                                                      | 1423                                         | 159            |
| ercent sodium                                                                                     | 102                                                 | 16                                                                                                                       | 140                                          | 55             |
| iardnese as CaOO3 in parts per million<br>Total<br>Noncarbonats                                   | 348<br>97                                           | 106                                                                                                                      | 276.<br>30                                   | 1~7            |
| Purbld1 ty                                                                                        | 1,800                                               | 0.0                                                                                                                      | 24                                           | 1              |
| Coliform in most probable number per milliliter                                                   | 2,400                                               | د ود                                                                                                                     | 6201                                         | 104            |
| Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta | 0.81<br>2.69<br>7.58                                | 8.00<br>17.00<br>5.00                                                                                                    | 0 24<br>5.7<br>7 SR<br>7 V                   | 21<br>2 ??     |

WATER QUALITY VARIATIONS



Sampling Point Station 79 is located in Section 31 of Township 14 North, Range 6 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at the USGS gage, 2.7 miles upstream from State Highway 20 bridge, 6 miles east of Clear Lake Oaks, and 10 miles north of Lower Lake.

Period of Record December 1951 through December 1959.

water Quality Characteristics Samples of North Fork Cache Creek water indicate a characteristically magnesium-calcium bicarbonate water that ranges from slightly hard to very hard but consistently meets drinking water standards for mineral content. Boron concentration usually causes Cache Creek water to be class 2 for irrigation use and frequently class 3. Only during extremely wet seasons is boron found in concentrations less than the 0.5 ppm limit for class 1 irrigation water. North Fork Cache Creek drains an area containing numerous hot springs which have high concentrations of borates and other minerals which, even under pristine conditions, would cause high boron in runoff from the area. The quality of North Fork Cache Creek reflects the effects of drainage from the springs in the area. The concentration of constituents at this station are higher than those found in Clear Lake. During 1959 boron caused the water to be class 3 for irrigation use during ten months of the year and class 2 during the remaining two.

| WATED | OHALITY | DANCEC |
|-------|---------|--------|

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                  |                   |                        |                                   |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|-----------------------------------|-------------------------------|
| Item                                                                                                                                                                                                                                                                                  | Hazimm of Record  | Rinimum of Record      | Hasimum - 1959                    | Hinimum - 190                 |
| Specific conductance (micromhoe at 75°C)                                                                                                                                                                                                                                              | AAL               | 181                    | F194s                             | 124                           |
| Temperature in OF                                                                                                                                                                                                                                                                     | (4)               | 19                     | Rh                                | l <sub>1</sub> i <sub>2</sub> |
| Resolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                            | 100               | 28                     | 12 ½<br>28                        | 2                             |
| lle                                                                                                                                                                                                                                                                                   | 3.0               |                        | 8.3                               | 7.5                           |
| Harral constituents in parts per atilion Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Carbonate (CO)) Bicarbonate (CO)) Bicarbonate (GO) Chiloride (Cf) Sitrate (WO) Flooride (Cf) Sitrate (WO) Flooride (F) Boron (S) Silica (SiO <sub>2</sub> ) | 15 per            | 1/<br>7<br>7<br>8<br>6 | hh 11 6 9 12 21 9 9 1 6 1 6 2 2 1 | 7                             |
| otal dissolved solide in parts per million                                                                                                                                                                                                                                            | 100               | 100                    | 393                               | -                             |
| ercent sodium                                                                                                                                                                                                                                                                         | * *               | 116                    | 119                               | 100                           |
| <pre>fardness as CaOO3 in parts per million Total Moncarbonate</pre>                                                                                                                                                                                                                  | 786<br>67         | 76                     | 266<br>51                         | · .                           |
| Purtidity                                                                                                                                                                                                                                                                             | 10.7              | 1000                   | 9-                                | 300-                          |
| coliform in most probable number per milliliter                                                                                                                                                                                                                                       | 2,4011            | 1 12                   | 7 6                               | 2.0                           |
| adinactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                        | .8<br>73<br>17.64 | 2.00<br>2.00           | 2 0                               | 79                            |

WATER QUALITY VARIATIONS



#### PUTAH CREEK NEAR WINTERS (STA. 81)

Sampling Point Station 81 is located in Section 28 of Township 8 North, Range 2 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank, 1 mile downstream from the USGS gage, 8.2 miles west of Winters.

Period of Record December 1951 through December 1959.

Water Quality Characteristics Past analyses of samples collected at Station 81 indicate a water of calcium-magnesium to magnesium-calcium bicarbonate character, slightly hard to very hard and of acceptable mineral content for drinking water. However, because of boron, it ranges from class 1 to class 2 for irrigation. Runoff from highly mineralized springs and leaching of geologic formations account for the boron in the basin.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                                                                 |                                                  |                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| It.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record                            | Minimum of Record                                                               | Nazimus 172                                      | Hinima - 1952                               |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160                                          | NA.                                                                             | 636                                              | 24.3                                        |
| Temperature is °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rb                                           | 47                                                                              | la                                               | 47                                          |
| Blesolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 8                                         | 20                                                                              | 26                                               | 9                                           |
| pli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                                           | 10.0                                                                            | 8.2                                              | 5.5                                         |
| Minneal commutations in parts per million Calcium (Calcium (Calciu | 13<br>7<br>7<br>8<br>14<br>70<br>7<br>7<br>7 | 3<br>3<br>6 6<br>2<br>8,<br>9 7                                                 | 71<br>21<br>21<br>2<br>7<br>20<br>10<br>10<br>10 | 7 7 9 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| fotal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 520                                          | A.A                                                                             | 24                                               | (58                                         |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                           | 6                                                                               | 26                                               | 0                                           |
| Hardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Honcarbonsts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 366-<br>54                                   | Apr.                                                                            | 181                                              | 2                                           |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,000                                        | 11.3                                                                            | 5,                                               | 8                                           |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7,000                                       | 197                                                                             | 5 =                                              | - 45                                        |
| Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid elpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.<br>3.51                                  | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | 7 1 20 5 81 3 An                                 | 76<br>67<br>84                              |





Sacramento Valley Northeast Stream Unit. Several small stream basins which drain the 1,140 square miles east of the northeastern portion of Sacramento Valley are included in this unit. These streams originate in the Sierra Nevada and flow along steep parallel courses to the valley floor. They have only minor tributaries and little development along their route. Principal streams in the unit, from north to south, are Antelope, Mill, Deer, Big Chico, and Butte Creeks. Annual natural mean runoff is about 1,180,000 acre-feet.

The terrain of these basins is almost entirely mountainous with only a few headwater valleys adaptable to irrigated agriculture. Agricultural, livestock raising, mining, recreational, and lumbering activities are carried on in these basins.

There are no significant waste discharges entering streams in this unit.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this unit and the page on which each is discussed:

| Monitoring Station            | Station Discussion |
|-------------------------------|--------------------|
| Antelope Creek near Red Bluff | 218                |
| Antelope Creek near mouth     | 220                |
| Mill Creek near Los Molinos   | 222                |
| Big Chico Creek near Chico    | 224                |
| Big Chico Creek at Chico      | 226                |
| Butte Creek near Chico        | 228                |



# ANTELOPE CREEK NEAR RED BLUFF (STA. 88e)

Sampling Point Red Bluff station is located in Section 8 of Township 27 North, Range 2 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, approximately 3 miles east of Highway 99E on Belle Mill Road, and 8.5 miles east of Red Bluff.

Period of Record October 1958 through December 1959.

Water Quality Characteristics Antelope Creek water at the Red Bluff station is bicarbonate in type with no predominant cation, soft to slightly hard, class 1 for irrigation, and suitable for industrial and

Significant Water Quality Changes None.

domestic uses.

| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R QUALITY RAN                         | GES               |                                          |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|------------------------------------------|----------------|
| It-m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                     | Minimum of Record | Maximum   177                            | Hinimum - 1959 |
| Specific conductance (microwhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/14                                 | V                 | * h                                      | 114            |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89                                    | 581               |                                          | -2             |
| Diasolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Life is                               | *()               | 12                                       | - 11           |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                     |                   |                                          | 8.4            |
| Minaral constituents in parts per million Calcium (Calcium (Calciu | 16<br>3<br>4<br>11<br>2 1<br>-1<br>-2 | , A               | 1h ' ' ' ' h h h h h h h h h h h h h h h | 6 A            |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 145                                   | gr                | 145                                      | 9              |
| Percent sodium  Hardness as CaCO3 in parts per million  Total  Monoarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64                                    | 91                | 64                                       | 22             |
| Partidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                   | -                 |                                          |                |
| Coliform in most probable number per milliliter (Not<br>Memaured)<br>Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved bata<br>Solid alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | See 1959                              |                   | 10<br>0 55<br>9, 4q<br>3 4q              |                |

#### WATER QUALITY VARIATIONS



#### ANTELOPE CREEK NEAR MOUTH (STA. 88c)

Sampling Point Station 88c is located in Section 17 of Township 26 North, Range 2 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected at State Highway 99E bridge, approximately 1.5 miles above the mouth, and about 9 miles southeast of the town of Red Bluff. Period of Record October 1958 through December 1959.

Water Quality Characteristics Past analyses show the water to be bicarbonate in type with no predominant cation, slightly hard and class 1 for irrigation. Comparison of analyses of samples of water from Antelope Creek near mouth with those from near Red Bluff show a minor increase (25-100 micromhos) in most constituents. The increase in mineral concentrations is attributable to irrigation return flow and minor waste entering Antelope Creek in the reach between these two stations.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                   |                                            |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|--------------------------------------------|-------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Haximum of Record                                              | Minimum of Record | Maximum - 1959                             | Minima 1919 |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127                                                            | 71                | 100                                        | 0.          |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rp                                                             | 41                |                                            | 10          |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.4                                                           | 7                 | 10.                                        |             |
| Ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7_h                                                            | 2,0               | * 4                                        | (1)         |
| Witheral constituents in parts per million Calcium (Calcium (Calci | 25<br>20<br>26<br>5<br>160<br>31<br>32<br>6, 7<br>2, 2<br>3, 7 | 79<br>3 8<br>6    | 25<br>75<br>26<br>3-<br>32<br>7<br>27<br>7 |             |
| Total diswolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 217                                                            | 81                | 217                                        | 81          |
| Parcent sodium<br>Hardness as CaO3 in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38<br>143<br>15                                                | 19                | 38<br>167<br>15                            | 19          |
| Purbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                              | 2                 | 5                                          | 2           |
| Colifers in most probable number per milliliter (Not Readloactivity in micro-micro curies per liter Dissolved alpha Dissolved bata Solid alpha Dissolved bata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | See 1959                                                       | See 1949          | , ion<br>12-7<br>7-7                       | 3 · ·       |





### MILL CREEK NEAR LOS MOLINOS (STA. 88)

Sampling Point Station 88 is located in Section 9 of Township 25 North, Range 2 West, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, below State Highway 99E bridge, about 1.5 miles north of Los Molinos.

Period of Record July 1952 through December 1959.

Water Quality Characteristics Generally the water at this station is bicarbonate in type with sodium in excess of the other cations, drinking water requirements for mineral content are met, hardness ranges from soft to slightly hard, and the water is good for most industrial uses. Boron periodically places this water in class 2 for irrigation during periods of low flow.

Significant Water Quality Changes During 1959 mineral concentrations varied somewhat from maximum-minimum ranges established during previous years. Calcium and sulfates reached 20 ppm, chlorides 28 ppm, and boron 0.8 ppm, all representing the highest values reported during the period of record. Silica ranged from 44 to 30 ppm, representing the greatest variation for the period of record. Surface runoff during the year was somewhat lower than average and the smaller amount of dilution water available probably accounted for the increase in mineral concentrations. Also, the considerable use made of the water in Mill Creek for irrigated agriculture and related irrigation returns undoubtedly affected the quality.

| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATER QUALITY RAN                                 | GES                                            |                                              |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|----------------------------------------------|--------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                | Minimum of Record                              | Mesimum - 1959                               | Hinima - 195 |
| Specific conductance (micromhoe at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 858                                              | 7                                              | 247                                          | 109          |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93                                               | 37                                             | 73                                           | 45           |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1111                                             | 7 1<br>8k                                      | 16.54                                        | B €          |
| Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8_3                                              | 6 Т                                            | 7.8                                          | 7 1          |
| #Hisars: constituents in parts per million Calcium (Ca.)  Magnesium (Mg) Sodium (Ma) Potassium (H) Earbonates (SO)) Bicarbonates (SO)) Bicarbonates (SO) Bicarbonates (CT) Bicarbonates (CT) Bicarbonates (CT) #Histrate (MO) Placeriae (MO) #Histrate | 20<br>21<br>3.8<br>3.8<br>3.8<br>3.8<br>26<br>26 | 6 ?<br>1 1<br>4 1<br>1 .<br>25<br>7 7 7<br>2 5 | 20<br>8 3<br>20<br>1<br>91<br>20<br>28<br>28 | 9 A          |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 178                                              | 52                                             | 178                                          | 81           |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43                                               | 55                                             | h1                                           | 28           |
| Mardness as CaCO3 in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88<br>88                                         | 52                                             | 84<br>12                                     | 3A           |
| Partidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55                                               | 3.00                                           | 19                                           | 3.0          |
| Coliform in most probable number per milliliter Radioactivity in micro-micro curies per liter Dissolved alpha Solid slpha Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | See 1959                                         | See 1949                                       | 2,400<br>0.34<br>0.43<br>  hh                | *2           |

WATER QUALITY VARIATIONS



# BIG CHICO CREEK NEAR CHICO (STA. 85)

Sampling Point Station 85 is located in Section 9 of Township 22 North,
Range 2 East, Mt. Diablo Base and Meridian. Monthly grab samples were
collected from the right bank at the USGS gage, approximately 6 miles
northeast of Chico and 12.9 miles upstream from the mouth.

Period of Record July 1952 through December 1959.

Water Quality Characteristics Past records show the water to be consistently good to excellent in quality, calcium-magnesium or magnesium-calcium bicarbonate in type, class 1 for irrigation, soft to slightly hard, and very good for domestic and industrial purposes.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN                                                | GES               |                                                                   |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|-------------------------------------------------------------------|-----------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                              | Minimum of Record | Haximum - 1959                                                    | Hinimm - 1955   |
| Specific conductance (micromhoe at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 293                                                            | 65                | 215                                                               | 105             |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77                                                             | 36                | 76                                                                | 43              |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13 h                                                           | 7 6<br>83         | 12 4                                                              | 7 6             |
| Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.5                                                            | 6.8               | 8                                                                 | 7.1             |
| Historial constituents in parts per million Calcium (Calcium (Calc | 90<br>9,8<br>17<br>9-3<br>13<br>16,3<br>18<br>1.3<br>0.3<br>42 | A.D. 2 5 2.2      | 90<br>7 1<br>16<br>1 3<br>1<br>113<br>h 7<br>12<br>0<br>h 7<br>12 | 1 h 6 . 8 3 9 8 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 162                                                            | 47                | 156                                                               | 77              |
| ercent sodium<br>ardness as CaCO3 in parts per million<br>Total<br>Honoarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                                             | 27                | 31                                                                | 13<br>kc        |
| Purbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                             | 50                | 20                                                                | 0.0             |
| coliform in most probable number per milliliter dadicactivity in micro-micro curies per liter Dissolved alpha Dissolved beta Solid elpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,000.                                                         | 2.30              | 620                                                               | 5.3             |

WATER QUALITY VARIATIONS



# BIG CHICO CREEK AT CHICO (STA. 85a)

Sampling Point Station 85a is located in Section 28 of Township 22

North, Range 1 East, Mt. Diablo Base and Meridian. Monthly water samples were collected from the Rose Avenue bridge, at the intersection of Rose and Bidwell Avenues, in the City of Chico.

Period of Record January 1959 through December 1959.

Water Quality Characteristics The water at Station 85a is excellent in quality, a bicarbonate type with calcium dominant over other cations, class 1 for irrigation, soft to slightly hard and has a mineral content which meets drinking water requirements.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |                   |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------|
| 1ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record | Minimum of Record | Hasimum = 1919    | Hinisum 185 |
| Specific conductance (micromnos et 2500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ten (2.)          | (ar 1/2)          | 170               | 100         |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                   | 7()               | N/A         |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   |                   | -           |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   | 17.0              | 101         |
| Historial constituents in parts per million Calcium (Calcium (Calc |                   |                   |                   | 27          |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | 168               | 79          |
| Bardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonsts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   | Bo                | lar.        |
| Turbidity (Not Messured)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                 |                   |                   | -           |
| Coliform in most probable number per milliliter (Act.  Radioactivity in micro-micro curies per liter Dissolved alpha Solid slpha Solid beat Solid beat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                   | 12<br>2 22<br>2 5 |             |





### BUTTE CREEK NEAR CHICO (STA. 84)

Sampling Point Station 84 is located in Section 36 of Township 22 North, Range 2 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank at the USGS gage, 0.8 mile downstream from Little Butte Creek, and 7.5 miles east of Chico.

Period of Record July 1952 through December 1959.

Water Quality Characteristics The character of the water at Station 84 is generally bicarbonate with no predominant cation; however, occasionally it changes to calcium bicarbonate. Chemical analyses show very little variation in quality occurs and that the water is soft, class 1 for irrigation, meets drinking water standards, and is excellent for industrial uses.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN                       | GES               |                |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|----------------|---------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                     | Minimum of Record | Hazimum - 1759 | Hinima - 1959 |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | h*                | 1114           | 7).4          |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                    |                   |                | Milli         |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                    | 211               | 12 8           | 27            |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 6 4               | A 1            |               |
| #iters: constituents in parts per million Calcium (C.) Ragnesium (Ng) Sodium (Ng) Fotansium (C) Fotansium (C) Sulfate (CO) Sulfate (CO) Sulfate (CO) Fittre (NG) F | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1.9<br>1.9<br>1.9 | 76             | 2 1           |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94                                    | 34                | 35             | 5.5           |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23                                    | -6-8              | 18             |               |
| ardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58<br>12                              | 2L.               | 2              | li -          |
| Partidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                    | 5.0               | 90             | 307           |
| Coliform in most probable number per milliliter ladicactivity in micro-micro curise per liter Dissolved alpha Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 620                                   | 1.21              | 620            | 13, 51        |





Feather River Basin. Feather River drainage is composed of numerous tributaries which form a dendritic pattern on 3,740 square miles in the northeastern portion of the Central Valley Region. The topography of the area is predominantly mountainous with only 687 square miles classified as valley and mesa lands. The average seasonal runoff of the Feather River Basin is 4,596,000 acre-feet.

Feather River, the major tributary to Sacramento River, rises in large headwater valleys located high in the Sierra Nevada. Flowing out of these valley or meadow areas the river cascades down the steep granitic slopes of the Sierra. In the foothills and along the valley floor the Feather River gradient gradually flattens out and at its mouth the river is considerably stilled.

Lumbering, recreation, and livestock raising are the main economic pursuits in the upper reaches of this basin. In the foothill and valley area agriculture is the predominant enterprise.

Log ponds, small resort areas, and communities located along the waterway all discharge waste into the river system. The only discharges of significant quantity, however, are from the Cities of Oroville (0.8 mgd), Gridley (>0.5 mgd), Yuba City (4 mgd), and Marysville (1.8 mgd). Waste discharges have not created significant impairment problems in this basin.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed:

| Monitoring Station                | Station Discussion |
|-----------------------------------|--------------------|
| Feather River at Nicolaus         | 232                |
| Feather River near Oroville       | 234                |
| Feather River below Shanghai Bend | 236                |
| Indian Creek near Crescent Mills  | 238                |

### FEATHER RIVER AT NICOLAUS (STA. 20)

Sampling Point Station 20 is situated in Section 12 of Township 12

North, Range 3 East, Mt. Diablo Base and Meridian. Monthly grab

samples were collected from the left bank, at the USGS gage on Garden

Highway bridge at Nicolaus, and 2.9 miles downstream from the confluence with Bear River.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Chemical classification of past analyses from Station 20 show the water to be calcium-magnesium bicarbonate in character, class 1 for irrigation, soft to slightly hard, and within drinking water standards for mineral content. There is no significant change in water quality between upstream stations and the Nicolaus station, indicating tributary inflow of such streams as the Yuba and Bear Rivers has little effect on quality of Feather River water.

| W                                                                                                | ATER QUALITY RAN              | GES                                           |                                                     |                   |
|--------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------|-----------------------------------------------------|-------------------|
| It-                                                                                              | Maximum of Record             | Minimum of Record                             | Hastman - 1959                                      | Rinima - 195      |
| Specific conductance (micromhos at 25°C)                                                         | 100                           | -                                             | 112                                                 | 72 A              |
| Temperature in °F                                                                                | 70                            | 37                                            | 7                                                   | la la             |
| Dissolved oxygen in parts per million<br>Percent saturation                                      | 11.5                          | 7 h<br>81                                     | 12                                                  | 10                |
| pW                                                                                               | 7,9                           | 6-5                                           | 7.7                                                 | 7.1               |
|                                                                                                  | 7                             | 1 3 6 7 4 4 10 7 4 4 10 7 10 7 10 7 10 7 10 7 | 7 2 6 8 1 9 7 7 1 1 1 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9 /<br>6<br>7 2 7 |
| otal dissolved solids in parts per million                                                       | 120                           | 36                                            | 1.3                                                 | 48                |
| ercent sodium                                                                                    | 23                            | 1.0                                           | 21                                                  | 6                 |
| Mardness as CaCO3 in parts per million<br>Total<br>Honcarbonate                                  | 75<br>6                       | 50                                            | 7                                                   | jk.               |
| tarbidity                                                                                        | 100                           | 0                                             | NO.                                                 | 2                 |
| oliform in most probabls number per milliliter                                                   | >7,000                        | 7.%                                           | 2,400                                               | 0.5               |
| adicactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta | 0.82<br>1.22<br>11.92<br>9.38 | .00                                           | 1 82<br>1 44<br>6.64<br>9 38                        | 1 <sup>2</sup>    |

WATER QUALITY VARIATIONS



FEATHER RIVER AT NICOLAUS STA. 20)

### FEATHER RIVER NEAR OROVILLE (STA. 19)

Sampling Point Station 19 is located in Section 2 of Township 19 North, Range 4 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank at the USGS gage 75 feet upstream from State Highway 24 bridge, 2 miles downstream from the confluence of the North and Middle Forks Feather River, and 4 miles northeast of Oroville.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Past analyses show the water to be generally calcium bicarbonate in character, class 1 for irrigation, soft, and within mineral requirements for drinking water. Only minor changes in the quality of this excellent water have been detected. Most constituents have been found in slightly lower concentrations (averaging about 90 micromhos) at Station 19 as compared to Indian Creek (Station 17d).

| WATER QUALITY RANGES                            |                   |                   |              |               |  |
|-------------------------------------------------|-------------------|-------------------|--------------|---------------|--|
| Item                                            | Maximum of Record | Minimum of Record | Residue -1 9 | Minimum - 191 |  |
| Specific conductance (micromhos at 25°C)        | 119               | M.                | 100          | NI R          |  |
| Temperature in OF                               | 7%                | 15                | 7%           | 400           |  |
| Dissolved oxygen in parts per million           | 16.4              | 4.4               | 14.0         | 100           |  |
| Percent saturation                              | 120               | NA NA             |              | 101           |  |
| No                                              | A.1               | K. R.             | 7 9          | 7             |  |
| fineral constituents in parts per million       |                   |                   |              |               |  |
| Calcium (Ca)                                    | 16                | 5,8               | 13           | A             |  |
| Magnorium (Mg)                                  | 6.2               | 1.5               | 6.7          | 1.2           |  |
| Sodium (Na)                                     | 6.6               | 0.0               | 6.6          | 1.44          |  |
| Potassium (K)                                   | 1. A              | 0.5               | LA           | 7             |  |
| Carbonate (CO3)                                 | .0                | 0                 | 0.0          | 0.8           |  |
| Bicarbonate (8003)                              |                   | 18                | 77           | 38            |  |
| Sulfate (SO <sub>b</sub> )<br>Chloride (CI)     | 5.2               | 1.7               | 3.5          | 8.8           |  |
| Unioride (CI)<br>Witrate (NO <sub>3</sub> )     | 6.0               | 0.0               | h            | 5.0           |  |
| Fluorida (F)                                    | 0.2               | 0.0               | - 1          |               |  |
| Boron (B)                                       | 0.30              | 0.0               | 0.10         | 0.0           |  |
| 3ilica (310 <sub>2</sub> )                      | 21                | 9,0               | 16           | 15            |  |
|                                                 | -                 |                   |              | -             |  |
| Total dissolved solids in parts per million     | 9R                | 19                | Aq           | 51            |  |
| Percent sodium                                  | 25                | 10                | 21           | 12            |  |
| Hardness as CaCO; in parts per million          |                   |                   |              |               |  |
| Total                                           | 56                | 22                | 56           | 13            |  |
| Moncarbonate                                    | 3                 | ^                 | 3            | 2.0           |  |
| Tarbidity                                       | 170               | 0.0               | 70           | 2             |  |
| Coliform in most probable number per milliliter | 7,100.            | 0, 45             | 230.         | 5:19          |  |
| Radioactivity in micro-micro curies per liter   |                   |                   |              |               |  |
| Dissolved alpha                                 | 0.60              | 0.00              | 0.27         | 0.20          |  |
| Solid alpha                                     | 0.25              | 0.00              | 0 10         | 0.00          |  |
| Dissolved bete                                  | 10.81             | 0.00              | 8.06         | 6.61          |  |
| Solid beta                                      | 10.41             | 0.00              | 1.80         | 0.00          |  |

WATER QUALITY VARIATIONS



### FEATHER RIVER BELOW SHANGHAI BEND (STA. 20a)

Sampling Point Shanghai Bend station is situated within Section 11 of Township 14 North, Range 3 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at the DWR gage 1.2 miles east of the junction of U. S. Highway 40 Alternate and Barry Road, and 4.5 miles south of Yuba City.

Period of Record July 1958 through December 1959.

<u>Water Quality Characteristics</u> The water at Station 20a is calcium to calcium-magnesium bicarbonate in character, class 1 for irrigation, soft, and within drinking water standards for mineral content. Comparison of quality between Station 20a and upstream stations indicate no significant changes in mineral concentrations.

| WATER QUALITY RANGES                                        |                   |                   |                |              |  |
|-------------------------------------------------------------|-------------------|-------------------|----------------|--------------|--|
| Itm                                                         | Maxisum of Record | Minimum of Record | Maximum - 1959 | Hinima - 195 |  |
| Specific conductance (micromhos at 25°C)                    | 176               | N8 5              | 176            | RR s         |  |
| Temperature in Oy                                           | Ro                | k h               | Ro             | 44           |  |
| Dissolved oxygen in parts per million<br>Percent saturation | 12-2<br>10A       | 7 7<br>91         | 12 2           | 7 Q          |  |
| рН                                                          | 7.7               | 7.1               | 7.7            | 7.1.         |  |
| Mineral constituents in parts per million                   |                   |                   | ***            |              |  |
| Calcium (Ca)                                                | 17                | 8.2               | 17             | 8.2          |  |
| Hagnesius (Hg)                                              | 7.7               | 3.2               | 7.7            | 3.2          |  |
| Sodium (Ne)                                                 | 7.3               | 2.9               | 7/3            | 2.0          |  |
| Potaggium (X)                                               | 2.6               | 0.5               | 1.7            | 0.5          |  |
| Carbonate (CO3)                                             | 0.0               | 0.0               | 2.0            | 0.0          |  |
| Bicerbonate (RCO3)                                          | gp                | 17                | 02             | 17           |  |
| Sulfate (SOL)                                               | 11                | 0.0               | 11             | 1.9          |  |
| Chloride (CI)                                               | h. 8              | 1.2               | 4.8            | 1.2          |  |
| Nitrate (NO1)                                               | 0.9               | 0.                | 0.2            | 0.0          |  |
| Fluoride (F)                                                | 0.1               | 0.0               | 0.1            | 0.0          |  |
| Boron (B)                                                   | 0.2               | 0.0               | 0.2            | 0.0          |  |
| Silica (310 <sub>2</sub> )                                  | 21                | 11                | 21             | 11           |  |
| otal dissolved solids in parts per million                  | 111               | 62                | Hit            | 60           |  |
| Percent sodium                                              | 19                | 12                | 19             | 12           |  |
| Mardness as CaCO; in parts per million                      |                   |                   |                |              |  |
| Total                                                       | 7.5               | 38                | 7 %            | 38           |  |
| Moncarbonate                                                | 7                 | 0.0               | 7              | 0.0          |  |
| Parbidity                                                   | 15                | 5                 | 1<             | 4            |  |
| Coliform in most probable number per milliliter             | 2,400.            | 2.3               | 2,400          | 2.1          |  |
| Radioactivity in micro-micro curies per liter               |                   |                   |                |              |  |
| Dissolved alpha                                             | 0.61              | 0.17              | 0.61           | 0.17         |  |
| Solid slpha                                                 | 0.35              | 0.00              | 0.35           | 0.20         |  |
| Dissolved beta                                              | 6.43              | 4.28              | 5.53           | ls pA        |  |
| Solid beta                                                  | 6.37              | 0.64              | 1.18           | 0.64         |  |

WATER QUALITY VARIATIONS



FEATHER RIVER BELOW SHANGHAI BEND STA. 200)

### INDIAN CREEK NEAR CRESCENT MILLS (STA. 17d)

Sampling Point Station 17d is located in Section 25 of Township 26

North, Range 9 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the center of the creek, from the Taylors-ville Road bridge (0.7 mile upstream from the USGS gage), 1.5 miles upstream from Dixie Creek and 1 mile south of Crescent Mills.

Period of Record April 1951 through December 1959.

Water Quality Characteristics The water at Station 17d is calcium bicarbonate in character, ranges from soft to moderately hard, consistently meets mineral requirements for drinking water, and is class 1 for irrigation.

| WA                                                          | TER QUALITY RAN   | GES               |               |                |
|-------------------------------------------------------------|-------------------|-------------------|---------------|----------------|
| Item                                                        | Maximum of Record | Minimum of Record | Maximum - 179 | Minimum = 1949 |
| Specific conductance (micromhos at 25°C)                    | 163               | 63 A              | 201           | 97 3           |
| Pemperature in OF                                           | 74                | 35                | 7 h           | 25             |
| Diasolved oxygen in parts per million<br>Percent saturation | 1 .6              | A TO              | 12 1          | 6 9<br>76      |
| Не                                                          | 7.6               | 1.7               | 7.3           | 6.2            |
| fineral constituents in parts per million                   |                   |                   |               |                |
| Calcium (Ca)                                                | 16                | 6.8               | 31            | 12             |
| Marnesium (Mr)                                              | 12                | 2.1               | 9.8           | 16.4           |
| Sodium (Na)                                                 | 21                | 2.7               | 18            | h 1            |
| Potansium (K)                                               | 3.1               | 0.8               | 3.1           | 1.3            |
| Carbonate (CO3)                                             | 0.7               | 0.0               | 0.0           | 0              |
| Blcarbonate (HCO)                                           | 201               | 36                | 71            | 50             |
| Sulfate (SO:                                                | 10                | 1.0               | A             | 3.8            |
| Chloride (CI)                                               | 12                | 2.0               | 0.5           |                |
| Nitrate (NO1)                                               | 1.1               | 0,0               | 0.5           | 1.5            |
| Fluoride (F)                                                | 0.2               |                   |               | 0 1            |
| Boron (B)                                                   |                   | 0.0               | 0.1           | 0.1            |
| 3111ca (3102)                                               | 0.3               | 0.0               | 0.5           | 0.1            |
| 3111ca (3102)                                               | 12                | 19                | 27            | 24             |
| otal dissolved solids in parts per million                  | 221               | 43                | 196           | 66             |
| ercent sodium                                               | 3 %               | 16                | 24            | 17             |
| lardness ss CaCO2 in parts per million                      |                   |                   |               |                |
| Tot al                                                      | 130               | 26                | 118           | 30             |
| Noncarbonate                                                | 6                 | 0.0               | 3             | 0.             |
| arbidity                                                    | - Bo              | 0.8               | 35            | 2              |
| oliform in most probable number per milliliter              | >7,000.           | <0.0ks            | 620           | 40.0ks         |
| ladioactivity in micro-micro curise per liter               |                   |                   |               |                |
| Dissolved alpha                                             | ,51               | 0.00              | 0.51          | 0.00           |
| Solid alpha                                                 | 0.83              | 0,00              | 0 17          | 0.00           |
| Dissolved beta                                              | 35.41             | 0.00              | 6 49          | 0.00           |
| Solid bets                                                  | 28.6              | 0.00              | 5.5g          | 0.70           |

WATER QUALITY VARIATIONS



Yuba-Bear Rivers Unit. The Yuba-Bear Rivers Unit is located on the western slope of the Sierra Nevada in the west-central portion of the Central Valley Region. Included within the unit are about 1,490 square miles of land ranging from rugged mountains to rolling foothills with only about 17 square miles classified as valley and mesa. Mean annual runoff of the drainage systems of the Yuba and Bear Rivers are 2,415,000 acre-feet and 356,000 acre-feet, respectively.

Developments in the unit are typical of mountainous areas and include lumbering, mining, resorts, recreational facilities, and livestock raising.

Waste discharges from these activities are relatively minor and, except for the cities of Auburn (0.6 mgd), Nevada City (0.5 mgd), and Grass Valley (1.0 mgd), do not exceed 0.5 million gallons per day.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this unit and the page on which each is discussed:

|                            | Page Number of     |
|----------------------------|--------------------|
| Monitoring Station         | Station Discussion |
| Yuba River near Smartville | 242                |
| Yuba River at Marysville   | 5##                |
| Bear River near Wheatland  | 246                |
| Bear River near mouth      | 248                |



## YUBA RIVER NEAR SMARTVILLE (STA. 21a)

Sampling Point Station 21a is situated in Section 20 of Township 16

North, Range 6 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at Highway 20 bridge 4 miles downstream from the confluence of Deer Creek, 5 miles downstream from Narrows Dam, and 2 miles northwest of Smartville.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Antecedent data show the water at Station 21a to be calcium bicarbonate in character, class 1 for irrigation, soft to slightly hard, and within drinking water standards for mineral content. Significant Water Quality Changes None.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                   |                                         |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------|-----------------------------------------|------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Haximum of Record                           | Hisimum of Record | Harimum - 1959                          | Hintmam - 1959   |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 136                                         | 531               | 200                                     | 11574            |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77                                          | 19                | 76                                      | W                |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1%                                          | 7 5<br>Nr.        | 12 1<br>109                             | , T              |
| PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 4                                         | 6.7               | 1.4                                     | 1.2              |
| Witheral comestituents in parts per million Calcium (Calcium (Calc | 18<br>5 3<br>5 1<br>1 4<br>77<br>8 2<br>1 2 | 2 0 0 0 12        | 3 · · · · · · · · · · · · · · · · · · · | 9<br>9<br>9<br>2 |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 977                                         | 31                | 93                                      | h*               |
| Mardness as CeOO <sub>7</sub> in parts per million<br>Total<br>Monocarbons te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63<br>hh                                    | 17                | 63<br>9                                 | 26               |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7,000.                                     | 1.0               | 230                                     |                  |
| Radioactivity in micro-micro curies per liter<br>Dissolved siphs<br>Solid siphs<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30<br>0.8<br>9.04<br>10.8                   | .00               | 30<br>77<br>3.62<br>3.80                | 70<br>25         |

WATER QUALITY VARIATIONS



# YUBA RIVER AT MARYSVILLE (STA. 21)

Sampling Point Station 21 on Yuba River is located in Section 18 of Township 15 North, Range 4 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the center of the channel of flow, from Simpson Lane bridge, approximately 1 mile upstream from the confluence with the Feather River.

Period of Record April 1951 through December 1959.

Water Quality Characteristics The water in Yuba River at Station 21 is calcium bicarbonate in character, class 1 for irrigation, soft to slightly hard, and within drinking water standards for mineral content. There is no significant difference noted in the quality of water at Station 21 and the upstream station (21a) near Smartville.

| WATER QUALITY RANGES                            |                   |                   |             |                |
|-------------------------------------------------|-------------------|-------------------|-------------|----------------|
| Itm                                             | Maximum of Record | Minimum of Record | Hasimum 177 | Hinimum - 1955 |
| Specific conductance (micromhos at 25°C)        | 26.6              | 44                | 20%         | 60.1           |
| Temperature in OF                               | At                | 3/8               | Rg          | 64.            |
| Diamolved oxygen in parts per million           | 14.5              | 7 6               |             | 8.9            |
| Percent saturation                              | 132               | Rb                | InA         | 99             |
| PR                                              | A                 | 6.6               | 7 7         | -361           |
| Mineral constituents in parts per million       |                   |                   |             |                |
| Calcium (Ca)                                    | 19                | 5.2               | 2           | 9.6            |
| Hagnosium (Hg)                                  | 6,4               | 1                 | 6.4         | 2.2            |
| Sodium (Wa)                                     | 6.0               | 1 2               | 5:0         | 1.5            |
| Potandum (K)                                    | 1.8               |                   |             |                |
| Carbonate (CO3)                                 | 0.0               | 4.0               |             | 2.5            |
| Bicarbonate (BCO3)                              | 96                | 21                | 9           |                |
| Sulfate (SOL)                                   | 17                | 0                 | 19          | 2.9            |
| Chloride (CI)                                   | 5.3               | 1.0               | 5.5         |                |
| Mitrate (NO)                                    | 1.4               | 7.0               |             |                |
| Fluoride (F)                                    | 0.1               |                   |             | 1 7            |
| Boron (B)                                       | 0.28              | 3,                | 70.1        | 0.0            |
| 3111ma (310 <sub>2</sub> )                      | 21                | 10                | 20          | 14             |
| Total dissolved solids in parts par million     | 141               | 30 %              | 141         | 148            |
| Percent sodium                                  | 19                | 9                 | 13          | 11             |
| Mardness as CaCO in parts per million           |                   |                   |             |                |
| Total                                           | Qr.               | 18                | 96          | 31             |
| Woncarbona to                                   | 17                | 0,0               | 17          | 1              |
| Partidity                                       | 220               | 0.0               |             | -,1            |
| coliform in most probable number per milliliter | >7,000.           | 0.13              | 230         | 0.13           |
| ladioactivity in micro-micro curies per liter   |                   |                   |             |                |
| Dissolved alpha                                 | 0.22              | 0,00              | 0.20        |                |
| Solid alpha                                     | 2.15              | 0.00              | 0.72        | 0.00           |
| Dissolved beta                                  | 20.68             | 1,00              | 11 25       | 2.55           |
| Solid beta                                      | 5.15              | 2,00              | 0.76        | 0.00           |

WATER QUALITY VARIATIONS



### BEAR RIVER NEAR WHEATLAND (STA. 78)

Sampling Point Station 78 is located in Section 3 of Township 13 North, Range 5 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank, (at the USGS gage) near U. S. Highway 99E bridge 1 mile southeast of Wheatland.

Period of Record December 1951 through December 1959.

Water Quality Characteristics The water at Station 78 is calcium or calcium-magnesium bicarbonate in character, soft to moderately hard, consistently class 1 for irrigation and within drinking water standards for mineral content.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                   |                |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|----------------|----------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Haximm of Record | Minimum of Record | Masiana - 1959 | Himimum - 1959 |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 356              | 57.5              | 356            | 78.8           |
| Desperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RT               | 37                | 74             | 35             |
| Rasolved caygen in parts per million<br>Parcent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16               | 6:1<br>75         | 179            | 7 6            |
| and the same of th | 4.1              | 6.8               | 8.11           | 7.2            |
| Ineral constituents in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                   |                |                |
| Calcium (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-               | ,                 | 3              |                |
| Hagnorium (Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                   | 18             |                |
| Sodium (Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14               | 1.6               | 11             | 2 3            |
| Potasetum (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 6              | 7.1               | 9.7            |                |
| Carbonate (003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 6.7               |                | 5.01           |
| Bicarbonate (8003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1*               | 5#                | 156            | 3/1            |
| Sulfate (SO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17               | 5 B               | 39             |                |
| Chloride (CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100              | 10                | 16             | h h            |
| Nitrata (NO3)<br>Fluoride (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2              | 0.0               |                |                |
| Boron (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.69             | 0.0               | 0.1            | 5.0            |
| 3111ca (310 <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23               | 17                | 19             | 2.0            |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 226              | ¥                 | 226            | 50             |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29               | h                 | 14             | 9              |
| lardnese as CaCO; in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                   |                |                |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173              | 24                | 173            | 32             |
| Noncarbona te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51               | 2.9               | 51             | 7              |
| artidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,400            | 2.2               | 30             | 5.9            |
| oliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,300            | nas               | 230            | 0.23           |
| adioactivity in micro-micro curies per liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                |                |
| Dissolved alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.65             | 50.00             | 0.00           |                |
| Solid alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .63              | 00                | 5,00           |                |
| Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.79             | 71.000            | 00             |                |
| Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.1              | 000               | 0.00           |                |

WATER QUALITY VARIATIONS



## BEAR RIVER NEAR MOUTH (STA. 20b)

Sampling Point The station near the mouth of the Bear River is located in Section 20 of Township 13 North, Range 4 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected at Highway 24 (Feather River Boulevard) at Rio Oso, approximately 2 miles upstream from the mouth.

Period of Record November 1958 through December 1959.

Water Quality Characteristics Water at Station 20b is generally a bicarbonate type with calcium, magnesium, and sodium alternating as predominant cations. The water ranges from soft to moderately hard and meets mineral requirements for drinking and class 1 irrigation water. Significant Water Quality Changes Radioactivity at Station 20b during 1959 was the highest reported in the Yuba-Bear Rivers Unit, 13.7 μμc/l in May and 17.1 μμc/l in September. These values are well within safe limits.

| WATER QUALITY RANGES                                                                                                                                                                            |                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Item                                                                                                                                                                                            | Maximum of Record                                              | Minimum of Record                             | Hatlman 1909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hinimum - 1959                          |
| Specific conductance (micromnos at 25°C)                                                                                                                                                        | 2/3                                                            | Ak                                            | 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RL II                                   |
| Temperature in OF                                                                                                                                                                               | Ro.                                                            | W                                             | R <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v                                       |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                     | (2)<br>()v                                                     | 7 1<br>68                                     | 12 1<br>106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 Q<br>Qh                               |
| pil                                                                                                                                                                                             | 7.9                                                            | 7 3                                           | 7 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.3                                     |
| Almeral constituents in parts per million Calcium (C.) Magnesium (Ng) Sodium (Ns) Potas dium (1) Ricerbonate (CO) Bleerbonate (BO) Chierko (C) Hitrate (NG) Flooride (F) Boron (B) Silica (SOC) | 15<br>23<br>42<br>8<br>1<br>213<br>5<br>6<br>1.8<br>0.2<br>0.1 | 7 A A 2 9 1 2 9 1 2 9 1 1 2 9 1 1 1 1 1 1 1 1 | 1h PR hp R 1 O O P13 ho 66 1 a O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O P P O | R R P P P P P P P P P P P P P P P P P P |
| Total dissolved solids in parts per million                                                                                                                                                     | 334                                                            | 56                                            | 3.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                      |
| Percent sodium                                                                                                                                                                                  | 37                                                             | 19                                            | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                      |
| Hardness as CoCO3 in parts per million<br>Total<br>Honcarbonate                                                                                                                                 | 180<br>51                                                      | 3                                             | 180<br>h1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 76                                      |
| Turbidity                                                                                                                                                                                       | See 1959                                                       | See 1959                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                       |
| Coliform in most probable number per milliliter (Not<br>Radioactivity in micro-micro curies per liter<br>Ensolved alpha<br>Ensolved beta<br>Solid alpha<br>Ensolved beta                        | 3ee 1959                                                       | 3ee 1959                                      | 0.51<br>0.53<br>15.76<br>0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 09<br>0 10<br>13.05<br>0 00           |





BEAR RIVER NEAR MOUTH (STA. 20b)

American River Basin. The American River Basin drains the southeast corner of the Sacramento River Valley Basin of the Central Valley and covers approximately 1,940 square miles of the western slopes of the Sierra Nevada. The basin is characterized by foothill and mountainous terrain with elevations varying from 150 to 10,000 feet. Valley and mesa land comprise only 20 square miles in the basin. Mean annual runoff is estimated to be about 2,774,000 acre-feet.

The American River Basin is favored by forest, mineral, and recreational resources, which have all been developed for economic return. Although valley and mesa land comprise only about one percent of the area, considerable orchard development is found in the foothills and on the lower mountain slopes. These developments, along with numerous irrigation and municipal diversions for use in the valley, are the main water users in this watershed.

Impairment problems caused by the discharge of wastes are not of a serious nature under the present regimen. Placerville is the only source of waste discharge in excess of 0.5 mgd along the drainage basin above the valley floor.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed:

| Monitoring Station                      | Station Discussion |
|-----------------------------------------|--------------------|
| American River at Nimbus Dam            | 252                |
| American River at Sacramento            | 254                |
| American River, Middle Fork near Auburn | 256                |
| American River, South Fork near Lotus   | 258                |



### AMERICAN RIVER AT NIMBUS DAM (STA. 22a)

Sampling Point The sampling point for Station 22a is located in Section 16, Township 9 North, Range 7 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank just downstream from the fish screen at Nimbus Fish Hatchery, about 10 miles east of Sacramento.

Period of Record November 1958 through December 1959.

Water Quality Characteristics Past analyses show the water to be a calcium bicarbonate type of excellent mineral quality. From a mineral standpoint the water is suitable for domestic use, class 1 for irrigation, and soft with a maximum recorded hardness of 44 ppm. Water quality at Nimbus Dam station is very similar to that at Stations 22b and 22c located upstream on the Middle Fork and South Fork, respectively. Significant Water Quality Changes None.

| WATER QUALITY RANGES                            |                   |                   |                |               |
|-------------------------------------------------|-------------------|-------------------|----------------|---------------|
| Item                                            | Maximum of Record | Minimum of Record | Haxleum - 1959 | Hinimum + . P |
| Specific conductance (micromhos at 25°C)        | 190               | 16.2              | 140            | NA 2          |
| Temperature in OF                               | 71                | 30)               | *1)            | Charles .     |
| Diagolved oxygen in parts per million           | 12.5              | 7.6               |                | 7             |
| Percent saturation                              | 120               | Ro                | 1>             | Ap            |
| pit                                             | 7 h               | 6.8               | 7 %            | 0.0           |
| Mineral constituents in parts per million       |                   |                   |                |               |
| Calcium (Ca)                                    | 13                | 1.5               |                | 6 18          |
| Magneelum (Ng)                                  | 3.5               | E 7               | 2 A            | 7             |
| Sodium (Na)                                     | 4.5               |                   | 4.4            | 2.            |
| Potassium (X)                                   | E 3               |                   | 7.0            | 74.6          |
| Carbonate (CO3)                                 |                   |                   |                |               |
| Bicarbonate (8003)                              | 44                | 47                | No.            |               |
| Sulfate (SOL)                                   | 5.8               | OL .              |                |               |
| Chloride (CI)                                   | 12                | 100               | 2              |               |
| Witrate (NO1)                                   | 0.5               |                   | 100            | 1.0           |
| Fluorida (F)                                    | 0.2               | 2- 1              | 100            |               |
| Boron (B)                                       | 0.1               |                   |                |               |
| 3111ca (310 <sub>2</sub> )                      | 18                | 8 1               |                | 8 -           |
|                                                 |                   |                   |                |               |
| Total dissolved solids in parts per million     | 69                | 40                | 619            | - 5           |
| Percent sodium                                  | 55                | 14                | 55             | 10            |
| Sardness as CaCO; in parts per million          |                   |                   |                |               |
| Total                                           | 1,1               | 19                | 4.4            | 19            |
| Noncarbonate                                    | 11                | 0.0               | 11             |               |
| Parkidi ty                                      | See 1959          | See 1959          | 1              | -             |
| coliform in most probable number per milliliter | See 1959          | See 1959          | 2,400          | 10.00         |
| ladioactivity in micro-micro curies per liter   |                   |                   |                |               |
| Dissolved alpha                                 |                   |                   | 0.30           | 10.00         |
| Solid alpha                                     |                   |                   | 0.77           | 27            |
| Dissolved beta                                  |                   |                   | 3.05           | 7             |
| Solid beta                                      |                   | _                 | 3.66           | 5.30          |





### AMERICAN RIVER AT SACRAMENTO (STA. 22)

Sampling Point Station 22 on the American River is located in Section 3, Township 8 North, Range 5 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected at mid-stream from the "H" Street bridge in Sacramento.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Antecedent data reveal the water to be generally calcium bicarbonate in character. The mineral quality is excellent, soft, and very similar to that at Station 22a (American River at Nimbus Dam). The criteria for class 1 irrigation water and mineral constituents for domestic use are consistently met by water at this station. Since 1956, when regulation of flow by Folsom Dam was commenced, the quality of water has been noticeably improved and more perennially uniform. The maximum values for concentration of individual constituents during the period of record all occurred prior to 1956.

| π,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATER QUALITY RAN                                            | UES                                           |                                         |                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|-------------------------------------------------|
| [tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                           | Minimum of Record                             | Hatlmum - 19 9                          | Hinles - 190                                    |
| Specific conductance (microwhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 129                                                         | 24                                            | 77.1                                    | 48                                              |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81                                                          | h.                                            | 12                                      | 11                                              |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.9                                                        | 1 1                                           | LL 7                                    | 7 f                                             |
| М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 1                                                         | 6.7                                           | 7.3                                     | 63.                                             |
| #Homeral constituents in parts per allilon Calcium (c. Allilon (Mg) 30 dis (Mg) Potanetum (Mg) 30 dis (Mg) Potanetum (Mg) 30 dis (Mg) Potanetum (OO) Bicarbonate (OO) Bicarbonate (ROO) Sulfate (SO) Chloride (Cf) 9 lirate (Wg) Potanetum (Mg) Potane | 12<br>5.5<br>5.1<br>1 3<br>0.4<br>10<br>10<br>0.9<br>2<br>2 | 3. h 7 1 1 - 1 16 - 7 0 1 0 1 0 1 0 1 0 1 0 1 | 7 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 7 9 20 14 14 14 14 14 14 14 14 14 14 14 14 14 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 91                                                          | 17                                            | 55                                      | 35                                              |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33                                                          | 1                                             | 24                                      | 10                                              |
| Hardness as CaOO <sub>3</sub> in parts per million<br>fotal<br>Moncarbonate<br>Furbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50<br>7                                                     | 10                                            | 32<br>1                                 | 21<br>0.0                                       |
| coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7,000.                                                     | 06                                            | 7.000                                   | 0.62                                            |
| ladicactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .5<br>0.69<br>15.92                                         | 2.00<br>2.00<br>2.00                          | 00<br>hh                                | (A-1)                                           |
| Solid bata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.89                                                        | 10.00                                         | 2.41                                    | 1 23                                            |





# AMERICAN RIVER. MIDDLE FORK NEAR AUBURN (STA. 22b)

Sampling Point Station 22b is located in Section 6, Township 12 North,
Range 9 East, Mt. Diablo Base and Meridian. Monthly grab samples were
collected from the left bank, adjacent to the USGS stream gaging station,
1.9 miles upstream from the confluence of the American River with its
North Fork, 3.5 miles northeast of Auburn.

Period of Record July 1958 through December 1959.

Water Quality Characteristics Past analyses show the water to be excellent in quality, calcium bicarbonate, with extremely low concentrations of dissolved solids. During the period of record total dissolved solids have not exceeded 72 ppm. The water consistently meets the requirements for a class 1 irrigation supply as well as mineral standards for domestic use. The water is soft with a maximum recorded hardness of 37 ppm.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN                         | GES               |                                               |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------|-----------------------------------------------|-------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                       | Minimum of Record | Haslmum - 1959                                | Hinimas = 1955    |
| Specific conductance (micromhom at 2500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | PA Aq             | 96.7                                          | pA A              |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                       | No.               | 70                                            | 160               |
| Diesolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (194)                                   | RI<br>RIG         | 13.5                                          | $\rho_{\phi}$     |
| PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.5                                     | 7-                | 7.5                                           | 10                |
| Whereal constituents in parts per million Calcium (Calcium (Calciu | V 1 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14                | 9 8 2 3 3 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1 h<br>1 5<br>1 1 |
| total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | **                                      | 4                 | 72                                            | 25                |
| Percent sodium<br>Bardness as CaCO; in parte per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25<br>37<br>8                           | 12.0              | 25<br>37<br>7                                 | 16                |
| Parbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                       | T 2               | 2                                             | 100               |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sen 1959                                | See 1959          | 230                                           | 06                |
| adioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.61<br>0 44<br>2.4<br>1.24             | .17<br>ff.00      | 0.61<br>0.56<br>2.96<br>0.28                  | 0 27<br>1.84      |

WATER QUALITY VARIATIONS



# AMERICAN RIVER, SOUTH FORK NEAR LOTUS (STA. 22c)

Sampling Point The station on South Fork American River is located in Section 11, Township 11 North, Range 9 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, opposite the USGS gaging station located 0.4 mile downstream from the confluence of Greenwood Creek, and 2.4 miles northwest of Lotus.

Period of Record July 1958 through December 1959.

Water Quality Characteristics Analyses of the water show the predominant anion to be bicarbonate and the principal cation calcium. Calcium is not predominant, however, since sodium and magnesium together often comprise over 50 percent of the cations. Water at the station is of excellent mineral quality, class 1 for irrigation, suitable for domestic use, and soft with a maximum recorded hardness of 32 ppm.

| WA                                                                                                | TER QUALITY RAN      | GES                    |                      |                      |
|---------------------------------------------------------------------------------------------------|----------------------|------------------------|----------------------|----------------------|
| Item                                                                                              | Maximum of Record    | Rinisum of Record      | Hasimum 1959         | Minimum - 195        |
| Specific conductance (micromnom at 25°C)                                                          |                      | - A                    | Br                   | ed.                  |
| Temperature in °F                                                                                 | 78                   | W                      | 76                   | -                    |
| Dissolved oxygen in parts per million<br>Percent saturation                                       | 11 7                 | 8 T                    | in.                  | 83                   |
| pll                                                                                               | 7.5                  | 7                      |                      | T                    |
| Mineral constituents in parts per million<br>Calcium (Ca)<br>Magnesium (Mg)                       | 6.6                  | 1 2                    | 6 4                  | 2.5                  |
| Sodium (Na) Potessium (K) Carbonate (CO)                                                          | h. 1 0               | 1.6                    | 6 1<br>9             | 1.6                  |
| Bicarbonate (ROD <sub>3</sub> )<br>Sulfate (SD <sub>2</sub> )<br>Chloride (SX)                    | 4.8<br>7.2           | * 6                    | 6 8<br>7 2           | 6                    |
| Witrata (MO <sub>1</sub> )<br>Fluoride (F)<br>Boron (B)<br>5111ca (510 <sub>2</sub> )             | 1 2<br>-1<br>-5      | 0.0<br>0.0<br>0.0<br>8 | 1 2<br>1<br>.5       | - 100                |
| Total dissolved solids in parts per million                                                       | 58                   | 24                     | 58                   | 24                   |
| Percent sodium                                                                                    | 29                   | 16                     | 29                   | 16                   |
| Marchess as CaCO3 in parts per million<br>Total<br>Moncarbonats                                   | 32                   | 10                     | 32                   | 10                   |
| Turbidity                                                                                         |                      | 1                      |                      | 1                    |
| Coliform in most probable number per milliliter                                                   | See 1959             | See 1959               | 7, 300               | m 165                |
| ladicactivity in micro-micro curias per liter<br>Dissolved slpha<br>Solid slpha<br>Dissolved beta | 0.20<br>0.27<br>3.08 | 0.00<br>0.17<br>1.56   | 0.20<br>0.27<br>2.42 | 0_01<br>0_22<br>1_56 |
| Solid beta                                                                                        | 5.62                 | 0,00                   | 2.42                 | 0 130                |

WATER QUALITY VARIATIONS



The San Joaquin River Valley occupies the south-central portion of the Central Valley Region. Boundaries of the basin are defined by the ridge of the Sierra Nevada to the east, the divide between Tulare Lake Basin and the San Joaquin River to the south, the crest of the Coast Range on the west and the San Joaquin Delta and Mokelumne River Basin to the north. Average east-west width of the basin is 130 miles. About 11,792 square miles, of which 7,993 square miles are mountainous and foothills, are included in the drainage basin.

Between the alluvial fans and foothills of the Coast and Sierra Mountains lies the broad, level San Joaquin Valley. The 95 percent of the land in the San Joaquin Valley is classified as valley and mesa area. The main valley floor contains about 3,670 square miles of fertile agricultural lands with elevations varying from almost sea level in the lower end to about 300 feet at the base of the foothills.

There are no major streams draining the relatively barren foothills and mountains to the west. Major streams, all of which arise in the Sierra Nevada to the east include the Stanislaus, Fresno, Chowchilla, Merced, and Tuolumne Rivers. These rivers drain rugged, mountainous terrain with elevations often exceeding 10,000 feet.

Natural mean seasonal surface runoff in the San Joaquin River Valley is estimated to be 6,385,000 acre-feet. Eighteen sampling stations are being monitored to provide a continuing check on the quality of surface water resources in the San Joaquin River Valley. Monitored stream basins with the number of stations in parentheses are as follows:

San Joaquin River Unit (8)
Fresno River Basin (1)
Chowchilla River and Bear Creek Unit (2)
Merced River Basin (2)
Tuolumne River Basin (3)
Stanislaus River Basin (2)

San Joaquin River Unit. The San Joaquin River Unit includes the following three watersheds: (1) all land below the Sierra Nevada foothill line to the east, (2) drinage basins of minor tributary streams and the valley floor to the west, (3) the headwaters of the San Joaquin River. Valley and mesa lands in the unit include 3,855 square miles, with over 95 percent of these on the floor of the San Joaquin Valley. Mountains and foothills comprise 10,679 square miles, with over 60 percent of these lands located in the Coast Range. Mean seasonal runoff from the unit is 3,264,500 acre-feet.

The topography of the unit is highly variable. The west side terrain is hilly, generally rolling, with elevations varying from about 500 feet to slightly over 3,000 feet above sea level. The valley floor is comparatively level, marred only by stream channels or draws. In contrast, the San Joaquin River Basin in the Sierra Nevada is extremely rugged and drains areas with elevations in excess of 10,000 feet.

Economic activities in the unit are dominated by agriculture, but mining, natural gas, lumber production, livestock raising, and light industry all have a role. Agriculture, however, is by far the largest user of water resources.

Wastes of significant magnitude are discharged from several communities and industries in the unit. Controls have been established to prevent these wastes from becoming major impairment problems.

However, irrigation return flows pose a threat to water quality in the San Joaquin River. Major wastes discharging into this river unit are listed in the following tabulation:

| City of Fresno        | 30.0 | mgd |
|-----------------------|------|-----|
| City of Turlock       | 3.3  | mgd |
| City of Oakdale       | 1.0  | mgd |
| City of Modesto       | 6.7  | mgd |
| Lee Paper Company     | 1.5  | mgd |
| Castle Air Force Base | 0.6  | mgd |
| City of Chowchilla    | 0.5  | mgd |
| City of Los Banos     | 1.5  | mgd |
| City of Atwater       | 2.5  | mgd |
| City of Merced        | 10.0 | mgd |

Seven surface water quality monitoring stations are maintained in this unit. The following tabulation presents the names of the monitoring stations and the page on which each is discussed:

| Monitoring Station                       | Page Number of<br>Station Discussion |
|------------------------------------------|--------------------------------------|
| San Joaquin River at Friant              | 264                                  |
| San Joaquin River near Mendota           | 266                                  |
| San Joaquin River at Fremont Ford Bridge | 268                                  |
| San Joaquin River at Hills Ferry Bridge  | 270                                  |
| San Joaquin River near Grayson           | 272                                  |
| San Joaquin River at Maze Road Bridge    | 274                                  |
| San Joaquin River near Vernalis          | 276                                  |
| Salt Slough at San Luis Ranch            | 278                                  |

# SAN JOAQUIN RIVER AT FRIANT (STA. 24)

Sampling Point Station 24 is the most upstream monitoring station on the San Joaquin River. It is located in Section 7, Township 11 South, Range 21 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank (100 feet downstream from the USGS gage house), about 2 miles downstream from Friant Dam, 0.5 mile west of Friant. Period of Record April 1951 through December 1959.

Water Quality Characteristics Water from the San Joaquin River at the Friant station generally exhibits a calcium-sodium bicarbonate characteristic. The mineral quality is excellent with a maximum recorded total dissolved solid concentration of 164 ppm. The water is soft, consistently meets the mineral criteria for drinking water and is class 1 for irrigation.

Significant Water Quality Changes None.

| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATER QUALITY RAN                                          | GES                                                 |                                                                       |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|------------------------------|
| Itam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Haximm of Record                                          | Minimum of Record                                   | Nazimum - 1952                                                        | Himimum - 1955               |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108                                                       | 21                                                  | 79.9                                                                  | 43.4                         |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64                                                        | 35                                                  | 60                                                                    | 146                          |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.7<br>124                                               | 9.0<br>8n                                           | 11 h                                                                  | 9 7<br>85                    |
| pill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.8                                                       | 6.9                                                 | 7.7                                                                   | 6 5                          |
| Witheral constituents in parts per million Calcium (Calcium (Calci | 6. h 2. 3 6. 7 h. 1 0. 0 h. 4 5. 6 6. 0 2. 6 0. 3 0. 3 15 | 1 9 0.0 0 7 0.5 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | 4.8<br>1 1 6<br>6 0.6<br>0.6<br>0 0<br>3?<br>3.8<br>7 5<br>0.0<br>0 0 | 9 9<br>0.0<br>15<br>2 5      |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87                                                        | 17                                                  | 58                                                                    | 35                           |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59                                                        | 25                                                  | 41                                                                    | 50                           |
| Sardness as CaCO3 in parts per million<br>Total<br>Boncarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30<br>9                                                   | 6 0.0                                               | 24<br>4                                                               | 0 0                          |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                     |                                                                       |                              |
| Odifice in most procedule name or per milliter  Ladicectivity in micro-micro curies per liter  Lasolved slpha  Missol slpha  Missol slpha bets  Solid bets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >7.000<br>0.89<br>1.67<br>15.01                           | 0.045<br>0.00<br>0.00<br>0.00                       | 0.89<br>.27<br>11.11                                                  | 0.23<br>0.22<br>6.85<br>0.81 |

WATER QUALITY VARIATIONS



## SAN JOAQUIN RIVER NEAR MENDOTA (STA. 25)

Sampling Point Mendota station is located in Section 7, Township 13

South, Range 15 East, Mt. Diablo Base and Meridian. Monthly grab

samples were collected from the left bank, at the foot of the USGS gage
house, 2.5 miles downstream from Mendota Dam and 4 miles north of

Mendota.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Inasmuch as most of the water impounded by Mendota Dam is imported from the Sacramento-San Joaquin Delta via the Delta-Mendota Canal, water at the station is not necessarily representative of the natural quality of the San Joaquin River. Water from this station exhibits no consistent predominance of any specific cation or anion. Principal cations are sodium and calcium, while bicarbonate and chloride are the major anions. Based on mineral concentrations, the water is good to excellent, is suitable for domestic use, and ranges from soft to very hard.

Significant Water Quality Changes During August 1959, for the first time since sampling was commenced, the water at this station was class 2 for irrigation. Electrical conductivity, percent sodium, and concentrations of sodium and chloride also established new record maximums. Delta-Mendota Canal water near Mendota was a class 2 irrigation supply during August 1959, which probably accounted for the poor quality at this station at this time.

| WA                                                          | ATER QUALITY RAN  | GES               |                |                |
|-------------------------------------------------------------|-------------------|-------------------|----------------|----------------|
| It.                                                         | Maximum of Record | Minimum of Record | Maximum = 1950 | Hintown = 1955 |
| Specific conductance (micromace at 25°C)                    | 1 10              | 1                 | 1-151          | -010           |
| Temperature in °F                                           | 188               | 42                | 78             | 1/2            |
| Dissolved oxygen in parts per million<br>Percent saturation | 16 6<br>189       | 7 2<br>86         | 12 t           | - 11           |
| рН                                                          | 8.7               | E R               | 7 7            | 6.8            |
| Minaral constituents to parts per million                   | 47                | 2.9               | 40             |                |
| Calcium (Ca)                                                |                   |                   |                | 55             |
| Hagnosium (Hg)                                              | 27                | 2.7               | 27             | j.             |
| Sodium (Ne)                                                 |                   |                   | 131            | 19             |
| Potassium (K)                                               | h.h               | 6                 | 3.6            | 3.4            |
| Carbonate (CO3)                                             |                   |                   |                |                |
| Bicarbonata (8003)                                          | 158               | 14                | 150            | 100            |
| Sulfate (SOL)                                               | 65                | 1.0               | 65             | 26             |
| Chloride (CI)                                               | 235               |                   | 5              | 22             |
| Nitrate (NO3)                                               | 1.9               | 0.0               | 6              |                |
| Fluoride (F)                                                | n 4               |                   | 0.2            | 0.4            |
| Boron (B)                                                   | - 4               |                   | - A            | 0.7            |
| Silica (SiO <sub>2</sub> )                                  | 31                | 5.9               | 17             | 12             |
| Total dissolved solide in parts per million                 | 753               | 18                | 71.3           | 116            |
| Percent modium                                              | 65                | 32                | 65             | 42             |
| Rardness as CaCO <sub>2</sub> in parts per million          |                   |                   |                |                |
| Tot al                                                      | 214               | 8 1               | 519            | 52             |
| Moncarbonate                                                | 101               | 0.0               | 101            |                |
| Partidity                                                   | 170               | n.e               | 130            | 2              |
| Coliform in most probable number per milliliter             | >7,000.           | 0.23              | 2,400          | 7.23           |
| Radioactivity in micro-micro curies per liter               |                   |                   |                |                |
| Dissolved alpha                                             | 1.13              | 0.00              | 1 13           | RG RG          |
| Solid alpha                                                 | 1.67              | 0.00              | 0.21           | EN00           |
| Masolved beta                                               | 10.h1             | 0.00              | 5.18           | 2 32           |
| Solid beta                                                  | 14 <              | 0.00              | 0.93           | 100            |





## SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE (STA. 25c)

Sampling Point Station 25c is located in Section 24 of Township 7

South, Range 9 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the center of the channel of flow, from Fremont Ford highway bridge, 2.1 miles downstream from Salt Slough, 4.5 miles west of Stevinson, and 6.7 miles upstream from the Merced River.

Period of Record July 1955 through December 1959.

Water Quality Characteristics Water at Station 25c ranges from sodium chloride to sodium-calcium chloride-sulfate in character. Chloride and sulfate concentrations frequently exceed the recommended limit for domestic use. Chlorides, boron and dissolved solids are normally in concentrations sufficient to cause the water to be class 2 or 3 for irrigation. The poor quality water is attributable to ground water accretions and drainage flows tributary to the San Joaquin River between Station 25 near Mendota Pool and Station 25c at Fremont Ford Bridge. These degrading influences cause a significant increase (on the order of 950 micromhos) in the concentration of dissolved minerals between the two stations.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN                                               | GES                                                                      |                                             |                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Naxisum of Record                                             | Minimum of Record                                                        | Hasimum - 1959                              | Minimum - 195                                                        |
| Specific conductance (micromnos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,410                                                         | 109                                                                      | 3,360                                       | 547                                                                  |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85                                                            | 1/7                                                                      | 85                                          | 67                                                                   |
| Dissolved oxygem in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.4<br>137                                                   | 8.5                                                                      | 12 4<br>137                                 | 8 1                                                                  |
| pil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5                                                           | 6.6                                                                      | 8.3                                         | 7.0                                                                  |
| Mineral constituents in parts per million Calcium (calcium (calciu | 2 NB<br>150<br>730<br>8 N<br>252<br>766<br>1.30<br>0.5<br>1.6 | 8.8<br>1.5<br>8.6<br>1.5<br>0.0<br>37<br>4.8<br>5.8<br>0.0<br>0.0<br>0.0 | 19h 66 h09 8.h 0.0 250 376 1,050 0.h 1.6 37 | 30<br>13<br>58<br>3 2<br>0 0<br>127<br>38<br>79<br>1 1<br>0.0<br>0 2 |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,350                                                         | 67                                                                       | 1,960                                       | 303                                                                  |
| Percent addium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62                                                            | 34                                                                       | 65                                          | NB.                                                                  |
| iardness as CaCO3 in parts per million<br>Total<br>Moncarbonsts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2%<br>1,080                                                 | 28<br>0.0                                                                | 660<br>455                                  | 336<br>128                                                           |
| Period dity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                                            | 50                                                                       | 40                                          | 50                                                                   |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7,000.                                                       | 0.23                                                                     | >7,000.                                     | 0 23                                                                 |
| <pre>ladicactivity in micro-micro curiss per liter Missolved alpha Solid slpha Missolved beta 501d beta</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.09<br>0.18<br>14.21                                         |                                                                          | 0.09<br>0.18<br>14.91<br>7.27               |                                                                      |

WATER QUALITY VARIATIONS



SAN JOAQUIN RIVER AT FREMONT FORT BRIDGE (STA. 25c)

# SAN JOAQUIN RIVER AT HILLS FERRY BRIDGE (STA. 25b)

Sampling Foint Station 25b is located in Section 3 of Township 7 South,
Range 9 East, Mt. Diablo Base and Meridian. Monthly grab samples were
collected from the left bank at Hills Ferry Bridge, 300 feet downstream
from the Merced River and 3.5 miles northeast of Newman.

Period of Record October 1958 through December 1959.

Water Quality Characteristics The water is sodium chloride-sulfate in character and very hard. Concentrations of dissolved solids, chlorides, and boron cause the water to be class 2 for irrigation. Dissolved solids and chlorides frequently exceed the recommended limits for domestic use. The quality of water at this station is not significantly different from that at the next upstream station, Fremont Ford Bridge (Station 25c). Significant Water Quality Changes None.

| WATER QUALITY RANGES                                             |                   |                   |              |              |  |
|------------------------------------------------------------------|-------------------|-------------------|--------------|--------------|--|
| 1ton                                                             | Maximum of Record | Minimum of Record | Hastman (75) | Hinimm - 195 |  |
| Specific conductance (micromhom at 25°C)                         | ₽,160             | 23.0              | 2,160        | 610          |  |
| Temperature in OF                                                | fip fip           | 147               | 78           | 49           |  |
| Dissolved oxygen in parts per million                            | 12.4              | 7,8               | 12.2         | 7.8          |  |
| Percent saturation                                               | 131               | 77                | 124          | 77           |  |
| pli                                                              | 8,1               | 7.1               | 8.1          | 7,1          |  |
| Mineral constituents in parts per million                        |                   |                   |              |              |  |
| Calcium (Ca)                                                     | 92                | 32                | 99           | 32           |  |
| Hagnonlum (Ng)                                                   | 42                | 1.4               | 42           | 14           |  |
| Sodium (Re)                                                      | 766               | 75                | 166          | 74           |  |
| Potassium (X)                                                    | 6.0               | 2.6               | 6.0          | 2.8          |  |
| Carbonate (CO2)                                                  | h                 | 0.0               | A.           |              |  |
| Bicarbonate (8003)                                               | 26.9              | 150               | 24.0         | 142          |  |
| Sulfate (SOL)                                                    | 35.9              | 69                | 30.0         | 60           |  |
| Chloride (CI)                                                    | 665               | 82                | 445          | 82           |  |
| Nitrate (NO:)                                                    |                   |                   |              |              |  |
|                                                                  | 6,9               | 0.0               | 4.9          | 0.           |  |
| Fluoride (F)                                                     | 0.5               | 0.1               | 0.4          | 0.1          |  |
| Boron (B)                                                        | 1.3               | 0.2               | 1-3          | 0.2          |  |
| Silica (S102)                                                    | 33                | 14                | 32           | 14           |  |
| Total dissolved solids in parts per million                      | 1,320             | 372               | 1,320        | 372          |  |
| Percent sodium                                                   | 64                | 53                | 64           | 53           |  |
| Hardness as CaCO, in parts per million                           |                   |                   |              |              |  |
| Total                                                            | 421               | 139               | 421          | 139          |  |
| Woncarbonate                                                     | 224               | 23                | 224          | 23           |  |
| NODCAL DODA CO                                                   | 554               | 23                | 554          | 51           |  |
| Partid ity                                                       | 35                | 6                 | 35           | 6            |  |
| Coliform in most probable number per milliliter                  | 7,000,            | 0.23              | 7,000.       | 0.23         |  |
| Radioactivity in micro-micro curies per liter<br>Dissolved alpha |                   |                   |              |              |  |
| Solid alpha                                                      |                   |                   |              |              |  |
| Dissolved beta                                                   |                   |                   |              | V            |  |
| Solid beta                                                       |                   |                   |              |              |  |





### SAN JOAQUIN RIVER NEAR GRAYSON (STA. 26)

Sampling Point The location of the Grayson monitoring station is within Section 24, Township 4 South, Range 7 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank, adjacent to Laird Slough Bridge, and 2 miles northeast of Westley.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Water at Station 26 varies widely both in quality and character. The water is predominantly a sodium chloride type, however, calcium often constitutes a significant portion of the cations, and bicarbonate at times is the predominant anion. The water ranges from class 1 to class 2 for irrigation; the concentration of chloride at times exceeds the recommended limits for domestic use; total hardness ranges from soft to very hard. Conductivity ranges from 500 to over 1,000 micromhos higher at this station than at the Mendota station, about 65 miles upstream. Irrigation returns, effluent ground water, and waste discharges have caused mineral concentrations to increase along this reach of the river.

Significant Water Quality Changes In 1959 concentrations of one or more minerals exceeded class 1 irrigation limits in samples collected at the Grayson station. The extremely poor quality at the station was attributed to the low flows in San Joaquin River which afforded only minor dilution to poor quality drainage waters.

| QUALITY |  |
|---------|--|
|         |  |
|         |  |

| Item                                                        | Baximm of Becord | Minimum of Record | Harissa - 1959 | Minimum - 1959 |
|-------------------------------------------------------------|------------------|-------------------|----------------|----------------|
| Specific conductance (micromhom at 25°C)                    | 1,660            | 91                | 1,660          | 1,030          |
| Temperature in °F                                           | 81               | 45                | An             | 10             |
| Dissolved oxygen in parts per million<br>Percent saturation | 1e 5             | 5 9               | 12 6<br>145    | 7 2            |
| Me                                                          | 8.6              | 6.8               | 8.5            | 7-9            |
| Mineral constituents in parts per million                   |                  |                   |                |                |
| Calcium (Ca)                                                | 79               | 7.2               | 72             | 60             |
| Magnesium (Ng)                                              | h7               | 2.1               | 47             | 26             |
| Sodium (Sa)                                                 | 220              | 7.6               | 220            | 134            |
| Potassium (E)                                               | 5.2              | 1-1               | 5.2            | 4.8            |
| Carbonate (CO)                                              | 0.0              | 0.0               | 0.0            | 0.0            |
| Bicarbonate (HCO3)                                          | 248              | 35                | 266            | 178            |
| Sulfate (SOL)                                               | 164              | 5.8               | 164            | 159            |
| Chloride (C1)                                               | 280              | 6.0               | 280            | 160            |
| Sitrata (NO3)                                               | 6,6              | 0.8               | 1.6            | 1.0            |
| Fluoride (F)                                                | 0.6              | 0.0               | 0.2            | 0.1            |
| Boron (B)                                                   | 8.0              | 0.0               | 0.8            | 0.4            |
| 81lica (310 <sub>2</sub> )                                  | 27               | 17                | 21             | 28             |
| Total dissolved solids in parts per million                 | 986              | 54                | afte           | 612            |
| Percent sodius                                              | 61               | 36                | 61             | 59             |
| Hardness as CaCO; in parts per million                      | 1                |                   |                |                |
| Total                                                       | 348              | 25                | 148            | 226            |
| Moncarbona te                                               | 153              | 0                 | 153            | 8              |
| Turbidity                                                   | 300              | 0.0               | 60             | 0.0            |
| coliform in most probable number per milliliter             | >7,090.          | 2.3               | 2, koo         | 2.3            |
| ladioactivity in micro-micro curies per liter               |                  |                   |                |                |
| Dissolved alpha                                             | 4.07             | 0.00              | 0.18           | 0.00           |
| Solid alpha                                                 | 1.56             | 0.00              | 0.18           | 200            |
| Dissolved beta                                              | 15.5             | 0.00              | 6.86           | 4 25           |
| Solid beta                                                  | NO 1             | 0,00              | 5.49           | 3,58           |

WATER QUALITY VARIATIONS



## SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE (STA. 26a)

Sampling Point Station 26a is located in Section 29, Township 3 South,
Range 7 East, Mt. Diablo Base and Meridian. Monthly grab samples were
collected from the left bank, 50 feet upstream from El Solyo Ranch
irrigation intake and about 300 feet from Maze Road Bridge. Samples from
the station were collected by personnel working for the City of San
Francisco, an interested and cooperating agency in this program.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Water at Maze Road Bridge is normally sodium chloride in type, ranging from soft to very hard, and generally meeting mineral standards for domestic use. Although water at the station ranges from class 1 to class 2 for irrigation, the mineral quality is considerably better (averaging about 350 micromhos) than at Station 26 near Grayson, located about 11 miles upstream. The improvement in quality reflects the influence of tributary Tuolumne River water, which enters the San Joaquin River between these two stations.

Significant Water Quality Changes During 1959, water samples from the station contained mineral concentrations which exceeded the maximum of record. The water was class 2 for irrigation during May through October. Chloride concentrations in July and September exceeded 250 ppm, the recommended limit for drinking water. Impairment of quality at Station 26a was attributed to low flow conditions not affording enough dilution for poor quality drainage and effluent ground waters entering the river.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |                                                                          |                                                                                  |                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|--|
| It.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Haximum of Record                                                      | Minimum of Record                                                        | Maximum - 1959                                                                   | Hiniman - 1959                          |  |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,300                                                                  | 97                                                                       | 1,300                                                                            | 607                                     |  |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81                                                                     | 146                                                                      | 81                                                                               | 69                                      |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 h 1<br>175                                                           | 6.3                                                                      | 13 9<br>173                                                                      | 6 h                                     |  |
| pit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5                                                                    | 6.7                                                                      | 8.1                                                                              | 7.5                                     |  |
| Kineral constituents in parts per million Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Calcium (Carbonate (CO)) Bits retorate (EOO) Sulfate (Calcium (Calciu | 67<br>28<br>157<br>7<br>19<br>196<br>89<br>5<br>1<br>0.6<br>0.73<br>3h | 8 3<br>9.7<br>7 4<br>1.2<br>0.0<br>31<br>5 3<br>0.0<br>0.0<br>0.0<br>0.0 | 67<br>28<br>157<br>7 h<br>19<br>19<br>19<br>89<br>295<br>3.6<br>0.2<br>0.h<br>3h | NS 18 65 6 6 70 05 10 18 1 1 1 1 1 1 29 |  |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 720                                                                    | 54                                                                       | 720                                                                              | 338                                     |  |
| Percent sodius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59                                                                     | 38                                                                       | 57                                                                               | 52                                      |  |
| Hardmone as CaCOs in parts per stillion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |                                                                          |                                                                                  |                                         |  |

WATER QUALITY VARIATIONS

273 118

300

2.88 1.56 12.7

>7,000

Total

Turbidity

Moncarbona te

Coliform in most probable number per milliliter

Radioactivity in micro-micro curies per liter Dissolved slpha Solid slpha Dissolved beta Solid bete 132

7,000



#### SAN JOAQUIN RIVER NEAR VERNALIS (STA. 27)

Sampling Point Station 27 is located in Section 13 of Township 3
South, Range 6 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the center of flow, from Durham Ferry highway bridge, 3 miles downstream from the Stanislaus River, 3.4 miles northeast of Vernalis.

Period of Record April 1951 through December 1959.

Water Quality Characteristics The water at Station 27 is generally sodium chloride to sodium chloride-bicarbonate in character and moderately hard to very hard. Chlorides and dissolved solids occasionally exceed the recommended maximum for domestic use and frequently cause the water to be class 2 for irrigation. A decrease (about 150 micromhos) in the concentration of most mineral constituents is noted between Station 26a at Maze Road Bridge and Station 27 at Vernalis. The improvement in quality between these two stations is attributable to the dilution caused by the excellent quality tributary inflow of the Stanislaus River.

Significant Water Quality Changes Maximum values for the period of record for conductivity, calcium, sodium, potassium, bicarbonate, dissolved solids, percent sodium, and hardness were reported during the latter part of 1959. The maximums were not, however, sufficient to seriously impair the quality of the water at this point.

| WATER QUALITY RANGES                            |                   |                   |                |               |
|-------------------------------------------------|-------------------|-------------------|----------------|---------------|
| Item                                            | Maximum of Record | Minimum of Record | Hazleum - 1959 | Hinimum - 199 |
| Specific conductance (microwhom at 25°C)        | 1,260             | 99                | 1.044          | 35.7          |
| Temperature in °F                               | Ro                | hs.               | Ap             | 100           |
| Dissolved oxygen in parts per million           | 13 4              |                   | 12.1           | 7.8           |
| Purcent saturation                              | 16e               | 61                | 1.24           | Ap.           |
| pli                                             | 8.5               | 6.5               | R 9            | 6.5           |
| Gineral constituents in parts per million       |                   |                   |                |               |
| Calcium (Ca)                                    | 65                | 8.4               | 69             | 20            |
| Hagneslum (Ng)                                  | 43                | 1 9               | 31             | 9.2           |
| Sodium (Na)                                     | 158               | 0,8               | 1//8           | 39            |
| Potassium (K)                                   | 8.6               | 0.9               | 8.6            | 2.8           |
| Carbonste (003)                                 | 7                 | 0.0               | 0.0            |               |
| Bicarbonate (8003)                              | 204               | 32                | 904            | 83            |
| Sulfate (SOL)                                   | 113               | 2.9               | 113            | 30            |
| Chloride (CI)                                   | 974               | 8                 | 275            | 166           |
| Witrate (WO2)                                   | 5.5               | 0.4               | 5.5            | 1 1 1         |
| Fluoride (F)                                    | 0.4               | 9.0               | 0.4            | 0.1           |
| Boron (B)                                       | 0.56              | 0.0               | W-A            | 0.1           |
| Silica (SiO2)                                   | 41                | 10                | 16             | 24            |
| Total dissolved solide in parts per million     | 748               | 52                | 748            | 270           |
| Percent sodium                                  | 58                | 32                | 5.R            | 107           |
| Mardness as CaCO; in parts per adllion          |                   |                   |                |               |
| Prot.al                                         | 286               |                   | 286            | BA BA         |
| Honcarbonate                                    |                   | 26                |                |               |
| Boncaroona te                                   | 135               | 0.0               | 132            | 20            |
| Purblidity                                      | 85                | 0.0               | 60             | 0.0           |
| coliform in most probable number per milliliter | 24,000.           | 0.62              | 7 000          | 4 62          |
| ladioactivity is micro-micro curies per liter   |                   |                   |                | 1             |
| Dissolved alpha                                 | 2.02              | 0.00              | 0.51           | 0.26          |
| Solid alpha                                     | 2.10              | 0.00              | 0.53           | 0.17          |
| Masolved beta                                   | 13.02             | 0.00              | 8 44           | 0.00          |
| Solid beta                                      | 14.88             | 0.00              | h 45           | 3.61          |





#### SALT SLOUGH AT SAN LUIS RANCH (STA. 92a)

Sampling Point Station 92a is located in Section 7 of Township 9 South, Range 11 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the center of the channel of flow, from a bridge about 8 miles north of Los Banos, at San Luis Ranch.

Period of Record November 1958 through December 1959.

Water Quality Characteristics Water of the slough is generally sodium chloride in character, very hard, and class 2 for irrigation. Dissolved solids, chlorides, and sulfates usually exceed the recommended limits for domestic use. During winter months, storm and surface drainage and ground water accretions supply the preponderance of flow and cause high electrical conductivity on the order of 2,000 micromhos. However, during the irrigation season, return waters (averaging about 1,000 micromhos) contribute significant quantities of flow to the slough and frequently dilute the concentrations of most dissolved mire rals to within the limits recommended for domestic use.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                        |                                                                                     |                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                            | Minimum of Record                                                      | Maslmum + 1959                                                                      | Minimum - 1959                                           |
| Specific conductance (micromace at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,370                                                                        | 9/2                                                                    | 2 37                                                                                | 182                                                      |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78                                                                           | NA.                                                                    | 78                                                                                  | Lo.                                                      |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.T<br>88                                                                    | 3.2                                                                    | 8.7                                                                                 | 3 P<br>30                                                |
| llq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.4                                                                          | 6.4                                                                    | Zak                                                                                 | 6.4                                                      |
| Mineral constituents in parts per million Calcium (Calcium (Calciu | 95<br>55<br>338<br>7.8<br>0.0<br>944<br>461<br>425<br>8.<br>7.4<br>2.2<br>27 | 89<br>83<br>117<br>3.2<br>0.0<br>160<br>93<br>169<br>1.5<br>0.1<br>0 3 | 95.<br>55.<br>338.<br>7 8.<br>0 0.<br>244.<br>461.<br>425.<br>81.0.<br>0.4.<br>2.2. | 23<br>7<br>3 ?<br>0.<br>160<br>93<br>162<br>1 . 5<br>0 1 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,460                                                                        | 560                                                                    | 1,460                                                                               | 560                                                      |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62                                                                           | 53                                                                     | 62                                                                                  | 53                                                       |
| lardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54-9<br>965                                                                  | 84<br>218                                                              | 568<br>965                                                                          | 218<br>84                                                |
| Partidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                           | 8                                                                      | 30                                                                                  | . 8                                                      |
| Coliform in most probable number per milliliter (Not<br>Measured)<br>Madioactivity in micro-micro curies per liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                                                                        |                                                                                     |                                                          |
| Dissolved alpha<br>Solid alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.40                                                                         | 0.09                                                                   | 0.40                                                                                | 0.09                                                     |
| Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                                         | 0.27                                                                   | 0.27                                                                                | 0.27                                                     |
| Solid bets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.14                                                                         | 0.75                                                                   | 2.14                                                                                | 0.78                                                     |

WATER QUALITY VARIATIONS



SALT SLOUGH AT SAN LUIS RANCH (STA. 92a)

Fresno River Basin. The Fresno River Basin drains a portion of the lower western slope of the Sierra Nevada in Madera County. The Fresno River rises at an elevation of about 7,000 feet and flows westerly into the San Joaquin Valley floor. Natural runoff varies from little or no flow in later summer, to flash floods during the rainy season, averaging about 103,000 acre-feet annually.

In the river basin, above the valley floor, only 4 square miles out of 270 are classified as valley or mesa lands. Development is limited to livestock raising and recreation.

There are no significant waste discharges entering the basin.

A surface water sampling station is maintained on the Fresno River near

Daulton to monitor quality of runoff.



# FRESNO RIVER NEAR DAULTON (STA. 113)

Sampling Point The Daulton station is located in Section 3, Township 10 South, Range 19 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected at mid-stream from Hensley Bridge, about 1.6 miles upstream from USGS gaging station, and about 5.3 miles southeast of Daulton.

Period of Record January 1958 through December 1959.

Water Quality Characteristics Past analyses show Fresno River water to be calcium-sodium bicarbonate-chloride in character, soft to slightly hard, class 1 for irrigation, and that the water meets the criteria for domestic use.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |                                  |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------------------------|--------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hazimum of Record | Minimum of Record | Harimon - 1959                   | Hinima - 195 |
| Specific conductance (micromhoe at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 136               | 72.1              | 310                              | 78.9         |
| Tomperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78                | w                 | 78                               | -            |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 (-             | 7 1               | 99                               | 91           |
| pill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T-8               | 6.6               | 7.8                              | 6            |
| Riberal contituents in parts per million Calcium (G. Calcium (G. Magneslum (Ng) Sodium (Ng) Potas dim (f) Carbona to (OT) Biterbona to (OT) Biterbona to (OT) Carbona to (CT) Fiterata (MO) Fiscal (MO | 15                | 8<br>9<br>28      | 2 1<br>10<br>70<br>2<br>2<br>3.3 | 6 4          |
| Total dissolved solide in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 231               | 51                | 231                              | 10           |
| Percent sodium  Bardness as CeCO; in parts per million  Total  Soncarbons te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60<br>71          | 1.8               | 73<br>21                         | 29           |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                | 0.8               | 7                                | 100          |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7,000            | .23               | 2,500                            | 2 3          |
| tadioactivity in micro-micro curies per liter<br>Missolved alpha<br>Solid alpha<br>Missolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   | 70<br>51<br>89                   |              |

WATER QUALITY VARIATIONS



Chowchilla River and Bear Creek Unit. The Chowchilla River drains about 238 square miles of the lower slopes of the Sierra Nevada in Madera and Mariposa Counties. Bear Creek drains the foothills in western Merced and eastern Mariposa County. The Chowchilla River Basin has a mean annual runoff of about 91,300 acre-feet. Information is not available on the mean annual runoff from Bear Creek Basin.

Topography in these two basins, above the valley floor, is mostly rolling foothills. The Chowchilla River headwaters are at about 6,000 feet in a fairly well forested terrain. Ground covering changes with elevation from forest to range grass and a scattering of scrub trees and brush in the foothills. Livestock raising is the only significant use made of the foothill areas in the unit. Only minor quantities of waste enter these streams and there is no discernible water quality impairment problems in the unit.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this unit and the page on which each is discussed:

| Monitoring Station                    | Station Discussion |
|---------------------------------------|--------------------|
| Chowchilla River at Buchanan Dam Site | 286<br>288         |



### CHOWCHILLA RIVER AT BUCHANAN DAM SITE (STA. 114)

Sampling Point Station 114 is located in Section 22, Township 8 South, Range 18 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank, at a USGS gage located about 4.3 miles west of Raymond.

Period of Record January 1958 through December 1959.

Water Quality Characteristics Water in the stream is a mixed calciumsodium bicarbonate-chloride type from January through June. The stream
is usually dry through the summer. When flow starts again in October,
the water is a mixed sodium-calcium chloride type. The water is
normally class 1 for irrigation and occasionally class 2 due to high
chloride concentrations. Water in Chowchilla River ranges from soft to
very hard, limiting it for domestic and industrial uses.

Significant Water Quality Changes During November 1959, chlorides reached 190 ppm, the maximum value of record. Runoff from the basin was extremely small during the late months of 1959. The lack of dilution water afforded by the resultant low flow probably accounted for the high concentration of chlorides.

| WATER QUALITY RANGES                                                                                                                                                                                                                           |                                                                        |                                                                   |                                                                               |                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|
| It-                                                                                                                                                                                                                                            | Maximum of Record                                                      | Minimum of Record                                                 | Hazimum - 1959                                                                | Hinimm - 195                              |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                       | 783                                                                    | 68.9                                                              | 783                                                                           | 68.2                                      |
| Pemperature in OF                                                                                                                                                                                                                              | 82                                                                     | 49                                                                | 76                                                                            | 51                                        |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                    | 11 6<br>118                                                            | 7. 7<br>86                                                        | 11 P<br>105                                                                   | 8.9<br>9h                                 |
| Hq                                                                                                                                                                                                                                             | 8.4                                                                    | 7.1                                                               | 7.9                                                                           | 7.1                                       |
| Hiseral constituents in parts per million Calcium (Ga) Magneslum (Ng) Sodium (Ha) Potas stim (Ga) Carbonate (Ga) Sufficient (Ga) Sufficient (Ga) Childred (GC) Hitrate (WG) Floories (F) Floories (F) Floories (F) Solice (Side) Silice (Side) | 76<br>11<br>21<br>0.9<br>0.0<br>118<br>12<br>100<br>0.9<br>0.1<br>0.21 | 6.%<br>1.5<br>5.9<br>0.8<br>0.0<br>27<br>1.0<br>6.0<br>0.0<br>0.0 | 26<br>5.5<br>81<br>2.4<br>0.0<br>118<br>5.8<br>199<br>0.4<br>0.1<br>0.2<br>26 | 6 h 1.5 5 ? 0 8 0.0 27 1.0 6.5 0.0 0.0 12 |
| otal dissolved solide in parts per million                                                                                                                                                                                                     | 481                                                                    | 50                                                                | 481                                                                           | 50                                        |
| Percent sodium                                                                                                                                                                                                                                 | 47                                                                     | 30                                                                | 47                                                                            | 32                                        |
| Marchess as CaCO <sub>3</sub> in parts par million Total Monoarbonats Farbidity                                                                                                                                                                | 305<br>505                                                             | 22<br>0.0                                                         | 109<br>505                                                                    | ??<br>0 0                                 |
| Coliform in most probable number per milliliter                                                                                                                                                                                                | >7.000.                                                                | 0.23                                                              | 690                                                                           | 2.3                                       |
| Coliform in most process memour per milliter<br>Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Missolved bets                                                                                              | 7,40<br>0.64<br>5.19<br>11.55                                          | 0.17<br>0.17<br>3.05<br>1.00                                      | 0.40<br>0.64<br>2.90<br>11.55                                                 | *.,                                       |

WATER QUALITY VARIATIONS



## BEAR CREEK AT MERCED (STA. 111a)

Sampling Point The station is located in Section 24, Township 7 South,
Range 13 East, Mt. Diablo Base and Meridian. Monthly grab samples were
collected from State Highway 99 bridge at the north end of Merced.
Period of Record October 1958 through December 1959.

Water Quality Characteristics The water is a mixed calcium-magnesium bicarbonate type, low in concentrations of dissolved solids, and of excellent mineral quality for most beneficial uses. However, hardness ranges from soft to moderately hard, limiting it for domestic and industrial uses.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                |                   |                   |                                                            |                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|------------------------------------------------------------|-----------------------------------------|
| It.                                                                                                                                                                                                                                                                                                                                                                 | Maximum of Record | Minimum of Record | Masimum - 1919                                             | Rinimm - 1955                           |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                            | See 1959          | lee 1959          | - 1                                                        | -61-                                    |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                   |                   |                   | 15                                                         | 4                                       |
| Resolved oxygen in parts per million<br>Farcent saturation                                                                                                                                                                                                                                                                                                          |                   |                   | _2  <br> -2                                                | Ap                                      |
| pili                                                                                                                                                                                                                                                                                                                                                                |                   |                   | 0.0                                                        | 10                                      |
| Mineral constituents in parts per million Calcium (G. ) Galcium (G. ) Magnesium (Mg.) Sodium (Ms.) Potas wium (f.) Earbonate (OD) Sicarbonate (SDO) Sulfrate (SD) Sulfrate (SD) Filtoriae (SD) |                   |                   | 1h 20 1f 2 6 (94 29 1f 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                         |                   |                   | 237                                                        | 62                                      |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                      |                   |                   | 73                                                         | 16                                      |
| Hardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Honcarbonate                                                                                                                                                                                                                                                                                         |                   |                   | 165<br>11                                                  | 0                                       |
| Turbidity                                                                                                                                                                                                                                                                                                                                                           |                   |                   | 7                                                          | 7                                       |
| Coliform in most probable number per milliliter (Not<br>Measured)                                                                                                                                                                                                                                                                                                   |                   |                   |                                                            |                                         |
| Radioactivity in micro-micro curies per liter<br>Dissolved slphs<br>Solid slphs<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                     |                   |                   | 37<br>12 36<br>6 19                                        | 3 79<br>= 38<br>3 73<br>= 6             |





Merced River Basin. Merced River drains a watershed area of about 1,035 square miles in Mariposa and Merced Counties. The river originates at an elevation of 11,000 feet in the Sierra Nevada and drops to about 400 feet as it flows out of the foothills into San Joaquin Valley. From its headwater the river flows almost due westward 135 miles to its mouth on the San Joaquin River. Mean annual runoff from the basin is estimated to be 1,027,000 acre-feet. Snowmelt sustains flow in the Merced River throughout most of the summer.

Terrain in the basin is very rugged at the headwaters, and steep canyon walls comprise a large portion of the watershed along the river. Yosemite Valley is the major attraction in this basin and development is primarily based on the tourist trade attracted by the scenic and geologic wonders of the valley. Lumbering, mining, livestock raising, and recreational services comprise the balance of significant economic pursuits in the basin.

Waste discharges entering the Merced River system are insignificant in volume and do not create impairment problems.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed:

|                                  | rage Number of     |  |  |
|----------------------------------|--------------------|--|--|
| Monitoring Station               | Station Discussion |  |  |
|                                  |                    |  |  |
| Merced River below Exchequer Dam | 292                |  |  |
| Merced River near Stevinson      | 294                |  |  |



## MERCED RIVER BELOW EXCHEQUER DAM (STA. 32a)

Sampling Point Exchequer Dam station is located in Section 14, Township 4
South, Range 15 East, Mt. Diablo Base and Meridian. Monthly grab samples
were collected from the right bank, at the USGS gage house, 0.5 mile
downstream from Exchequer Dam and 5 miles northeast of Merced Falls.

Period of Record April 1951 through December 1959.

Water Quality Characteristics The water is calcium bicarbonate in character, soft to slightly hard, and of excellent mineral quality for nearly all beneficial uses. The quality of water at Station 32a reflects the amount of runoff in the stream; in a low water year, conductivity ranges from 25 to 250 micromhos, and in a wet water year, conductivity ranges from 20 to 110 micromhos.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                         |                                              |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|----------------------------------------------|-------------------------------------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record                                              | Minimum of Record       | Hasimum = 1907                               | Hinimas 1959                              |
| Specific conductance (micromnos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 242                                                            | 20-                     | YES                                          | 26.0                                      |
| Comperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77                                                             | 6.6                     |                                              | 50                                        |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 129                                                            | 1.6                     | 104                                          | 51                                        |
| Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                                                            |                         | 4                                            | 6.8                                       |
| Hieral constituents in parts per million Calcium (Ca) Sagmestum (Ng) Sodium (Ng) Potsavdium (10 Carbonats (CO) Shifate (SO) Shifate (SO) Children (SO) Filtrate (SO) Filtrate (NO) Filtr | 29<br>5<br>1<br>1<br>7<br>6.1<br>7<br>2.0<br>1.2<br>0.73<br>16 | 2 4<br>1<br>9<br>2<br>9 | 1 1 27 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 / 5   5   5   5   5   5   5   5   5   5 |
| stal dissolved solide in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 158                                                            | 13                      | 158                                          | 17                                        |
| ercest sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37                                                             | 100                     | 37                                           | 12                                        |
| ardness as CeCO; in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91<br>12                                                       | 8                       | 79<br>6                                      | 9                                         |
| urbidi ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400                                                            | 0.0                     | 35                                           | 80                                        |
| oliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >7 000                                                         | 0.045                   | 7,300                                        | 0.76                                      |
| Dissolved alpha<br>Solid alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.54                                                           | 0 00                    | = 1<br>= 6r                                  | 7 21                                      |
| Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.3                                                           | .00                     | 4 0h                                         | 000                                       |





### MERCED RIVER NEAR STEVINSON (STA. 32)

Sampling Point Station 32 is located in Section 36, Township 6 South, Range 9 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank (100 feet upstream from a USGS gage), about 6 miles northwest of Stevinson.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Water in the river near Stevinson is a mixed calcium-magnesium bicarbonate type, slightly hard and of excellent mineral quality for nearly all beneficial uses. Comparison of mineral quality of water at Station 32 with that at Merced River below Exchequer Dam (Station 32a) reveal a proportionately large increase (about 200 micromhos) in dissolved solids. However, quality of water is still excellent at both stations.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |                                                  |                                                                |                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|--|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hazimum of Record                                                 | Riniss of Boosed                                 | Maximum - 1959                                                 | Rintem - 1955                                    |  |
| Specific conductance (micrownos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 585                                                               | 33.6                                             | 385                                                            | 200                                              |  |
| Pemperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83                                                                | No.                                              | 91                                                             | 51                                               |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.0<br>128                                                       | 7 O 78                                           | 11 1<br>104                                                    | 8 =<br>84                                        |  |
| pil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.1                                                               | 6.6                                              | dir                                                            | 5.6                                              |  |
| Hiseral constituents in parts per million Calcium (Calcium (Calciu | 28<br>11<br>15<br>16<br>16<br>29<br>29<br>29<br>2,8<br>0,3<br>1,9 | 18 0.3 2.0 0.5 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0 | 97<br>6 4<br>9 8<br>14<br>169<br>17<br>9 8<br>0 1<br>0 2<br>35 | 19<br>8 1<br>19<br>2 3<br>90<br>11<br>9.0<br>2.7 |  |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 248                                                               | 21.6                                             | 248<br>53                                                      | 143                                              |  |
| lardness as CaCO <sub>3</sub> in parts per million<br>focal<br>Soncarbonate<br>fartidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115<br>18<br>60                                                   | 13 0.0                                           | 10P<br>0 0                                                     | 66<br>0                                          |  |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,000                                                             | 0. 46                                            | 7.000.                                                         | 2 3                                              |  |
| dadicactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.55<br>0.76<br>13.50<br>19.74                                    | 00-00<br>10 vi<br>10 00<br>10 00                 | 0.51<br>-53<br>3.79                                            | 0 27<br>0 26<br>2 33                             |  |

WATER QUALITY VARIATIONS



Tuolumne River Basin. Tuolumne River Basin contains approximately 1,540 square miles on the western slopes of the Sierra Nevada in the east-central portion of the Central Valley Region. Headwaters derive from glacial lakes high in the mountains, from where the stream flows southwesterly for 150 miles to its junction with the San Joaquin River. Average annual discharge of Tuolumne River Basin is estimated to be 1,900,000 acre-feet.

Above the San Joaquin Valley floor the terrain of the basin is classified as mountainous-foothill area. The upper portion drains a few meadows and plateaus, but the river soon drops into a steep canyon and flows through a gorge for a distance of about 80 miles. Elevation varies from 300 feet at the foothill line to over 13,000 feet at the crest of the Sierra Nevada.

Economic developments in the basin are typical of mountainous areas and include resort areas, lumbering, mining, livestock raising, and recreational facilities.

Numerous wastes from individual domestic, lumbermill, and resort developments, discharge into the Tuolumne watershed. These waste discharges are minor in quantity and have not caused significant impairment problems.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed:

| Monitoring Station                         | Page Number of Station Discussion |
|--------------------------------------------|-----------------------------------|
| Tuolumne River below Don Pedro Dem         | 298                               |
| Tuolumne River at Hickman-Waterford Bridge | 300                               |
| Tuolumne River at Tuolumne City            | 302                               |



### TUOLUMNE RIVER BELOW DON PEDRO DAM (STA. 31a)

Sampling Point Don Pedro Dam station is located in Section 3, Township 3 South, Range 14 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank, about one-quarter mile downstream from the dam and approximately 5 miles upstream from La Grange.

Period of Record April 1951 through December 1959.

<u>Water Quality Characteristics</u> Analyses show the water to be calcium bicarbonate in character, excellent in mineral quality, soft, and suitable for all beneficial uses.

| WATER QUALITY RANGES                            |                   |                   |                |               |
|-------------------------------------------------|-------------------|-------------------|----------------|---------------|
| lt-                                             | Haximum of Record | Hinimum of Record | Maximum - 1959 | Hinimm - 1945 |
| Specific conductance (microwhos at 25°C)        | 156               | 13.6              | 6 1            | 24 1          |
| Temperature in °y                               | 71                | 44                | 67             | NA.           |
| Blaselved oxygen in parts per million           | 116               | 12.5              |                |               |
| Percent saturation                              | 133               | 60                | 9 9            | 7 72          |
| Re                                              | 8.8               | 6.0               | Z-1            | 6.7           |
| tineral constituents in parts per million       |                   |                   |                | -             |
| Caloim (Ca)                                     | 7.1               | 9.0               | 6.75           | 16            |
| Hagnesium (Hg)                                  | 2.7               | 1                 | 1.5            | 3.6           |
| Sodium (Wa)                                     | 5.1               | 0.7               | 2 7            | 1.7           |
| Potassium (K)                                   | 1.0               | 0.3               | 0.7            | 1 /           |
| Carbonate (003)                                 | 0.0               | 0.0               | 0.0            | 10.0          |
| Bicarbonate (800g)                              | hO                | 8                 | 28             | 12            |
| Sulfate (SO <sub>L</sub> )                      | 2 9               | 0.0               | 2 9            | 10            |
| Chloride (CI)                                   | 10                |                   | 2.5            | 0.5           |
| Witrete (WO3)                                   | 0.8               | 0 =               | 0.2            |               |
| Fluoride (P)                                    | 0.2               | 0.0               | 0.0            |               |
| Boron (B)                                       | 0.17              | 0.0               | 0.1            | 100.0         |
| 3ilica (310 <sub>2</sub> )                      | 55                | 4.0               | 7.1            |               |
| otal dissolved solids in parts per million      | 117               | 13                | 146            | 19            |
| ercent sodium                                   | hh                | 13                | 43             | 17            |
| Sardness as CaCO3 in parts per million          |                   |                   |                |               |
| Total                                           | 38                |                   | - 0            |               |
| Moncarbonate                                    | 7                 | 0.0               | 2A<br>7        | 8             |
|                                                 | ,                 | 0.0               | 7              | 0.0           |
| harbidi ty                                      | 55                | 3.0               | - 50           | 0.0           |
| coliform in most probable number per milliliter | >7,000            | 0.045             | 230.           | 0 21          |
| ladioactivity in micro-micro curies per liter   |                   |                   |                |               |
| Dissolved alpha                                 | 2.25              | 0.00              | 0.51           | 1 200         |
| Solid alpha                                     | 1.07              | 0.00              | 1.07           | 0.35          |
| Dissolved beta                                  | 9,57              | 0.92              | 9.57           | 6.05          |
| Solid beta                                      | 7.0               | 0.00              | A 20           | 0.00          |

WATER QUALITY VARIATIONS



Sampling Point The station is located within Section 34, Township 3
South, Range 11 East, Mt. Diablo Base and Meridian. Monthly grab
samples were taken from Hickman-Waterford Bridge about one-half mile
south of Waterford.

Period of Record April 1951 through December 1959.

water Quality Characteristics The water is a mixed calcium-sodiummagnesium bicarbonate type during most of the year. During the summer
months when the flow in the river is low due to upstream diversion for
irrigation, the river becomes sodium chloride in character. Tuolumne
River is class 1 for irrigation, soft to moderately hard, and suitable
for nearly all beneficial uses. A source of water quality degradation
is abandoned flowing gas wells which discharge saline water into the
river along the reach in the valley floor east of the station. Degradation from the saline well water is apparent during low flow periods
when less dilution water is available. Station 30 is located approximately
25 miles downstream from Don Pedro Dam (Station 31a). Comparison of
quality at these two stations show a considerable increase (from about 50
to 450 micromhos) in mineral concentrations at the downstream station.
Significant Water Quality Changes None.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                                           |                                                                        |                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Naximm of Boord                                                 | Rizimm of Record                                                          | Haximum - 1959                                                         | Hinimum - 1951                                      |
| Specific conductance (micromhoe at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 513                                                             | 3.0                                                                       | 555                                                                    | 91 3                                                |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8o                                                              | 45                                                                        | 76                                                                     | 50                                                  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.5<br>136                                                     | 5 7<br>70                                                                 | 10 6<br>113                                                            | 6 A                                                 |
| pill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58,4                                                            | 6.6                                                                       | 0.4                                                                    | 7.1                                                 |
| Where's constituents in parts per million Calcium (Calcium (Calciu | 55<br>17<br>117<br>10<br>0.0<br>164<br>206<br>0.3<br>0.18<br>55 | 2.8<br>1.2<br>1.6<br>0.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>6.8 | 55<br>177<br>117<br>10<br>0.0<br>164<br>26<br>206<br>4.6<br>0.1<br>0.1 | 7 9 7 7 0 5 1 0 0 0 0 6 6 8 6 12 0 4 0 0 1 0 0 0 38 |
| Total dismolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 355                                                             | 19                                                                        | 324                                                                    | 53                                                  |
| Percent sodius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54                                                              | 16                                                                        | .54                                                                    | 32                                                  |
| iardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Bonearbonsts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 296<br>72                                                       | 11 0.0                                                                    | 216<br>72                                                              | 25<br>3<br>0.0                                      |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,000                                                           | <0.045                                                                    | 620                                                                    | 2.3                                                 |
| Madisectivity in airo-airo curies per liter<br>Dissolved slpha<br>Solid slpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.08<br>0.83<br>12.43                                           | 0.00<br>0.00<br>0.00<br>0.00                                              | 0   h1<br>0   31<br>h   05<br>5   10                                   | 0.26<br>0.00<br>1.16<br>1.29                        |





## TUOLUMNE RIVER AT TUOLUMNE CITY (STA. 31)

Sampling Point Tuolumne City station is located in Section 7, Township 4
South, Range 8 East, Mt. Diablo Base and Meridian. Monthly grab samples
were collected from Shiloh Road bridge, about 8 miles west of Modesto.
Period of Record April 1951 through December 1959.

Water Quality Characteristics Antecedent data show the water is predominantly a sodium-calcium chloride type changing to sodium chloride type during the summer months. Tuolumne River water occasionally becomes class 2 for irrigation due to an excess of chloride concentration. Hardness ranges from slightly hard to very hard, limiting its beneficial uses. The City of Modesto discharges treated sewage into the river approximately 8 miles upstream from Station 31. No detectable change in quality has been noted at this station that can be attributed to the Modesto waste discharges.

Significant Water Quality Changes During 1959, the mineral concentrations observed at the station were the highest of record. During seven months, April through October 1959, conductivity exceeded 790 micromhos and reached a maximum of 1,030 micromhos in October. The poor quality was probably a result of the lack of dilution waters caused by the low runoff conditions experienced in 1959.

| WATER QUALITY RANGES                                                                                                                                                                                                |                                                                          |                                                                    |                                                               |                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|
| Item                                                                                                                                                                                                                | Maximum of Record                                                        | Minimum of Record                                                  | Maximum - 1959                                                | Hinimum - 1959                                         |
| Specific conductance (micromnos et 25°C)                                                                                                                                                                            | 1_ 30                                                                    | 71, 1                                                              | 1 30                                                          | 24.5                                                   |
| Temperature in OF                                                                                                                                                                                                   | Rh                                                                       | 41                                                                 | 77                                                            |                                                        |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                         | 18 h<br>22h                                                              | 2 5<br>99                                                          | 10                                                            | 5 h<br>63                                              |
| No                                                                                                                                                                                                                  | 8.9                                                                      | 6.1                                                                | 8.4                                                           | 7.9                                                    |
| Hisman constituents in parts per million Calcium (Ca. Kagnesium (Mg) Sodium (Mg) Potasatium (G) Potasatium (G) Sabbunats (G) Sulfate (G) Sulfate (G) Sulfate (G) Hitrate (Mg) Ploories (F) Solice (G) Silice (Sibg) | 48<br>187<br>197<br>1,0<br>1,0<br>1,0<br>1,0<br>2,8<br>2,8<br>0,15<br>57 | 3.6<br>1 k<br>1.8<br>0.9<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 58<br>18<br>127<br>1<br>18e<br>26<br>218<br>h.6<br>0 1<br>0.2 | 75<br>8 6<br>29<br>6 8<br>0<br>48<br>1 4<br>0 1<br>0.0 |
| otal dissolved solids in parts per million                                                                                                                                                                          | 5R8                                                                      | 34.2                                                               | 588                                                           | 149                                                    |
| Percent sodium<br>Hardness as CsOO <sub>3</sub> in parts per million<br>Total<br>Moncarbonats                                                                                                                       | 56<br>220<br>72                                                          | 25<br>14<br>3 0                                                    | 56<br>220<br>72                                               | 58<br>19                                               |
| Purbidity                                                                                                                                                                                                           | 45                                                                       | 0.0                                                                | 17                                                            | 1                                                      |
| oliform in most probable number per milliliter                                                                                                                                                                      | >7,000                                                                   | 0.18                                                               | 7,000                                                         | 62                                                     |
| ladioactivity in micro-micro curise per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                     | 1.23<br>1.10<br>24.3<br>6.1                                              | 0.00<br>0.00<br>0.00                                               | 1 23<br>0 42<br>6.14                                          | 0.28<br>0.09<br>2.47                                   |





Stanislaus River Basin. The Stanislaus River drains a narrow basin on the western slope of the Sierra Nevada in northeastern San

Joaquin River Basin. Enclosed within the boundaries of the watershed are 983 square miles of mountains and foothills. The drainage basin slopes westward, from an elevation of over 10,000 feet at the crest of the Sierra Nevada, to about 20 feet at its confluence with the San Joaquin River. Mean annual runoff of the Stanislaus River is about 1,210,000 acre-feet.

Extremely rugged topography, which includes bare granite peaks and steep canyons, limit development along the upper reaches of the basin. At lower elevations, the ridges and valleys are covered with timber which have promoted lumbering operations, while the foothills provide grazing land suitable for livestock raising. Other commercial pursuits are generally associated with recreation, mining activities, or catering to the tourist trade attracted by the scenery and colorful history of this area.

Waste discharges enter the drainage basin in small volumes. There has been no serious impairment of water quality caused by these small waste discharges.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed:

| Monitoring Station                 | Station Discussion |
|------------------------------------|--------------------|
| Stanislaus River below Tulloch Dam | 306                |
| Stanislaus River near mouth        | 308                |



## STANISLAUS RIVER BELOW TULLOCH DAM (STA. 29a)

Sampling Point The Tulloch Dam station is located within Section 1, Township 1 South, Range 12 East, Mt. Diablo Base and Meridian. The monthly water samples were collected downstream from Tulloch Dam and approximately 6 miles northeast of Knights Ferry.

Period of Record July 1956 through December 1959.

Water Quality Characteristics Past analyses show the water to be calcium-magnesium bicarbonate in character, soft, excellent in mineral quality and suitable for all beneficial uses. Quality of water at the station does not vary significantly, even with wide fluctuations in flow, indicating that regulation by upstream water resources developments apparently stabilizes mineral concentrations.

| WATER QUALITY RANGES                                                                             |                                                                            |                                                                  |                                                                        |                                                             |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|
| Item                                                                                             | Maximum of Record                                                          | Minimum of Record                                                | Maximum - 1959                                                         | Minimum - 1955                                              |
| Specific conductance (microwhom at 25°C)                                                         | 255                                                                        | 35.1                                                             | 255                                                                    | 53                                                          |
| Desperature in OF                                                                                | 72                                                                         | 601                                                              | 79                                                                     | NA.                                                         |
| Dissolved oxygen in parts per million<br>Percent saturation                                      | 13 1<br>104                                                                | 66<br>78                                                         | 10 1<br>94                                                             | 6 6<br>71                                                   |
| - No                                                                                             | 7.6                                                                        | 6.8                                                              | 7.4                                                                    | 6.9                                                         |
| # # # # # # # # # # # # # # # # # # #                                                            | 75, 4<br>0, 4<br>0, 4<br>0, 6<br>143<br>7, 7<br>7, 0<br>1, 3<br>0, 3<br>18 | 5 3<br>.5<br>1 4<br>5 5<br>0.0<br>17<br>0.0<br>0.0<br>0.0<br>0.0 | 25<br>9 b<br>15<br>2 h<br>0 m<br>1 h q<br>7 7 m<br>1 1 q<br>1 q<br>3 h | 9 2<br>3.9<br>2 3<br>0 5<br>0 5<br>0 5<br>0 7<br>0 5<br>0 1 |
| otal dissolved solids in parts per million                                                       | 175                                                                        | 25                                                               | 175                                                                    | 37                                                          |
| ercent sodium                                                                                    | 5.9                                                                        | h                                                                | 24                                                                     | 11                                                          |
| ardness se CaOO3 in parts per million<br>Total<br>Honcarbonsts                                   | 101                                                                        | 1%<br>0.                                                         | 101<br>10                                                              | 22<br>0.                                                    |
| Partidity                                                                                        | Ao                                                                         | 0.0                                                              | 80                                                                     | 201                                                         |
| oliform in most probable number per milliliter                                                   | >7,000                                                                     | 0.045                                                            | 2, linn                                                                | = 045                                                       |
| adicactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta | 0.41<br>0.94<br>5.33                                                       | 0,0<br>0.21<br>0,0<br>1.2h                                       | 0 41<br>0 26<br>5 33<br>3.08                                           | 0 00.<br>1 21<br>0 00<br>1 2                                |

WATER QUALITY VARIATIONS



#### STANISLAUS RIVER NEAR MOUTH (STA. 29)

Sampling Point Station 29 is located in Section 17, Township 3 South, Range 7 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at the foot of a DWR gage house, about 1 mile above the junction of the Stanislaus River with the San Joaquin River and about 9 miles south of Manteca.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Antecedent data show the water to be a mixed calcium-magnesium bicarbonate type, soft to moderately hard, and excellent in mineral quality for nearly all beneficial uses. Mineral concentrations in water at the Stanislaus River mouth station are about 50 percent higher (40 to 250 micromhos) than those found at the upstream station at Tulloch Dam. This mineral pickup is attributed to tributary drainage and waste discharges.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                     |                                                                     |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                  | Minimum of Record                                   | Hazimum - 1959                                                      | Minimum - 1955                                 |
| Specific conductance (micromhom et 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 310                                                                | 67 3                                                | 3.1                                                                 | 3                                              |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84                                                                 | h.1                                                 | R/s                                                                 | 51                                             |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1310                                                               | 6 h<br>61                                           | 11.3                                                                | 6 6<br>75                                      |
| pil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.1                                                                | 6.8                                                 | 7.5                                                                 | 7-1                                            |
| Hiseral constituents in parts per million Calcium (Calcium (Calciu | 10<br>12<br>13, 3, 5<br>5<br>16<br>11<br>11, 2, 6<br>0, 9<br>0, 37 | 5 5 1.2 1 5 0 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 98<br>1m<br>19<br>2 9<br>5<br>163<br>9,0<br>14<br>1 7<br>0.1<br>0 1 | 25<br>9 8<br>3 5<br>2 1<br>7 7<br>1 1.6<br>0 1 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 510                                                                | 32                                                  | 2477                                                                | 69                                             |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                 | 13                                                  | 26                                                                  | 15                                             |
| Mardmass as Ca203 in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123                                                                | 21<br>0.0                                           | 116<br>3                                                            | 42<br>0.0                                      |
| Purtit di ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                | 0.0                                                 | 50                                                                  | 0.0                                            |
| coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7,000.                                                            | 0.23                                                | 7,000.                                                              | 2.3                                            |
| adioactivity in micro-micro curies per liter<br>Dissolved siphs<br>Solid siphs<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.67<br>1.22<br>10.01<br>11.22                                     | 0.00<br>0.00<br>0.00                                | 0.30<br>0.53<br>2.59                                                | 0.09<br>0.44<br>2.52                           |





# Sacramento-San Joaquin Delta Drainage (5c)

The Sacramento-San Joaquin Delta comprises the central portion of the great Central Valley Basin. The drainage area extends north to the City of Sacramento, south to the vicinity of Vernalis, east to the crest of the Sierra Nevada Range and west to Carquinez Straits. The watersheds of the Calaveras, Cosumnes and Mokelumne Rivers are included in the area. Major streams entering the delta area include the Sacramento River from the north, the San Joaquin River from the south and the Calaveras, Cosumnes and Mokelumne Rivers from the east. The Sacramento-San Joaquin Delta Drainage comprises approximately 4,154 square miles, approximately 2,390 square miles of which are classified as mountain and footbill terrain.

A broad gentle-sloping plain, cut into islands by numerous waterways, lies between the foothills on the east and Carquinez Straits on the west. This fertile agricultural land comprises an area of 1,764 square miles and is referred to as the Sacramento-San Joaquin Delta.

Prominent uses of water in the delta include irrigation, power development, salinity control, export under operation of the Central Valley Project and East Bay Municipal Utility District, and water associated recreation. Many varied industries are located in the western end of the delta and depend upon the river for a source of process and cooling waters.

Twenty-four sampling stations are being monitored to obtain information and to provide a continuing check on quality of surface water resources in the delta. Monitored basins with the number of sampling stations in parentheses are as follows:

Sacramento-San Joaquin Delta (18) Cosumnes River Basin (2) Mokelumne River Basin (2) Calayeras River Basin (2) Sacramento-San Joaquin Delta. The central delta area comprises over 50 islands and tracts reclaimed, since 1852, from former tule swamps and overflow lands. Included in the area are about 469,000 acres lying generally below an elevation of five feet above sea level. A survey in 1955 determined that approximately 386,000 acres were agricultural and 83,000 acres nonagricultural. Acreage classified nonagricultural included approximately 42,000 acres of water surface made up of three major flooded areas and a maze of interconnected waterways.

The interest of many public agencies in the water quality of the delta prompted the planning and organization of a water quality surveillance program and the establishment of a large number of monitoring stations on the maze of rivers, canals, and sloughs making up the water channels in the delta. The escaping of poor quality water trapped in the more or less deadend portions of the delta channels when heavy drafts at the Central Valley Project pumping plants induce movement, and the effect of irrigation and drainage practices, have caused considerable concern in the past.

The quality of water in the delta area is influenced primarily by five factors: (a) the tidal motivated incursion of saline water from Suisun Bay and the Pacific Ocean into the delta, (b) flow conditions in streams tributary to the delta, (c) Central Valley Project diversions to delta upland areas, (d) irrigation diversions to and return flows from the many irrigated islands in the delta area, and (e) accretions from ground water acquifers in the delta.

The following tabulation presents the names of stations maintained to monitor quality of surface water in the delta and the page on which each is discussed:

|                                        | Page Number of     |
|----------------------------------------|--------------------|
| Monitoring Station                     | Station Discussion |
|                                        |                    |
| Lindsey Slough near Rio Vista          | 314                |
| Sacramento River at Rio Vista          | 316                |
| Delta Cross Channel near Walnut Grove  | 318                |
| Little Potato Slough at Terminous      | 320                |
| San Joaquin River at Mossdale Bridge   | 322                |
| San Joaquin River at Garwood Bridge    | 324                |
| San Joaquin River at Antioch           | 326                |
| Stockton Ship Channel on Rindge Island | 328                |
| Old River near Tracy                   | 330                |
| Old River at Clifton Court Ferry       | 332                |
| Old River at Orwood Bridge             | 334                |
| Old River at Mandeville Island         | 336                |
| Grant Line Canal at Tracy Road Bridge  | 338                |
| Delta-Mendota Canal near Tracy         | 340                |
| Delta-Mendota Canal near Mendota       | 342                |
| Italian Slough near Mouth              | 344                |
| Indian Slough near Brentwood           | 346                |
| Rock Slough near Knightsen             | 348                |



### LINDSEY SLOUGH NEAR RIO VISTA (STA. 110)

Sampling Point Lindsey Slough station is located in Section 25, Township 5 North, Range 2 West, Mt. Diablo Base and Meridian. Monthly grab samples are taken from the boat landing on the right bank at California Packing Corporation's Montezuma Ranch headquarters, and about 6 miles north of Rio Vista.

Period of Record October 1952 through December 1959.

Water Quality Characteristics The water is a complex calcium-magnesium-sodium bicarbonate type, low in mineral content and well suited for domestic, industrial and class 1 irrigation uses. Because tidal oscillations and pumping maintain a nearly constant flow through the slough, the water quality at this station has remained fairly consistent throughout the period of record and generally reflects the quality of the Sacramento River at Rio Vista (Station 16).

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                               |                                                    |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|---------------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                   | Minimum of Record                             | Hesimum - 1959                                     | Minimum - 1955                        |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 377                                                                 | 193                                           | 291                                                | 178                                   |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                                                                  | 6.6                                           | 78                                                 | W)                                    |
| Diasolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.4<br>176                                                         | 69                                            | 1 8                                                | 7 (1)                                 |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 77                                                                | 7_1                                           | 7.5                                                | 7.3                                   |
| Where's constituents in parts per million Calcium (G.) Magnasium (Mg.) Sodium (Ms.) Potawatum (1) Starbonatum (OD) Starbonatum (OD) Starbonatum (OT) Starbonatu | 24<br>12<br>32<br>3.3<br>100<br>24<br>20<br>1.4<br>1.5<br>1.7<br>24 | 11<br>6.5<br>9 0<br>1 2<br>66<br>13<br>6<br>h | 16<br>9 2<br>25<br>2 3<br>12<br>9 20<br>1 1<br>0 7 | 1 o A 3 1 lo 2 2 2 78 17 9 A 5 2 1 18 |
| Total diasolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230                                                                 | 87                                            | 177                                                | 108                                   |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/1                                                                 | 55                                            | 3                                                  | 29                                    |
| Hardnese as Ca203 in parts per million<br>Total<br>Moncarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 139<br>12                                                           | b2<br>0.                                      | 100<br>8                                           | 6n<br>0.7                             |
| Turbidi ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 700                                                                 | 7                                             | 100                                                | 12                                    |
| Coliform in most probable number per milliliter Radioactivity is micro-micro curies per liter Dissolved alpha Solid alpha Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >7.000                                                              | 2.3                                           | 2, k00                                             | 2.3                                   |





## SACRAMENTO RIVER AT RIO VISTA (STA. 16)

Sampling Point Station 16 is located in Section 31, Township 4 North, Range 3 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from a pier on the right bank at the U. S. Department of Army installation located about 1.0 mile south of Rio Vista.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Antecedent data reveal the water to be a mixed calcium-magnesium-sodium bicarbonate type, soft to slightly hard, and generally within mineral requirements for domestic and class 1 irrigation use.

| WATER QUALITY RANGES                            |                   |                   |                |                |
|-------------------------------------------------|-------------------|-------------------|----------------|----------------|
| It en                                           | Maximum of Record | Minimum of Record | Masimum - 1959 | Rinimum - 1955 |
| Specific conductance (sicroshos at 25°C)        | 304               | 100               | 233            | 132            |
| Temperature in OF                               | 79                | 6.7               | 71             | NA.            |
| Dissolved oxygen in parts per million           | 18.8              | 5.0               | 1 8            | 7_7            |
| Percent saturation                              | 178               | 64                | 1 1            | Rh             |
| На                                              | 8.2               | 6 A               | 7.7            | 7-0            |
| fineral constituents in parts per million       |                   |                   |                |                |
| Calcium (Ca)                                    | 2"                | 8.8               | 15             | 15             |
| Hagnosium (Hg)                                  | 12                | 4.1               | 11             | 7.2            |
| Sodium (Na)                                     | 26                | 5.4               | 19             | 6.7            |
| Potassium (X)                                   | 2.9               | 0.8               | 2.0            | 0.7            |
| Carbonate (CO3)                                 | 0.0               | 0.0               | 0.0            | 0              |
| Bicarbonate (800)                               | 164               | 43                | 106            | NA.            |
| Sulfate (SO:)                                   | 20                | 3.1               | 15             |                |
| Chloride (CI)                                   | 26                |                   |                | 10             |
| Witrate (NO)                                    | 1.4               | 3.1               | 36             | 6 3            |
| Flooride (F)                                    |                   | 0.1               | 0.5            | 0.3            |
| Boron (B)                                       | 0.4               | 0.0               | 0.1            | 01             |
| Silica (5102)                                   | 0.39              | 0.05              | 0.1            | 0.0            |
| 211168 (2105)                                   | 26                | 14                | 19             | 18             |
| Total dissolved solids in parts per million     | 50,9              | 6A                | 146            | A3             |
| ercent sodium                                   | 37                | 19                | 3.6            | 23             |
| lardnese as CaCO; in parts per million          |                   |                   |                |                |
| Total                                           | 122               | lu0               | 81             | NA.            |
| Moncarbona te                                   | 10                | 0.0               | 81             |                |
| WOLICAL GOLIN OIL                               | 10                | 0.0               | 9              | 0.0            |
| harbidity                                       | 600               | 1                 | 70             | 12             |
| coliform in most probable number per milliliter | 70,000.           | 0.69              | >7,000,        | 0.62           |
| ladioactivity in micro-micro curies per liter   |                   |                   |                |                |
| Dissolved slphs                                 | 0.56              | 0.00              | 0.09           | 0.09           |
| Solid alpha                                     | 0.79              | 0.00              | 0.27           |                |
| Dissolved beta                                  | 20.20             | 0.00              | 2.28           | 0.20           |
| Solid bets                                      | 11.41             | 0.00              | 11.41          | 1.56           |





### DELTA CROSS CHANNEL NEAR WALNUT GROVE (STA. 98)

Sampling Point Station 98 is located in Section 35, Township 5 North, Range 4 East, Mt. Diablo Base and Meridian. The monthly water samples were collected on the left bank about 0.2 mile downstream from the control gates when the gates are open, or from the Walnut Grove bridge over the Sacramento River when the gates are closed.

Period of Record September 1952 through December 1959.

Water Quality Characteristics The Delta Cross Channel is a unit of the Central Valley Project and is comprised of artificial and natural channels used to divert water from the Sacramento River near Walnut Grove. The diverted water flows through various channels of the delta to the intake of the Tracy pumping plant. The water at this station is calcium-magnesium bicarbonate in character, soft to slightly hard, and generally within accepted mineral limits for domestic and class 1 irrigation use.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                              |                                                              |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|-----------------------|
| It.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record                                                     | Minimum of Record                            | Hasimum - 19 <sup>6</sup> 9                                  | Hinimim - 195         |
| Specific conductance (micromhom et 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 261                                                                   | Bh                                           | 213                                                          | 97                    |
| Pemperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77                                                                    | 4.6                                          | 74                                                           | M                     |
| Dissolved oxygem in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 2                                                                  | 63                                           | 1 5                                                          | 7                     |
| pill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.2                                                                   | 6.8                                          | 7 4                                                          | 7.1                   |
| Starral constituents in parts per million Calcium (Calcium (Calciu | 21<br>11<br>2,4<br>7,1<br>123<br>10<br>20<br>2,1<br>11,4<br>2,4<br>24 | 9 7<br>1.6<br>7 5<br>1.0<br>33<br>4 0<br>1 3 | 1A<br>9 A<br>21<br>1 7<br>1 B<br>13<br>17<br>1 2<br>1 2<br>2 | 9<br>4 3<br>0 3<br>13 |
| Total dissolved solide in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 175                                                                   | 43                                           | 158                                                          | 64                    |
| Percent sodius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37                                                                    | 15                                           | 34                                                           | Su                    |
| Mardnese as CaCO3 in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or<br>13                                                              | 28<br>0.0                                    | 8 k<br>8                                                     | 37                    |
| Parbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3140                                                                  | 0.9                                          | 50                                                           |                       |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 hor.                                                               | .62                                          | 1,000                                                        | + 2                   |
| Madioactivity in micro-micro curies per liter<br>Missolved slpha<br>Solid slpha<br>Missolved bets<br>Solid bata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.83<br>7.32<br>7.38<br>7.0                                           |                                              | 2 kg<br>2 17<br>3.79<br>5 kg                                 |                       |

WATER QUALITY VARIATIONS



### LITTLE POTATO SLOUGH AT TERMINOUS (STA. 99)

Sampling Point Station 99 is located in Section 13, Township 3 North, Range 4 East, Mt. Diablo Base and Meridian. Monthly grab samples were taken from a boat dock on the east bank, about 250 feet north of State Highway 12 bridge.

Period of Record September 1952 through December 1959.

Water Quality Characteristics Antecedent data reveal the water to be a complex calcium-magnesium-sodium bicarbonate type of excellent mineral quality, slightly hard to moderately hard, class 1 for irrigation and suitable for domestic uses.

| WATER QUALITY RANGES                                                                                                                                                                                                             |                                                    |                   |                                                                           |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|---------------------------------------------------------------------------|--------------------|
| It and                                                                                                                                                                                                                           | Haximum of Record                                  | Minimum of Record | Maximum - 1959                                                            | Minimum - 1955     |
| Specific conductance (microwhos at 25°C)                                                                                                                                                                                         | 171                                                |                   | 371                                                                       | -100               |
| Temperature in OF                                                                                                                                                                                                                | 1 17                                               | 4)                | 77                                                                        | W.                 |
| Dissolved oxygen in parts per million<br>Percent seturation                                                                                                                                                                      | 1 (2)                                              | 1.                | 100                                                                       | 7 g<br>80          |
| PH                                                                                                                                                                                                                               | 1.                                                 | 6.1               | 16                                                                        | 1.0                |
| Mineral constituents in parts per million Calcium (CA) Magnesium (Ng.) Sodium (Ma) Pota estum (1) Blackbonsts (DO) Blackbonsts (DO) Blackbonsts (BO) Mineral (DO) Thioride (CT) Mitras (NO) Flooride (F) Boron (B) Silics (SIO2) | 24<br>12<br>2 2<br>147<br>21<br>1 3<br>7 8<br>1 25 | 28<br>28<br>2,4   | 27<br>1 27<br>1 3<br>111<br>13<br>2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7, h<br>8 1<br>1 - |
| Total dissolved solids in parts per million                                                                                                                                                                                      | 223                                                | 12                | 223                                                                       | 94                 |
| Percent sodium                                                                                                                                                                                                                   | 42                                                 | 22                | 38                                                                        | 24                 |
| Hardness as CaCO3 in parts par million<br>Total<br>Moncerbonate                                                                                                                                                                  | 116<br>46                                          | 26                | 11                                                                        | 55                 |
| Turbidity                                                                                                                                                                                                                        | 150                                                | 2                 | 41                                                                        | 2                  |
| Colliform in most probable number per milliliter Radioactivity in micro-micro curies per liter Dissolved alpha Solid elpha Dissolved bata Solid obta                                                                             | >7,000.                                            | 0.23              | 7.300                                                                     | 3                  |





Sampling Point Station 102 is located in Section 4, Township 2 South, Range 6 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from a boat landing on the left bank, just downstream from Mossdale Bridge on U. S. Highway 50, about 12 miles south of Stockton and 7 miles northeast of Tracy.

Period of Record September 1952 through December 1959.

water Quality Characteristics Water at the station is predominantly a sodium chloride type, moderately hard to very hard, and not recommended for domestic and some industrial uses. During the summer months the concentration of dissolved solids is often sufficiently high to place the water in class 2 for irrigation. The quality of water at this station is influenced by tidal action, fresh water inflow to the delta, irrigation diversions and return flows, and ground water accretions. Wide seasonal variations in quality are characteristics of the water at Station 102.

Significant Water Quality Changes The 1959 water year was considerably below normal and the quality of water reflected the effects of low flow conditions. During 1959, the maximum values for conductivity and chlorides occurred in August, 1,110 micromhos and 232 ppm, respectively. The conductivity value of 1,110 micromhos is the maximum of record at this station and represents a significant increase over the 1958 maximum of 793 micromhos. Because of conductivity and chlorides the water was class 2 for irrigation from May to October 1959.

| WATER QUALITY RANGES                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                           |                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------|-----------------------------------------|--|
| It-                                                                                                                                                                                                                                                             | Razimum of Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minimum of Record | Hastman   1959                                            | Hinima - 195                            |  |
| Specific conductance (microwhoe at 25°C)                                                                                                                                                                                                                        | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4)               | T-100                                                     | 538                                     |  |
| Temperature in °7                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | w                 | Ro                                                        | 46                                      |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                     | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 A               | 13 f<br>151                                               | 1.0                                     |  |
| plf                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.8               | 5.9                                                       | 7.2                                     |  |
| Mineral constituents in parte per willion Calcium (C.) Calcium (C.) Magnestum (Mg) Sodium (Mg) Fotassium (CO) Carbonate (CO) Carbonate (CO) Sulfate (SO) Sulfate (SO) Sulfate (SO) Hitrate (WO) Floorie (Cf) Hitrate (WO) Floorie (Cf) Botron (D) Lilica (SUcy) | 10 to | 7 2 2 4           | 58<br>25<br>112<br>6 h<br>213<br>215<br>212<br>3 h<br>1 2 | 103<br>75<br>80<br>103<br>75<br>82<br>8 |  |
| Total dissolved solids in parts per million                                                                                                                                                                                                                     | 633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                | 633<br>5h                                                 | 3/2A                                    |  |
| Mardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                     | 2 hr<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                | 2 lub<br>95                                               | 116                                     |  |
| Perbidity                                                                                                                                                                                                                                                       | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0-               | 85                                                        | 0.0                                     |  |
| Coliform in most probable number per milliliter Radioactivity in micro-micro curies per liter Dissolved alpha Solid alpha Dissolved buta Solid bata                                                                                                             | 57, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nas               | ₹,000                                                     | 0 %                                     |  |

WATER QUALITY VARIATIONS



### SAN JOAQUIN RIVER AT GARWOOD BRIDGE (STA. 101)

Sampling Point The station is located in Section 16, Township 1 North, Range 6 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from a boat landing on the left bank, upstream from State Highway 4 bridge and approximately 4 miles west of Stockton.

Period of Record September 1952 through December 1959.

Water Quality Characteristics Water at Station 101 is predominantly sodium chloride in character, moderately hard, class 1 for irrigation and suitable for domestic use. Analyses of samples collected at this station indicate Sacramento River water, which traverses the delta through the many interconnected channels, and water from other streams tributary to the delta, significantly affects the quality of San Joaquin River at Garwood Bridge. Quality of water generally improves at the Garwood Bridge station (averaging about 250 micromhos) when mineral concentrations are compared to the next upstream station at Mossdale Bridge.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |                                    |                                                        |                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|
| It-m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                            | Minimum of Record                  | Masimum - 1952                                         | Hinima - 1959                                                     |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              | 136                                | How                                                    | 117                                                               |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 6                                                          | W                                  | N.                                                     | 16                                                                |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120                                                          | -                                  | 1 6                                                    | h<br>h7                                                           |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 %                                                          |                                    |                                                        | 1.2                                                               |
| Kineral constituents to parts per million Calcium (Ca) Kagnestum (Ng) Sodium (Na) Potasadium (A) Carbonate (CO) Bacarbonate (CO) Carbonate (C | 54<br>22<br>110<br>8<br>101<br>180<br>180<br>5<br>2.1<br>2.1 | 7 A 2 5 9 2 1 2 1 7 8 11 1 4 2 9 9 | hi<br>19<br>01<br>A<br>6<br>5<br>5<br>5<br>7<br>2<br>3 | 19<br>15<br>5 6 7<br>10°<br>29°<br>79<br>0.6<br>0.0<br>0.1<br>6.8 |
| total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 575                                                          | 69                                 | W67                                                    | 299                                                               |
| Percent sodium  lardness as Caco; in parts per million  Total  Somearbonate  Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57<br>227<br>64<br>310                                       | 31<br>0.<br>0.0                    | 57<br>185<br>6h<br>ho                                  | 113<br>5                                                          |
| Coliform in most probable number per milliliter<br>Radioactivity in micro-micro curies per liter<br>Dissolved slpha<br>Solid slpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >7,000                                                       | 2.3                                | >7,000                                                 | 62                                                                |





Sampling Point The Antioch station is located in Section 18, Township 2
North, Range 2 East, Mt. Diablo Base and Meridian. Monthly water samples
were collected from the left bank at old Antioch Water Works pier, Fulton
Shipyard Road, near the northeast city limits of Antioch.

Period of Record April 1951 through December 1959.

water Quality Characteristics Quality of water at Station 28 is affected by sea-water incursion from San Francisco Bay. During the summer and fall months when outflow from the delta is insufficient to repel sea-water incursion, the water is sodium chloride in character, poor in quality, class 3 for irrigation and unsuitable for nearly all domestic and industrial uses. In the winter and spring, when river outflow from the delta increases, the water is sodium bicarbonate in character, excellent in quality, class 1 for irrigation, and within mineral quality requirements for domestic use.

Significant Water Quality Changes During 1959, analyses showed quality of water at the Antioch station was generally poorer from May through December than in previous years of record. In the first four months of 1959, conductivity did not exceed 500 micromhos; however, in May and June it increased to about 1,000 micromhos, and during the remaining six months conductivity was in excess of 1,500 micromhos with a maximum of 6,010 micromhos occurring in July. The high specific conductance of water at Antioch, in 1959, is attributable to the low outflow from the delta. Low outflow resulted from the considerably below normal precipitation over much of the drainage area tributary to the delta.

| WA                                                                                                                                                                                                                                                                  | ATER QUALITY RAN                                                  | GES               |                |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|----------------|----------------|
| It-m                                                                                                                                                                                                                                                                | Maximum of Record                                                 | Rinimum of Record | Hasimum - 1917 | Hiniman - 1949 |
| Specific conductance (micromhoe at 25°C)                                                                                                                                                                                                                            | 6 +                                                               |                   | 4 (1) 8        |                |
| Pemperature in °F                                                                                                                                                                                                                                                   | 77                                                                | 42                | e e            | -              |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                         | 18                                                                | 7                 | 97             | 24             |
| all .                                                                                                                                                                                                                                                               | 300                                                               | e_A               |                |                |
| Hineral constituents in parts per million Calctime (cal Calctime (cal Kagnestime (Mg) Souther (Mg) Potsardium (t) Carbonate (OT) Bitosrbonate (ROD) Childred (CT) Hiterate (MD) Fischical (CT) Fischical (CT) Fischical (CT) Fischical (P) Beron (S) Silice (Slocy) | 61<br>118<br>1<br>77<br>117<br>208<br>1,09<br>6<br>1<br>1 1<br>23 | P 7               | 76<br>66       | 16             |
| otal dissolved solids in parts per million                                                                                                                                                                                                                          | 3,600                                                             |                   | 1 day          | 1/4            |
| arcent sodium                                                                                                                                                                                                                                                       | 77                                                                | 11                | 17             |                |
| ardness as CaCO3 in parts per million<br>Total<br>Moncarbonsts                                                                                                                                                                                                      | 643                                                               |                   | + 70<br>59h    |                |
| turbidity                                                                                                                                                                                                                                                           | 180                                                               |                   | el .           |                |
| oliform in most probable number per milliliter                                                                                                                                                                                                                      | 24,000                                                            | 10-4.1            | 1100           | 87             |
| adioactivity in micro-micro curies per liter<br>Dissolved slpha<br>Solid slpha<br>Dissolved beta<br>Solid beta                                                                                                                                                      | .64<br>1.46<br>18.15<br>16.35                                     | 12                | 6.             |                |





### STOCKTON SHIP CHANNEL ON RINDGE ISLAND (STA. 100)

Sampling Point Stockton Ship Channel station is located in Section 27, Township 2 North, Range 5 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from a boat landing on the right bank of the ship channel, at the southeast corner of Rindge Tract, and near the junction of Fourteen Mile Slough.

Period of Record September 1952 through December 1959.

Water Quality Characteristics Antecedent data show the water to be predominantly sodium chloride in character during the winter months, changing to sodium bicarbonate during the summer months. The water is normally well within the limits for class 1 irrigation and domestic uses, and is in the moderately hard range.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN                                     | GES                                  |                                                |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record                                   | Minimum of Record                    | Maximum - 1959                                 | Hinimus - 1959                                 |
| Specific conductance (micromnos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                   | 1 =                                  | 810                                            | =0                                             |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84                                                  | 4.5                                  | Pa .                                           | 10                                             |
| Dissolved oxygen in parts per million<br>Parcent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 139                                                 | 34                                   | 12 5                                           | 73                                             |
| pll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.4                                                 | x.00                                 | 8.1                                            | 7.2                                            |
| Himman constituents in parts per million Calcium (Calcium | 27<br>0.6<br>0.8<br>0.8<br>1.7<br>1.4<br>v.6<br>2.3 | 2<br>12<br>-2<br>42<br>7<br>10<br>-4 | 16<br>1<br>1 A 6<br>0 H<br>15P<br>6 O 2<br>0 3 | 26<br>13<br>3<br>3 h<br>1 3<br>20<br>46<br>1 1 |
| total dissolved solide in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 473                                                 | 83                                   | 461                                            | 903                                            |
| wroant sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57                                                  | 1.0                                  | 57                                             | 80                                             |
| ardness as CaCO3 in parts per million<br>Total<br>Honcarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 210<br>124                                          | 36<br>0.0                            | 182<br>64                                      | 109                                            |
| Partidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gr                                                  | 1                                    | 85                                             | 1                                              |
| Coliform in most probable number per milliliter Radioactivity in micro-micro curies per liter Dissolved sipha Solid slpha Missolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >7,000_                                             | 0.62                                 | >7,000                                         | 2 3                                            |





### OLD RIVER NEAR TRACY (STA. 103)

Sampling Point Station 103 is located in Section 6, Township 2 South, Range 5 East, Mt. Diablo Base and Meridian. Samples were collected from the trash rack of a pump intake on the left bank, 500 feet from Lammers Road about 5.0 miles northwest of Tracy.

Period of Record October 1952 through December 1959.

Water Quality Characteristics Water at Old River near Tracy is predominantl a sodium chloride type, frequently class 2 for irrigation (usually during the summer months), moderately hard to very hard, and not recommended for domestic and some industrial uses.

Significant Water Quality Changes The 1959 maximum values for conductivity and chlorides (1,180 micromhos and 234 ppm, respectively) established new maximums for the period of record and represent a significant increase of values found at this station in prior years of record. These high values are attributed to the low flow conditions existing in streams tributary to this portion of the delta.

| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TER QUALITY RAN                                            | GES                                 |                                                                   |                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kazimum of Record                                          | Rinimm of Record                    | Haclmin - 1959                                                    | Hiniman - 1959                                                        |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1238                                                       | 1.35                                | 1,150                                                             | 6017                                                                  |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81                                                         | 45                                  | Bo                                                                | ~                                                                     |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                                         | 1 5 S                               | 16 0<br>170                                                       | 6 5<br>71                                                             |
| pil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A s                                                        | 7                                   | 8.1                                                               | 7.2                                                                   |
| Mineral conetionnte in parte per million Calcium (c.) Adarestum (Mg) Sodium (Mg) Potantium (T) Carbonate (OD) Billionness (ROD) Billionness (ROD) Chloride (Cf) Hitrate (NO) Fluoride (Cf) Hitrate (NO) Fluoride (D) Billion (B) Hitrate (NO) Fluoride (B) Hitrate (NO) Fluoride (D) Hitrate (NO) H | 67<br>172<br>184<br>7.2<br>261<br>271<br>81<br>234<br>0.65 | 9 9 3 8 19 1 19 1 19 1 17 1 17 1 11 | 67<br>32<br>134<br>7 9<br>6 -<br>215<br>91<br>234<br>234<br>2 0 5 | 53<br>23<br>71<br>5 a<br>0 0<br>118<br>74<br>177<br>0 3<br>0.0<br>0.2 |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 673                                                        | 81                                  | 673                                                               | 376                                                                   |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.6                                                        | 37                                  | 5.6                                                               | 49                                                                    |
| Bardness as CaCO <sub>3</sub> in parte per million<br>Total<br>Noncarbonste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 759<br>548                                                 | 36<br>3                             | 298<br>123                                                        | 1 a 7<br>b 9                                                          |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110                                                        | 0.0                                 | 11                                                                | 0.7                                                                   |
| Coliform in most probable number per milliliter Radioactivity in micro-micro curies per liter Dissolved alpha Edissolved beta Solld beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 - 1 - 1                                                  | Las                                 | 100                                                               | 2 1                                                                   |





# OLD RIVER AT CLIFTON COURT FERRY (STA. 104)

Sampling Point Clifton Court Ferry station is located in Section 20, Township 1 South, Range 4 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the ferry on the left bank, about 0.3 mile downstream from a tide stage recorder, 6.0 miles southeast of Byron, 10 miles northwest of Tracy.

Period of Record September 1952 through December 1959.

<u>Water Quality Characteristics</u> Antecedent data reveal the water to be predominantly sodium chloride in character, slightly hard to very hard, and occasionally class 2 for irrigation due to high conductivity and chloride concentrations associated with sea-water incursion and poor quality river inflows.

Significant Water Quality Changes During 1959, the maximum values for conductivity and chloride were 1,040 micromhos and 198 ppm, respectively. As at other delta stations maximums of record occurred, representing a significant increase over previously reported values. Low flow conditions in streams tributary to the delta probably caused these maximum values.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN                                                 | GES                                     |                                   |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|-----------------------------------|--------------------------------------------------|
| It-m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                               | Riniaum of Record                       | Hastman - 189                     | Hinimum : .95                                    |
| Specific comductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                             | 180                                     | 1 10                              |                                                  |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.                                                             | 41.                                     | 100                               | -                                                |
| Dissolved oxygen in parts per million<br>Percent naturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 1                                                            | 161                                     | 14.7                              | A)                                               |
| Ме                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XI                                                              | 13                                      | 1                                 |                                                  |
| Mineral constituents in parts per million Calcium (c. Alcium (c. A | 12<br>21<br>377<br>4<br>107<br>702<br>104<br>1 7<br>1 7<br>1 36 | 1 2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 24<br>27<br>197<br>19<br>19<br>18 | 27 6 2 69 10 11 11 11 11 11 11 11 11 11 11 11 11 |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.90                                                            | 89                                      | 590                               | 16.6                                             |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67                                                              | 35                                      | 67                                | No.                                              |
| Hardness as CaCO3 in parts per million<br>Total<br>Honcarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 239<br>87                                                       | 38<br>1                                 | 219<br>77                         | 17                                               |
| Purbld1ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120                                                             | 850                                     | As,                               | 110                                              |
| Coliform in most probable number per milliliter Radioactivity in micro-micro curies per liter Dissolved alpha Solid alpha Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | >7, 900.                                                        | .2                                      | s7,000                            | 2                                                |





### OLD RIVER AT ORWOOD BRIDGE (STA. 108)

Sampling Point Station 108 is located in Section 17, Township 1 North, Range 4 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from a boat dock on the right bank, at Atchison, Topeka and Santa Fe Railroad bridge and about 6.0 miles northeast of Byron.

Period of Record September 1952 through December 1959.

water Quality Characteristics Past analyses show the water to be sodium chloride in character during the winter and summer months and a complex sodium-calcium-magnesium bicarbonate character during the spring and fall months. Samples of water from Station 108, with one exception, usually met class 1 irrigation water requirements. Old River water also met mineral quality standards for domestic use and ranged from slightly hard to moderately hard.

<u>Significant Water Quality Changes</u> During August 1959 conductivity and chlorides were 1,050 micromhos and 250 ppm, respectively.

These values, which are new maximums for the period of record, changed the classification of the water for irrigation use from class 1 to class 2. High quality Sacramento River water, drawn across the delta by the Tracy Pumping Plant in conjunction with increased releases of stored water from Shasta and Folsom reservoirs, partially alleviated the sea-water incursion problem believed responsible for these high values.

| WA                                                                                                                                       | TER QUALITY RAN                                                | GES                            |                |                |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|----------------|----------------|
| Item                                                                                                                                     | Haximum of Record                                              | Minimum of Record              | Hasimum = 1959 | Hisiana - 1993 |
| Specific conductance (micromhoe at 25°C)                                                                                                 | 1,000                                                          | 4.6                            | 1.00           | m              |
| Temperature in OF                                                                                                                        | 79                                                             | to de                          | 7.0            | 49             |
| Diagolved oxygen in parts per million<br>Percent saturation                                                                              | 10.6<br>91                                                     | 6 P                            | 18 h           |                |
| pill                                                                                                                                     | 8.1                                                            | 7                              | . 13           |                |
| # # # # # # # # # # # # # # # # # # #                                                                                                    | 55<br>27<br>153<br>0.3<br>0.0<br>130<br>250<br>13<br>0.4<br>26 | 9 3<br>3 2<br>1 3<br>42<br>7 7 | 18 153 h       | ,              |
| otal dissolved solids in parts per million                                                                                               | 590                                                            | Par.                           | 10"            | 164            |
| ercent sodius                                                                                                                            | 68                                                             | 150                            | 400            |                |
| iardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Honourbonsts                                                              | 164<br>244                                                     | 36                             | 7.0            |                |
| Pertidity                                                                                                                                | 110                                                            | 7                              | 21             |                |
| Coliform in most probable number per milliliter Radioactivity in micro-micro ownies per liter Dissolved alpha Sidid alpha Elmanlved beta | >7,000                                                         | .62                            | -0-10-         | 14             |





### OLD RIVER AT MANDEVILLE ISLAND (STA. 112)

Sampling Point Station 112 is located in Section 6, Township 2 North, Range 4 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at the northwest side of Mandeville Island, approximately 1.0 mile from the mouth of Old River, and about 5.0 miles northwest of Mandeville School, along the levee road.

Period of Record December 1954 through December 1959.

Water Quality Characteristics Water at Station 112 is a complex sodium-calcium-magnesium bicarbonate-chloride type, class 1 for irrigation, slightly to moderately hard and suitable for domestic and some industrial uses. The Old River channel is the main carrier of high quality Sacramento River water while it traverses the delta en route to the Tracy Pumping Plant.

<u>Significant Water Quality Changes</u> During September 1959, conductivity and chloride values of 801 micromhos and 145 ppm, respectively, established new maximums of record.

| WATER QUALITY RANGES                                                                             |                   |                   |              |                |  |
|--------------------------------------------------------------------------------------------------|-------------------|-------------------|--------------|----------------|--|
| Item                                                                                             | Maximum of Record | Minimum of Record | Masimum LV59 | Hindeway - 1 m |  |
| Specific conductance (micromhos at 25°C)                                                         | 8 1               | 3"                | 80           | 4.0            |  |
| Peeperature in °F                                                                                | 79                | (A)               | -            | h.             |  |
| Memolyed oxygen in parts per million                                                             |                   |                   |              |                |  |
| Percent saturation                                                                               | 97                | 67                | 200          | 62             |  |
| Ne                                                                                               | 8                 | 7                 | 7.30         | 7/8            |  |
| tineral constituents in parts per million                                                        |                   |                   |              |                |  |
| Calcium (Ca)                                                                                     | 19                | 1,9               | 38           | 6.5            |  |
| Hagnerium (Ng                                                                                    | 12                | in.               | 100          | 18             |  |
| Sodium (Na)<br>Potansium (K                                                                      |                   | 1.2               | 9.4          |                |  |
| Carbonate (COn                                                                                   | 9.4               | 1.2               | 9.           | 1 1            |  |
| Bicarbonate (HCO <sub>3</sub> )                                                                  | 194               | 42                | 194          | 72             |  |
| Sulfate (SOL)                                                                                    | 68                | 1                 | 13           | 1.0            |  |
| Chloride (CI)                                                                                    | 195               | (4                | 145          | 20             |  |
| Witrate (NO)                                                                                     | 8.1               | 2.3               | 2.6          | - 6            |  |
| Fluoride (F)                                                                                     | 2.                |                   |              |                |  |
| Boron (B)                                                                                        | 0.50              |                   | - 4          | 2              |  |
| Silica (510 <sub>2</sub> )                                                                       | 55                | A)                | 15           | 16             |  |
| btal dissolved solids in parts per million                                                       | 457               | 8h                | 457          | 132            |  |
| ercent sodium                                                                                    | 62                | 31                | 62           | 16             |  |
| ardness as CaCO3 in parts per million                                                            | 1                 |                   |              |                |  |
| Total                                                                                            | 217               | No.               | 172          | 66             |  |
| Noncarbonate                                                                                     | 129               | 0.0               | 71           | 1              |  |
| turbidity                                                                                        | 50                | 3                 | 50           | 3              |  |
| oliform in most probable number per milliliter                                                   | >7,000            | 1.3               | 7,500        | 2.3            |  |
| adicactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid slpha<br>Dissolved beta |                   |                   |              |                |  |

#### WATER QUALITY VARIATIONS



# GRANT LINE CANAL AT TRACY ROAD BRIDGE (STA. 103a)

Sampling Point The Grant Line Canal station is located in Section 30, Township 1 South, Range 5 East, Mt. Diablo Base and Meridian. The monthly water samples were collected from a boat dock at Tracy Road Bridge approximately 5 miles north of Tracy.

Period of Record July 1958 through December 1959.

<u>Water Quality Characteristics</u> Past analyses show the water to be sodium chloride in character, moderately hard to very hard, and class 1 to 2 for irrigation.

Significant Water Quality Changes The maximum 1959 values for conductivity and chlorides (September sample) were 1,130 micromhos and 230 ppm, respectively, representing a significant increase over the 1958 values for these characteristics. Even though these values are new maximums of record, because of the short period of record, it is difficult to ascertain if significant changes occurred.

| W                                                                                                 | ATER QUALITY RAN  | GES              |                |                |
|---------------------------------------------------------------------------------------------------|-------------------|------------------|----------------|----------------|
| Item                                                                                              | Maximum of Record | Minimm of Record | Harlmon - 1959 | History - 1955 |
| Specific conductance (micromhos at 25°C)                                                          | 1,110             | 332              | 1.130          | 5.36           |
| Temperature in OF                                                                                 | - Bo              | 47               | Rin            | 47             |
| Dissolved oxygen in parts per million                                                             | 13 3              | 4.9              | 13.3           | 7.5            |
| Percent saturation                                                                                | 140               | 59               | 140            | 84             |
| Но                                                                                                | 8.9               | 7.9              | 8.9            | 7.9            |
| fineral constituents in parts per million                                                         |                   |                  |                |                |
| Calcium (Ca)                                                                                      | 64                | 18               | 64             | 27             |
| Hagmonium (Hg)                                                                                    | 30                | 7   5            | 27             | 13             |
| Sodium (Na)<br>Potansium (E)                                                                      | 139               | 39               | 139            | 59             |
| Carbonats (CO <sub>3</sub> )                                                                      | 12                | 1.4              |                | 2.5            |
| Bicarbonats (ROD)                                                                                 | 205               | 0.0              | 12             | 0.0            |
| Sulfate (SOL)                                                                                     | 77                | 13               | 77             | 104            |
| Chloride (CI)                                                                                     | 230               | 5.6              | 230            | RY             |
| Mitrate (NO)                                                                                      | 9.7               | 0.2              | 2.7            | 3.2            |
| Fluorida (F)                                                                                      | 1 .4              | 0.0              | 0.3            | 1.0            |
| Boron (B)                                                                                         | 0.4               | 0.0              | 0.3            | 9.1            |
| 3111ca (3102)                                                                                     | 24                | 0.2              | 29             | 0.1            |
|                                                                                                   | -                 |                  |                | - /            |
| otal dissolved solids in parts per million                                                        | 658               | 198              | 658            | 306            |
| Percent sodium                                                                                    | N.                | 49               | 54             | 51             |
| lardness as CaCO3 in parts per million                                                            |                   |                  |                |                |
| Total                                                                                             | 272               | 76               | 272            | 121            |
| Noncarbonate                                                                                      | 104               | 51               | 175            | 36             |
| Parbidity                                                                                         | 75                | (1)              | la:            | -              |
| coliform in most probable number per milliliter                                                   | 3ee 1959          | See 1959         | 7 000          | 19             |
| tadicactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta |                   |                  |                |                |
| Solid beta                                                                                        |                   |                  |                |                |





### DELTA-MENDOTA CANAL NEAR TRACY (STA. 93)

Sampling Point Station 93 is located in Section 30, Township 1 South, Range 4 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from left bank downstream from Byron-Bethany Road crossing, about 1 mile from Tracy Pumping Plant, about 10 miles northwest of Tracy.

Period of Record July 1952 through December 1959.

Water Quality Characteristics The water at Station 93 is predominantly sodium chloride in character, changing to sodium bicarbonate in the late spring due to increased runoff, and then reverting back again to sodium chloride. The canal water contains moderate amounts of dissolved solids and is usually class 1 for irrigation. In August 1959, a high chloride concentration and percent sodium placed the water in class 2. The hardness is slightly hard to moderately hard, limiting some domestic and industrial water uses.

Significant Water Quality Changes During 1959, the maximum values for conductivity and chloride were 886 micromhos and 208 ppm, respectively. The 208 ppm chloride concentration is a maximum of record and placed the water in class 2 for irrigation use.

| W                                              | ATER QUALITY RAN  | GES               |                |             |
|------------------------------------------------|-------------------|-------------------|----------------|-------------|
| It-m                                           | Maximum of Record | Minimum of Record | Maximum - 1959 | Rinimm - 19 |
| Specific conductance (micromhos at 25°C)       | 1/191             | W                 | N/w            | pry         |
| Temperature in OF                              | An                | 40                | 79             | 1           |
| Diasolved oxygen in parts per million          | 111               | 6 P               | 13.1           | 6.8         |
| Percent saturation                             | 193               | 65                | 123            | TR          |
| M                                              | 8.7               | 67                | 8.1            | 7.3         |
| fineral constituents in parts per million      |                   |                   |                |             |
| Calcium (Ca)                                   | 5%                | 8.8               | 24             | 5.7         |
| Magnonlum (Mg)                                 | 26                | 2.9               | 15             | 9.6         |
| Sodium (Na)                                    | 123               | 13                | 1.2/1          | 27          |
| Potassium (K)                                  | 5.2               | 1.0               | 4.6            | 1 9         |
| Carbonate (CO3)                                | 8.0               | 0.0               | 3 10           | 0           |
| Bicarbonate (RCO3)                             | 186               | 38                | 1500           | 81          |
| Sulfate (SOL)                                  | 109               | 5.8               | 36             | 34          |
| Chloride (CI)                                  | 208               | 17                | 208            | 31          |
| Witrate (NO3)                                  | 5.7               | 0.0               | 8              | 0.8         |
| Fluoride (F)                                   | 71.5              | 2.0               | 0.2            | 0.1         |
| Boros (B)                                      | 0.90              | 0.0               | 0.5            | 0 1         |
| Silica (SiO <sub>2</sub> )                     | 28                | 10                | 18             | 12          |
| Total dissolved solids in parts per million    | 571               | 93                | h99            | 161         |
| Percent sodium                                 | 66                | 38                | 66             | 42          |
| lardness as CaCO; in parts per million         |                   |                   |                |             |
| Total                                          | 234               | 41                | 1.93           | 82          |
| Soncarbonate                                   | 122               | 2                 | 73             | 11          |
| Purtidity                                      | 150               | 1                 | 140            | 1           |
| blifore in most probable number per milliliter | >7 , (i/i)*       | 0.23              | 7,000          | 0.23        |
| ladioactivity in micro-micro curies per liter  |                   |                   |                |             |
| Discolved alpha                                | .27               |                   | 0.27           |             |
| Solid alpha                                    | 2.88              |                   | 0.09           |             |
| Dissolved beta                                 | 12.39             |                   | 7.58           |             |
| Solid beta                                     | 7.24              |                   | 1.61           |             |

### WATER QUALITY VARIATIONS



#### DELTA-MENDOTA CANAL NEAR MENDOTA (STA. 92)

Sampling Point The Mendota station is located in Section 19, Township 13

South, Range 15 East, Mt. Diablo Base and Meridian. Monthly grab

samples were collected from the right bank, about 1 mile upstream from
the gates to Mendota Pool and about 2 miles north of Mendota.

Period of Record July 1952 through December 1959.

Water Quality Characteristics Past analyses show the water to be predominantly sodium chloride in character with moderate concentrations of dissolved solids, moderately hard to very hard, and normally class 1 for irrigation during the pumping season. The water, during August, is frequently class 2 for irrigation because of conductivity, chlorides, and percent sodium, but is within class 1 requirements throughout the remainder of the year. A comparison of the quality of water at Tracy station with that at Station 92 cannot effectively be made since sampling prior to September 1959 did not give consideration to the time of travel of the water in the canal.

| W                                                 | ATER QUALITY RAN  | GES               |                |               |
|---------------------------------------------------|-------------------|-------------------|----------------|---------------|
| Itm.                                              | Maximum of Record | Minimum of Record | Maximum - 1919 | Minimum - 194 |
| Specific conductance (microwhos at 25°C)          | 1,630             | 61 5              | 1,090          | 457           |
| Desperature in OF                                 | 81                | 43                |                |               |
|                                                   | 97                | *1                | 76             | 4/1           |
| Resolved oxygen in parts per million              | 11.8              | 0.4               | 10.5           | 7 1           |
| Percent saturation                                | 159               | 17                | aR .           | 77            |
| A                                                 | 8.5               | 7.0               | 7.8            | 7 1           |
| ineral constituents in parts per million          |                   |                   |                |               |
| Calcium (Ca)                                      | 67                | 13                | b1             | 21            |
| Hagnesium (Hg)                                    | 35                | h.1               | 26             | 18            |
| Sodium (Na)                                       | 5.35              | p 5               | 175            | 55            |
| Potaseius (K)                                     | 5.2               | 1.5               | 4.6            | 3.6           |
| Carbonate (CO3)                                   |                   | 0.00              | 0 0            | 0.79          |
| Bicarbonate (ROO3)                                | 249               | 26                | 152            | - BB          |
| Sulfate (SO <sub>1</sub> )<br>Chloride (CI)       | 154               | 25                | 67             | NO            |
| Witrate (WO1)                                     | 245               | 1.8               | 245            | 70            |
| Fluoride (F)                                      | 8.0               | 0.6               | 1.4            | 0.8           |
| Boron (B)                                         | 0.4               | 0.0               | 0.2            | 111           |
|                                                   | 0.80              | 0.0               | 0.6            | 0.1           |
| Silica (3102)                                     | 46                | 12                | 18             | 13            |
| otal dissolved solids in parts per million        | 920               | 35                | 573            | 294           |
| ercent sodium                                     | 67                | 30                | 67             | 49            |
| ardness as CaCO <sub>2</sub> in parts per million |                   |                   |                |               |
| Total                                             | 311               | 0.1               | 010            |               |
| Honcarbonate                                      | 186               | 21                | 210<br>88      | 11%           |
|                                                   |                   | 0                 | 00             |               |
| artddi ty                                         | 180               | 0,0               | 85             | 3.0           |
| oliform in most probable number per milliliter    | >7,000.           | 0.045             | 620            | .06           |
| adioactivity in micro-micro curies per liter      |                   |                   |                |               |
| Dissolved alpha                                   | 0.50              | 0.00              | 0.50           | 9/100         |
| Solid alpha                                       | 1.6               | .00               | 0.27           | -5,53         |
| Dissolved beta                                    | 22.61             | 0.00              | 12.05          | 2.00          |
| Solid beta                                        | 8.1               | - IT:00           | 11.28          | 0.00          |





#### ITALIAN SLOUGH NEAR MOUTH (STA. 106)

Sampling Point Station 106 is located in Section 7, Township 1 South, Range 4 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at a pump house on the northwestern side of Clifton Court Tract, about 3.0 miles southeast of Byron.

Period of Record September 1952 through December 1959.

Water Quality Characteristics Italian Slough water is predominantly sodium chloride in character and slightly to very hard. The water is occasionally class 2 for irrigation due to high conductivity, chloride and boron. Italian Slough, one of several dead-end sloughs in the southwestern delta, is used as an intake channel by the Byron-Bethany Irrigation District to divert water during the irrigation season from Old River to a portion of the delta uplands area. Due to the proximity of this station to Old River, the quality of water in the slough is largely dependent upon the quality of water in Old River.

Significant Water Quality Changes In Italian Slough the August 1959 values for conductivity and chloride were 1,000 micromhos and 232 ppm, respectively. These values establish new maximums of record for conductivit and chloride concentrations in the slough. These maximums occurred at the same time that the 1959 maximums of 1,050 micromhos conductivity and 250 ppm chlorides occurred at Station 108 on Old River. They reflect the influence of Old River on the quality at Station 106.

| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATER QUALITY RAN                                                 | GES                                  |                                                      |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|-------------------|
| Itm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum of Record                                                | Minimum of Record                    | Maelman - 1 i                                        | Hinimm - 1F       |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 (88)                                                           | (4)                                  | 1 1911                                               | 20 0              |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84                                                               | As .                                 | - 4                                                  | 50                |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101                                                              | 62                                   | 3 (3.1)<br>(3.1)                                     | , č. )            |
| Mq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.0                                                              | 4.8                                  | 1.5                                                  | 19                |
| Witheral constituents in parts per million Calcium (Calcium (Calci | 51<br>72<br>1 kg<br>k 6<br>1'1<br>232<br>1 g<br>1 g<br>1 1<br>25 | 9 1<br>13<br>2<br>39<br>1<br>1.<br>2 | 1<br>1 k8<br>6 6<br>126<br>2 p2<br>1 1<br>2 1<br>1 1 | 1 1 1 2 h 2 h 2 h |
| total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 571<br>68                                                        | 88<br>36                             | 571<br>68                                            | 157               |
| Mardness as CaOO3 in parts per million<br>Total<br>Honocarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 228<br>135                                                       | 38<br>3                              | 228<br>135                                           | 77 11             |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7.000.                                                          | 0.62                                 | >7, 100                                              | 62                |
| Macionetivity in micro-micro curies per liter Dissolved alpha Dissolved beta Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27,000.                                                          | 0.62                                 | >1, 10                                               | 62                |





# INDIAN SLOUGH NEAR BRENTWOOD (STA. 107)

Sampling Point Station 107 is located in Section 22, Township 1 North,
Range 3 East, Mt. Diablo Base and Meridian. Monthly grab samples were
collected from the East Contra Costa Irrigation District canal at Pump No. 1
on Bixler Road, at the head of Indian Slough, approximately 3.0 miles north
of Byron.

Period of Record September 1952 through December 1959.

<u>Water Quality Characteristics</u> Past analyses show the water to be predominantly sodium bicarbonate during the winter months and sodium chloride in the summer. The water ranges from excellent to poor in quality, moderately hard to very hard, and is frequently class 2 or 3 for irrigation during the winter months due to high conductivity, chlorides and boron.

Significant Water Quality Changes Early in 1959, when the irrigation pumps were not operating, conductivity increased to 1,530 micromhos, chlorides to 235 ppm and boron to 4.9 ppm. These values reflect the mineral build-up caused by poor quality accretions from ground water into the deadend slough. Operation of irrigation pumps on the slough resulted in water from Old River flowing through the slough with a subsequent improvement in the quality of water as reflected by a decrease to 344 micromhos, 38 ppm chloride and 0.3 ppm boron. However, in August, due to the low flow conditions in streams tributary to the delta, water quality was again impaired and conductivity increased to 1,300 micromhos, chlorides to 312 ppm and boron 0.4 ppm. In the latter part of the summer, water releases from Shasta and Folsom reservoirs were increased to dilute the poor quality water in the delta. As a result, by October conductivity dropped to 705 micromhos and chlorides to 122 ppm. In December, when all irrigation pumping had ceased, conductivity again increased to 1,420 micromhos, chlorides to 208 ppm, and boron to 2.7 ppm.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN                                         | GES               |                                          |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------|------------------------------------------|---------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                       | Minimum of Record | Naslein - 1912                           | Rinima - 1951 |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,890                                                   | 184               | 1.597                                    | 166           |
| Comparature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81                                                      | 66                | 4.                                       | N)            |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16<br>69                                                | 5 h<br>62         | 41                                       | 4.1           |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 %                                                     | 6.0               | 0                                        | 1.0           |
| **Ribaral constituents in parts per million Calcium (Calcium (Calc | 77<br>24 h<br>6 2<br>17<br>18<br>190<br>1 h<br>20<br>20 | 6 h T 18 h        | % 7 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | V-1           |
| otal dissolved solide in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,940                                                   | 112               | R1.2                                     | 21 1          |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69                                                      | 38                | (9.1                                     | 4             |
| Bardness se CaCO3 in parts per million<br>Total<br>Honcarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 570<br>275                                              | NS 5              | 10 M                                     | 4             |
| Parbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160                                                     | 0.0               |                                          |               |
| coliform in most probable number per milliliter<br>dedicactivity in micro-micro curies per liter<br>Dissolved slphs<br>Solid slphs<br>Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,000                                                   | 23                | 12.                                      | -             |





### ROCK SLOUGH NEAR KNIGHTSEN (STA. 109)

Sampling Point Station 109 is located in Section 34, Township 2 North,
Range 3 East, Mt. Diablo Base and Meridian. Monthly grab samples were
collected from the Tule Lane bridge 300 feet south of Contra Costa
Canal intake gates, and near the head of Rock Slough about 2 miles northeast of Knightsen.

Period of Record September 1952 through December 1959.

water Quality Characteristics Rock Slough water is generally a chloride type with no predominant cation except during the irrigation season when it becomes sodium chloride. The water is generally within limits of class 1 irrigation water, suitable for domestic use from a mineral standpoint, and slightly hard to moderately hard. Significant seasonal variations in quality are noted at this station. These variations reflect the changing quality of Old River water and are probably attributable to the effects of accretions from ground water, surface drainage, and sea-water intrusion.

Significant Water Quality Changes In August 1959 maximum values for conductivity and chlorides, 1,190 micromhos and 295 ppm, respectively, established new maximums of record.

|  | VIIIV |  |
|--|-------|--|
|  |       |  |

| WATER QUALITY HANGES                                        |                   |                   |              |            |
|-------------------------------------------------------------|-------------------|-------------------|--------------|------------|
| Item                                                        | Hazimun of Record | History of Record | Harteun 10 1 | Stitem LEG |
| Specific conductance (micromhos at 25°C)                    | (+ (×             |                   | 1 1          | -          |
| Comperature in OF                                           |                   | 16.               | -            | 140        |
| Diagolved oxygen in parts per million<br>Percent seturation | 573               | 100               | 20           | 7          |
| He                                                          |                   | 108               | * 1          | 1          |
| ineral constituents in parts per million                    |                   |                   |              |            |
| Calcium (Ca)                                                | -                 | 1.4               | 74           |            |
| Magnesium (Mg)                                              |                   | 2 4               | 111          | 2.4        |
| Sodium (Na)                                                 | 176               | 17.               | 17           | 100        |
| Potassium (X)                                               | 0.4               | 10                | 34-          | 100        |
| Carbonate (CO3)                                             |                   |                   |              |            |
| Bicarbonate (RCO3)                                          | N/                |                   | 27           |            |
| Sulfata (SO <sub>1</sub> )<br>Chloride (CI)                 | %6<br>25.9        | 15                | .0           | 2          |
| Nitrate (NO1)                                               | 5.5               |                   | 25.9         |            |
| Fluoride (F)                                                | 1 11              | 32                | 1.5          | 1 17       |
| Boron (B)                                                   | Po                |                   | 55           | -          |
| Silioa (SiO <sub>2</sub> )                                  | 2.                | LA                |              | - 3        |
| total dissolved solids in parts per million                 | 684               | Rrs.              | 685          | 14         |
| ercent sodium                                               | 69                | 10                | 10           |            |
| ardness as CaCO in parts per million                        |                   |                   |              |            |
| Total                                                       | 265               | 100               | 119          | -          |
| Honcarbonate                                                | 115               |                   |              |            |
| arbidity                                                    | 100               | - (               | 70           | ,          |
| coliform in most probable number per milliliter             | >7_900            | 62                | >7           | 2.41       |
| ladioactivity in micro-micro curies per liter               |                   |                   |              |            |
| Dissolved alpha                                             | 1.23              |                   |              |            |
| Solid alpha                                                 | 1.57              | 1,0,000           | 8.04         |            |
| Dissolved beta                                              | 12.5              | 1.00              | 1 6A         |            |
| Solid beta                                                  | 3.63              |                   | - 3          |            |

#### WATER QUALITY VARIATIONS



Cosumnes River Basin. The Cosumnes River watershed lies in the central portion of the Central Valley Region. The basin contains approximately 537 square miles, all of which are classified as mountains and foothills. It is bounded by the drainage divide of the Sierra Nevada Range on the east, by the American River drainage on the north, and by the Mokelumne River drainage on the south. The Cosumnes River flows into the Mokelumne River near Thornton. The Cosumnes River at Michigan Bar has a total annual flow of approximately 374,000 acre-feet.

Prominent uses of surface water in the basin include developments devoted to recreation, irrigation, and fish and wildlife propagation and preservation. The basin's natural resources are used primarily for recreational activities such as hunting, fishing, boating, swimming, and picnicking.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed:

| Monitoring Station             | Station Discussion |
|--------------------------------|--------------------|
| Cosumnes River at Michigan Bar | 352                |
| Cosumnes River at McConnell    | 354                |



#### COSUMNES RIVER AT MICHIGAN BAR (STA. 94)

Sampling Point Michigan Bar station is located in Section 36, Township 8 North, Range 8 East, Mt. Diablo Base and Meridian. The monthly water samples were collected at mid-channel from the county road bridge, at the USGS stream gaging station, 5.5 miles southwest of Latrobe and about 12 miles downstream from the confluence of North and Middle Forks.

Period of Record July 1952 through December 1959.

<u>Water Quality Characteristics</u> Past analyses of samples of this water show it to be calcium bicarbonate in character, soft, of excellent mineral quality, and suitable for all beneficial uses.

| WATER | CHALLTY | DANCER |
|-------|---------|--------|

| Item                                                                                              | Harisson of Record | Rinisms of Record | Barimon = 1959 | Rintem - 175 |
|---------------------------------------------------------------------------------------------------|--------------------|-------------------|----------------|--------------|
| Specific conductance (micromhos at 25°C)                                                          | 139                | 42.2              | 193            | 59 h         |
| Temperature in OF                                                                                 | An.                | Ng Ng             | Re-            | 84           |
| Dissolved daygum in parts per million<br>Percent saturation                                       | 19 9               | 6 3               | 199            | 7 7          |
| pil                                                                                               | 8.4                | 4.0               | 8 1            | 7.3          |
| Mineral constituents in parts per million                                                         |                    |                   |                |              |
| Calcium (Ca)                                                                                      | 9.6                | 4.2               | 8 1            | 7.9          |
| Hagnosium (Hg)                                                                                    | 6 3                | 10.3              | 9 9            | 1            |
| Sodim (Na)                                                                                        | 5.6                | 1.8               | 5 1            | 2.3          |
| Potassium (X)                                                                                     | 1:8                | 1 5               | 1.6            | 0.5          |
| Carbonate (001)                                                                                   | 3                  | 2                 | 2              |              |
| Bioarbonate (BODy)                                                                                | 7                  | 36                | 99             | 97           |
| Sulfate (SO.)                                                                                     | 6.7                | - 6               | 3.0            | 1            |
| Chloride (CI)                                                                                     | 5.2                |                   | 5.2            | 1.1          |
| Hitrate (NO2)                                                                                     | 1.2                |                   | 1 2            | 1.1          |
| Fluoride (F)                                                                                      | 1.0                | -0-2              | 1.2            | 0.0          |
| Boron (B)                                                                                         |                    | .0.0              |                | 0.0          |
|                                                                                                   | 0.25               |                   |                |              |
| 511ioa (510g)                                                                                     | 81                 | 16                | 17             | - 0          |
| Total dissolved solids in parts per million                                                       | QP.                | и                 | 40.            |              |
| Percent sodius                                                                                    | 27                 | 14                | 23             | 1            |
| Marchesa as CaCO; in parts per million                                                            |                    |                   |                |              |
| Total                                                                                             | 58                 | 1.8               | 51             | 27           |
| Noncarbona te                                                                                     | 10                 | 0.1               | 1 =            | -            |
| Partidity                                                                                         | 300                | 0.3               | la.            | 6            |
| Coliform in most probable number per milliliter                                                   | Sev 1959           | Sex 1959          | 11,300         | 2            |
| Radioactivity in micro-micro ouries per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta |                    |                   | 100            |              |
| Solid beta                                                                                        |                    |                   | 1.0            |              |

#### WATER QUALITY VARIATIONS



# COSUMNES RIVER AT McCONNELL (STA. 94a)

Sampling Point The station is located in Section 20, Township 6 North, Range 6 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected in mid-channel from U. S. Highway 99 bridge, at the USGS gage, approximately 7.7 miles north of Galt.

Period of Record July 1958 through December 1959.

Water Quality Characteristics Past analyses show the water to be similar in quality to the upstream station at Michigan Bar, calcium bicarbonate in character, soft, and of excellent mineral quality for all beneficial uses. Only very minor increases in conductivity were noted between Station 94 at Michigan Bar and Station 94a, indicating no significant sources of degradation.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                   |                |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|----------------|--------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                            | Minimum of Record | Resimum - 1977 | Sintem 17    |
| Specific conductance (microwhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pri                                                                          | -6.6              | -              |              |
| Peoperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 4                                                                          | 4.                |                |              |
| Resolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D.                                                                           | 2.0               | 10.1           | 1            |
| MI .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              | 150               | 7              |              |
| filteral constituents in parts per million Calcium (Calcium (Calci | 20<br>12<br>10<br>1<br>185<br>7<br>7<br>1<br>6<br>1<br>1<br>1<br>1<br>5<br>5 | 2 h<br>27         | 7 3            | *<br>27<br>1 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 198                                                                          | 86                | TR             | 96           |
| ercent sodium<br>archesm as CeOO3 in parts per million<br>Total<br>Moncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3A<br>6                                                                      | 16                | 9<br>59        | 27           |
| artidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                                                           | 0,00              |                |              |
| oliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 830                                                                          | - 21              | 230            | 21           |
| adicactivity in aicro-aicro curies per liter<br>Dissolved sipha<br>Solid sipha<br>Dissolved bets<br>Solid bets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50<br>1.28<br>3.07<br>7.75                                                 | 0.09              | 3 77           | 2.51         |



COSUMNES RIVER AT McCONNELL (STA. 94a)

Mokelumne River Basin. The Mokelumne River watershed lies in the central portion of the Central Valley Region. It contains about 630 square miles, approximately 626 of which are mountains and foothills. The remainder are valley and mesa lands. The river drains a portion of the western slope of the Sierra Nevada. It is bordered by the Cosumnes River drainage on the north, and Calaveras River drainage on the south. The Mokelumne River enters the delta near Thornton. At Clements the Mokelumne River has a total annual flow of approximately 780,000 acrefeet.

Approximately four square miles of the Mokelumne River drainage basin are potential agricultural lands. The most prominent uses of surface water in this basin are for recreation, power development, fish and wildlife propagation and preservation, and export by Mokelumne Aqueduct for municipal use by the East Bay Municipal Utility District. Natural resources of the basin are utilized for recreational activities such as hunting, fishing, boating, swimming and picnicking.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed:

| Monitoring Station                | Station Discussion |
|-----------------------------------|--------------------|
| Mokelumne River near Lancha Plana | 358                |
| Mokelumne River at Woodbridge     | 360                |



# MOKELUMNE RIVER NEAR LANCHA PLANA (STA. 23a)

Sampling Point Station 23a is located in Section 4, Township 4 North,
Range 10 East, Mt. Diablo Base and Meridian. The monthly water samples
were collected from the left bank, about 1.0 mile east of Lancha Plana,
3.0 miles downstream from Pardee Dam, and 5.0 miles upstream from
Camanche Creek.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Antecedent data reveal the water to be predominantly calcium bicarbonate in character, soft, of excellent mineral quality, and suitable for all beneficial uses.

| WATER QUALITY RANGES                                                                                                                                                          |                                |                               |                          |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|--------------------------|---------------|
| Item                                                                                                                                                                          | Maximum of Record              | Rinism of Smootd              | Maximum   1959           | Riston - 1951 |
| Specific conductance (microshos at 25°C)                                                                                                                                      | 109                            | 26.6                          | 109                      | 19.1          |
| Temperature in OF                                                                                                                                                             | 67                             | hr                            | 6.0                      | M             |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                   | 13 6<br>136                    | A A                           | 11 7<br>109              | 26            |
| pil                                                                                                                                                                           | 7.5                            | 6.2                           | 1.2                      | 6.4           |
| Uneral constituents in parts per million<br>Calcium (Ca)<br>Hagmestau (Rg)<br>Sodium (Hs)<br>Potasstam (S)<br>Carbonsts (CO <sub>3</sub> )<br>Bicarbonsts (BOO <sub>3</sub> ) | 7.9<br>2.9<br>5.2<br>1.7       | 2 A<br>0 2<br>0 7<br>0 2<br>0 | 5 6<br>9 1<br>3 6<br>1 1 | 4 A A 1 7 2   |
| Sulfate (SO <sub>1</sub> ) Chloride (Cl) Hitrate (NO <sub>1</sub> ) Fluoride (F) Boron (B) Silica (SiO <sub>2</sub> )                                                         | 9.6<br>6<br>0.7<br>0.2<br>0.35 | 1<br>2<br>6 5                 | 9 6                      | 9 A<br>1 h    |
| otal dissolved solids in parts per million                                                                                                                                    | 81                             | 81                            | A <sub>1</sub>           | 1.            |
| ercent sodium                                                                                                                                                                 | 24                             | 16                            | 27                       |               |
| archees as CaCO3 in parts per million<br>fot al<br>Honcarbonats                                                                                                               | 38<br>26                       | 9                             | 3A<br>26                 |               |
| artidity                                                                                                                                                                      | 90                             | 9.0                           | 20                       | 1.0           |
| pliform in most probable number per milliliter                                                                                                                                | 7,000.                         | -11 65                        | 500                      | - 06          |
| adicactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta                                                                              | 0.20<br>1.17<br>9.49           | 1 1r<br>11 00<br>0 20         | 0.20<br>0.35<br>9.59     | 7 20.         |

WATER QUALITY VARIATIONS



### MOKELUMNE RIVER AT WOODBRIDGE (STA. 23)

Sampling Point Station 23 is located in Section 34, Township 4 North, Range 6 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank at a USGS gaging station about 0.4 mile downstream from the Woodbridge Irrigation District dam.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Past analyses show the water to be predominantly calcium bicarbonate in character, soft, and of excellent mineral quality suitable for all beneficial uses. Only a slight increase in the concentration of mineral constituents has been noted between the upstream Station 23a at Lancha Plana and Station 23.

| WATER QUALITY RANGES                            |                   |                  |                |              |
|-------------------------------------------------|-------------------|------------------|----------------|--------------|
| Itm                                             | Maximum of Record | Rinimm of Record | Resimum - 1979 | #intem - 197 |
| Specific conductance (micromnom at 25°C)        | 47. 1             | 11.2             | PT 3           | 41 B         |
| Tomperature in OF                               | 7 %               | 44               | 74             | 119          |
| Dissolved oxygen in parts per million           | 116               | 7.9              | 1 6            | 0.2          |
| Percent saturation                              | 114               | 75               | 1              | 00           |
| N .                                             | 7.8               | 6.3              | Ink            | 6.4          |
| dineral constituents in parts per million       |                   |                  |                |              |
| Caicium (Ca)                                    | 4.4               | 2 -              | 7.8            | 6.4          |
| Hagnosium (Ng)                                  |                   | 0.0              | 2 1            |              |
| Sodium (Na)                                     | b 9               | 1 4              | 3.79           | 2.2          |
| Potaerium (K)                                   | 6                 | 0.4              | 0.9            | 10.0         |
| Carbonate (003)                                 | 4.0               | 0.7              | 2.4            |              |
| Bicarbonata (8003)                              | 37                | 10               | 30             | 17           |
| Sulfate (SOL)                                   | 1.5               | 1                | 11.0           | 1            |
| Chloride (CI)                                   | 6,                | 0                | 3.5            | 2.11         |
| Hitrate (WO3)                                   | 2.4               |                  | 2 4            | -0.0         |
| Fluoride (F)                                    | 0.3               | 0.0              | 0.1            | 10.0         |
| Boros (B)                                       | 72                | 0.0              | 0.2            | 0.0          |
| Silica (SiO <sub>2</sub> )                      | 15                | 8.8              | 14             | 12.          |
| Total dissolved solids in parts per million     | 71                | 79               | 55             | 35           |
| Percent sodium                                  | 36                | 16               | 26             | 16           |
| Rardness as CaCO; in parts per million          |                   |                  |                |              |
| Tot.al                                          | 32                | 9                | 12             |              |
| Honcarbona te                                   | 14                | 0.0              | 14             | 16           |
| Parkidity                                       | 70                | 0.0              | 20             | 1.6          |
| Coliform in most probable number per milliliter | >7,000            | 0.69             | 2,400          | 62           |
| adioactivity in micro-micro curies per liter    |                   |                  |                |              |
| Dissolved alpha                                 | 0.41              | 0.00             | 19.41          | 00           |
| Solid alpha                                     | 1.10              | 10.00            | 1.10           | - 41         |
| Dissolved beta                                  | 25.5              | 0.00             | 6-11           | h 75         |
| Solid beta                                      | 14.76             | 1,00             | 2.16           | 0.00         |

WATER QUALITY VARIATIONS



Calaveras River Basin. The Calaveras River watershed contains approximately 395 square miles in the central portion of the Central Valley Region. The basin drains the mountainous and foothill terrain along the western slopes of the Sierra Nevada.

The Calaveras River parallels the course of the Mokelumne and Stanislaus Rivers, whose basins border it on the north and south, respectively, and flows westward into the San Joaquin River below Stockton. Total mean annual runoff, measured at Jenny Lind, has been approximately 199,000 acre-feet.

Very unproductive top soil, coupled with a relatively rugged topography, have limited development in the basin. Mining, livestock raising, and lumbering operations are carried on to a minor degree.

Recreational activities have increased in recent years and are playing an increasingly important role in the economy of the basin. The most prominent uses of surface water are for recreation and irrigation diversion.

Waste discharges entering the waterways of this basin are small in volume and have not caused any impairment problems.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed:

Page Number of

| Monitoring Station            | Station Discussion |
|-------------------------------|--------------------|
| Calaveras River at Jenny Lind | 364                |
| Calaveras River near Stockton | 366                |



#### CALAVERAS RIVER AT JENNY LIND (STA. 16a)

Sampling Point Station 16a is located in Section 27, Township 3 North, Range 10 East, Mt. Diablo Base and Meridian. Samples were collected from the right bank, about 225 feet downstream from Milton Road bridge, and about 0.2 mile south of Jenny Lind.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Past analyses show the water to be predominantly a calcium bicarbonate type, slightly to moderately hard, and class 1 for irrigation. Calaveras River water at Station 16a meets drinking water standards for mineral content and is suitable for most industrial uses.

|     | WATER QUALITY RAN | GES              |                |              |
|-----|-------------------|------------------|----------------|--------------|
|     | Hazimm of Record  | Hinimm of Record | Recieus - IIII | Rintma - 117 |
|     | 112               | 10               | 200            | 146          |
|     | fig.              | 6.0              | Ro             | **           |
|     | 124               | 1.6              | P P            | 10.4         |
|     | 8.1               | / A              | 7.7            |              |
| lon |                   |                  |                |              |
|     | 70 27             | 7.4              | PV<br>A        |              |
|     | A =               | 2 4              | A 9            | b 4          |
|     | 200               | 5.5              |                |              |

Coliform in most probable number per milliliter Radioactivity in micro-micro curies per liter Missolved mipha

Misolved alpha Solid alpha Disolved beta Solid beta

Item

Specific conductance (micromnos at 2500

Dissolved oxygen in parts per million Percent saturation pN Mineral constituents in parts per milli

Tumpersture in or

Calcium (Ca) Magnesium (Mg) Sodium (Na)





CALAVERAS RIVER AT JENNY LIND STA 160

## CALAVERAS RIVER NEAR STOCKTON (STA. 16b)

Sampling Point The Stockton station is located in Section 26, Township 2
North, Range 6 East, Mt. Diablo Base and Meridian. Monthly grab samples
were collected in mid-channel from West Lane bridge.

Period of Record July 1958 through December 1959.

Water Quality Characteristics Samples of Calaveras River water near Stockton are predominantly calcium bicarbonate, slightly hard to moderately hard and of excellent mineral quality for irrigation. No significant difference is noted in the water quality at Station 16a at Jenny Lind and Station 16b.

| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATER QUALITY RAN                               | GES                                     |                 |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------|-----------|
| Itom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hasimum of Record                              | History of Second                       | Rasia w - Limit | tules III |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                             | 171                                     | E13             |           |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.                                            | 77                                      | 70              |           |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 114                                            | -21                                     | 11              |           |
| PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A.O                                            | 1.4                                     |                 |           |
| Witheral constituents in parts per million Calcium (Ca.) Magnestum (Mg.) Sodium (Mg.) Potassium (D) Carbonata (CD) Garbonata (CD) Sulfata (SO, Chloride (CI, Witrate (MC) Fluoride (P) Boron (B) Salica (SO, Slites (SO, Slites (MC) Fluoride (P) Soron (B) Slites (SO, Slites | 7.9<br>7.9<br>10<br>11<br>11<br>11<br>12<br>20 | × ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | 24              | •         |
| Total dissolved solids in parts per miliion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117                                            | 116                                     | 177             |           |
| Percent sodium<br>Hardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14<br>1-1                                      | <u>1</u> 1                              | 19              |           |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                              |                                         |                 |           |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lee 1019                                       | See 1959                                | 60              | 71        |



0.24 0.08 2.53 4.59

Radioactivity in micro-micro curies per liter Dissolved alpha Solid alpha Dissolved beta Solid beta



Tulare Lake Drainage includes the southern third of the Great Central Valley and the mountainous drainage areas coterminous to the valley on three sides. The drainage area extends approximately 130 miles southerly from the San Joaquin River to the drainage divide of the Tehachapi Mountains. Average width of the basin is 120 miles with the eastern boundary defined by the crest line of the southern portion of the Sierra Nevada, and the western boundary by the drainage divide along the coastal ranges. The Tulare Lake Drainage encompasses an area of 16,518 square miles, of which 7,773 square miles is valley and mesa and 8,745 square miles are mountains and foothills.

The valley portion of Tulare Lake Drainage consists of relatively flat-bottomed terrain bordered on three sides by gently sloping alluvial fans. Lowlands of the valley floor range in elevation from 200 feet above sea level at Tulare Lake to 500 feet along the southern end. The valley floor is broken by several ridges, such as Kettlemen Hills and Elk Hills, which have crest elevations of over 1,000 feet. Stream systems in this basin are tributary to evaporation sumps in the trough of the valley, chiefly Tulare and Buena Vista Lake beds. In the past, however, during years of heavy floods the low divide between Buena Vista and Tulare Lakes and between Tulare Lake and the San Joaquin River drainage were overtopped. During such periods, surface runoff flowed out of the Tulare Lake Drainage into the San Joaquin River.

Mountainous terrain bounding the three sides of the valley area rise from the valley floor as gently rolling foothills grading upwards to a rugged mountainous terrain. The Sierra Nevada Range on the

east dominated by Mt. Whitney rises to altitudes greater than 14,000 feet.

The Coast Ranges to the west rise to 6,000 feet, to the south the valley is enclosed by the coastal and Tehachapi Mountains, which rise to altitudes of about 8,000 feet.

Natural mean seasonal surface runoff for the basin is estimated to be 3,310,000 acre-feet. The principal hydrographic units are the Kings, Kern, Kaweah, and Tule Rivers, all originating in the Sierra Nevada Range. Flows are sustained by the Sierra Nevada seasonal snowpack. No streams of importance enter the valley area from the Coast Ranges or the Tehachapi Mountains. Monitored streams with the number of stations in parenthese are as follows:

Kings River Basin (3)
Kaweah River Basin (1)
Tule River Basin (1)
Kern River Basin (3)

Kings River Basin. The Kings River Basin is located in the Sierra Nevada in Fresno and Tulare Counties. The basin contains an area of 7,163 square miles, classified as mountainous foothill terrain, with 162 miles classified as valley and mesa land. It is bounded on the north by the San Joaquin River drainage divide, on the east by the Sierra crest line, on the south by the Kaweah River drainage basin, and by Tulare Lake bed on the west. During high flows a portion of the overflow from Kings River is tributary to the San Joaquin River via Fresno Slough.

The Kings River originates near the Sierra crest line at an altitude in excess of 10,000 feet. From their headwaters these streams flow eastward through Kings Canyon National Park where terrain is extremely rugged and mountainous with deeply entrenched, steep walled canyons. Mountainous area slowly gives way to a moderately rugged foothill terrain at Piedra. Kings River flows into the San Joaquin Valley at an elevation of 500 feet above sea level and terminates in Tulare Lake at an elevation of 200 feet above sea level. Total average annual runoff in the Kings River is 1,715,000 acre-feet.

In the upper reaches of the Kings River (Kings Canyon National Park) development is primarily limited to recreation. Lumbering, ranching, recreation, and hydroelectric power developments are the chief industries between the park and the base of the foothills.

Waste discharges entering the waterways of Kings River Basin above the foothill line are negligible. Impairment of quality of runoff by these waste discharges has not been serious and has not caused a discernible problem.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed:

|       | Monitoring | Station                                     | Page Number of Station Discussion |
|-------|------------|---------------------------------------------|-----------------------------------|
| Kings |            | North Fork<br>Pine Flat Dam<br>Peoples Weir | 372<br>374<br>376                 |

## KINGS RIVER BELOW NORTH FORK (STA. 33c)

Sampling Point Station 33c on Kings River is located in Section 21,
Township 12 South, Range 26 East, Mt. Diablo Base and Meridian.
Monthly grab samples were collected at mid-stream, from the highway
bridge located 0.8 mile downstream from the North Fork confluence.
Period of Record September 1955 through December 1959.

Water Quality Characteristics Antecedent data show Kings River at
Station 33c to be characterized by nearly equivalent calcium, magnesium
and sodium cations. Bicarbonate is the predominant anion. The
mineral quality of the water is excellent, class 1 for irrigation,
suitable for drinking water, and soft with a maximum recorded hardness
of 39 ppm. Quality of Kings River at this station is representative of the
major portion of inflow to Pine Flat Reservoir.

| WA                                                                                                                                                                                                                      | TER QUALITY RAN    | GES               |              |                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------|--------------------------------------------------------------------|
| Item                                                                                                                                                                                                                    | Maximum of Record  | Minimum of second | Hastman _P ) | R1 (max - (21))                                                    |
| pecific conductance (micromhom at 25°C)                                                                                                                                                                                 | 70.7               | 100               | 70.0         | 16.5                                                               |
| emperature in OF                                                                                                                                                                                                        | -0.0               | 100               |              | 100                                                                |
| Masolved oxygen in parts per million<br>Percent saturation                                                                                                                                                              | alam<br>on         | -17               |              | 26                                                                 |
| N                                                                                                                                                                                                                       |                    | 0.4               |              | 100                                                                |
| ineral constituents in parts per million Calcium (Ca) Magnesium (Ng) Sodium (Na) Potsandium (Nd) Potsandium (Nd) Doubles (CO) Doubles (CO) Doubles (CO) Unifortio (CT) Witrate (NO) Pluoride (P) Boron (B) Slice (SIGD) |                    |                   |              | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 |
| otal dissolved solids in parts per million                                                                                                                                                                              |                    |                   | 100          | 16                                                                 |
| arcent sodium                                                                                                                                                                                                           | 100                | 100               | 10-          | 14                                                                 |
| ardness as CaCO <sub>J</sub> in parts per million<br>Total<br>Noncarbonate                                                                                                                                              | 28                 |                   | -            | 1                                                                  |
| urbidity                                                                                                                                                                                                                | 19                 | 14                |              |                                                                    |
| oliform in most probabls number per milliliter                                                                                                                                                                          | 7.00               | - 4               | 7 11         | Lor                                                                |
| adioactivity in micro-micro curies per liter Dissolved slpha Solid alpha Dissolved beta Solid bata                                                                                                                      | 1<br>7.97<br>1. 67 | 17                | 97<br>20     | 42                                                                 |

WATER QUALITY VARIATIONS



#### KINGS RIVER BELOW PINE FLAT DAM (STA. 33b)

Sampling Point Pine Flat Dam station is located in Section 2, Township 13
South, Range 24 East, Mt. Diablo Base and Meridian. Monthly grab samples
were collected from the left bank, at the bridge located about 3,000
feet downstream from Pine Flat Dam.

Period of Record September 1955 through December 1959.

Water Quality Characteristics Water from Kings River below Pine Flat

Dam is calcium bicarbonate or occasionally a calcium-sodium bicarbonate

type. The water is class 1 for irrigation, meets the criteria for

domestic use, and is soft (maximum recorded hardness of 24 ppm). Mineral

quality at this station is qualitatively similar to that at Station 33c

(Kings River below North Fork) located about 25 miles upstream.

| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATER QUALITY RAN                             | GES                   |                                       |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|---------------------------------------|--------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum f Re-ord                             | Minimum of Roc rd     | Hasteun                               | Rougeau 1711 |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                          | 3.5                   | INT                                   | -8-          |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              | -                     | 100                                   |              |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                          | 27                    | 21                                    | 200          |
| Ho.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                          | 4.7                   |                                       |              |
| Witheral constituents to parts per willion Calcium (Calcium (Calci | 12<br>12<br>13<br>14<br>12<br>12<br>12<br>14 |                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2_6          |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W.                                           | 14                    | 129                                   | >            |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                           |                       | 97                                    | 2            |
| Mardness as CaCO3 in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                           | 6                     | 12                                    | 15.          |
| Partidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 K                                          | 1.5                   |                                       | 1 - 1        |
| coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,000                                        | nhe                   | 7 000                                 | 1 1/4        |
| adioactivity in micro-micro curies per liter<br>Dissolved elpha<br>Solid alpha<br>Elssolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.53<br>1<br>7.52                            | # 100<br># 09<br>0 00 | 61<br>77<br>7 52                      | - 30<br>N 77 |
| Solid bets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,69                                         | 3.29                  | 6.63                                  | 6.11         |

WATER QUALITY VARIATIONS



#### KINGS RIVER BELOW PEOPLES WEIR (STA. 34)

Sampling Point Station 34 is situated in Section 1, Township 17 South, Range 22 East, Mt. Diablo Base and Meridian. The point of monthly grab sample collection is from the left bank, at the stream gage located about 1/4 mile downstream from the diversion weir, approximately 2 miles south of Kingsburg, 12 miles northeast of Hanford.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Water from Station 34 has bicarbonate as the predominant anion with no specific cation predominating. The water is excellent, ranges from soft to moderately hard, and meets class 1 irrigation criteria and mineral standards for drinking water. Concentrations of mineral constituents in Kings River at Station 34 are considerably higher (over 100 percent or averaging approximately 60 micromhos) than at the upstream Station 33b below Pine Flat Dam.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GES              |             |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|---------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Haximum of Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hinles of Recomm | Restmin 191 | Atrima - Liti |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -80              | ini         |               |
| Temperature in of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h ;              |             |               |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0              |             | 200           |
| PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0              | 7.0         |               |
| Minoral, constituents to parts per million Calcium (Calcium (Calci | 2A 7 8 100 W | TESTABLE         | 11.00       | THE PERSON    |
| total dissolved solide in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                | 2           | 20            |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q                | 10          | -             |
| Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gr 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 1           |               |
| Purbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37.5             |             | 110           |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 343              | 7.000       | 5.00          |
| Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid mipha<br>Dissolved beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13               | 100         | 12            |
| Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | - 42        |               |





Kaweah River Basin. The Kaweah River Basin is located in the Sierra Nevada east of Visalia and extends from Sequoia National Park to Three Rivers in Tulare County. The basin has an area of 520 square miles of mountainous and hilly terrain. It is bounded on the north and north-east by the Kings River watershed, on the east and southeast by the Kern River drainage divide, and on the south by the Tule River drainage area. Kaweah River flows into the San Joaquin Valley at Lemon Cove where the channel splits into several distributaries which eventually drain into Tulare Lake evaporation sump.

Forks of the Kaweah River head in an extremely rugged, mountainous area with alpine peaks rising above 10,000 feet. Steep walled canyons and ravines are characteristic of the waterways in the upper reaches. Progressing downslope the topography undergoes a gradual transition to rolling foothills and broader river valleys. The Kaweah River flows out of the hydrographic unit at Three Rivers at an elevation of 800 feet above sea level. Total average annual runoff of the Kaweah River Basin is \$416,000 acre-feet.

Economic activities in the Kaweah River Basin consist primarily of recreation, ranching, hydroelectric power development, and lumbering. Approximately seven miles downstream from Three Rivers, near Lemon Cove, Terminus Dam is presently under construction by the U.S. Corps of Engineers. The structure will provide flood control, irrigation, and other benefits to nearby areas.

Numerous domestic wastes discharge into the waterways of this basin, however, these are comparatively minor and have created no noticeable impairment problems.

A surface water sampling station is maintained on Kaweah River near Three Rivers to monitor quality of runoff from the basin.



## KAWEAH RIVER NEAR THREE RIVERS (STA. 35)

Sampling Point Kaweah River water is sampled in Section 33, Township 17 South, Range 28 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank, at the USGS gaging station about 2.5 miles downstream from the South Fork confluence, 3 miles southeast of Three Rivers, approximately 1/2 mile east of Cobbles Lodge.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Water in Kaweah River at Station 35 is a calcium bicarbonate type; however, at times no cation is predominant.

The water has been of excellent mineral quality, soft to slightly hard, class 1 for irrigation (with one exception) and meets drinking water criteria. In December 1953, a boron concentration of 0.56 ppm was recorded, which exceeds class 1 irrigation standards.

| WATER QUALITY RANGES                                        |               |                   |           |       |  |
|-------------------------------------------------------------|---------------|-------------------|-----------|-------|--|
| Item                                                        | Maximum / to- | Rintman II Israel | Ratio and | R nan |  |
| Specific conductance (micromnos at 2506)                    | 100           |                   |           | 10.7  |  |
| Temperature in °F                                           | 1.60          | -                 | -         |       |  |
| Dissolved oxygen in parts per million<br>Percent saturation |               |                   | 21        | -     |  |
| He                                                          |               |                   |           |       |  |
| tineral constituents in parts per million                   |               | •                 |           |       |  |
| Calcium (Ca)                                                |               | 25                |           |       |  |
| Hagnorium (Hg)<br>Sodium (Ng)                               |               |                   |           |       |  |
| Potandum (K)                                                | h B           |                   | - 10      | 24    |  |
| Carbonata (COs)                                             |               | 72                |           |       |  |
| Bicarbonata (RCO)                                           |               |                   | -         |       |  |
| Sulfata (SO:)                                               |               |                   |           |       |  |
| Chloride (CI)                                               | 7.            |                   | 31        |       |  |
| Nitrate (NO1)                                               | 1.4           |                   |           |       |  |
| Fluorida (F)                                                | 2.1           |                   |           |       |  |
| Boron (B)                                                   |               |                   |           |       |  |
| Sillca (SiO <sub>2</sub> )                                  | 27            | 1.0               | 15        |       |  |
| otal dissolved solids in parts per million                  | 122           | 2_                | Own       |       |  |
| ercent sodium                                               | 4)            | 0.                |           | W     |  |
| Mardness as CaCO; in parts per million                      |               |                   |           |       |  |
| Total                                                       | 68            | 18                | NA.       |       |  |
| Noncarbonate                                                | 9             |                   | ,         | 2.0   |  |
| propriet to                                                 | 146           | 1.0               | LE .      | 1.0   |  |
| oliform in most probable number per milliliter              | 7,000         | 45                | 7.43      |       |  |
| adioactivity in micro-micro curies per liter                |               |                   |           |       |  |
| Diasolved alpha                                             | .64           | 3.44              | and the   | 100   |  |
| Solid alpha                                                 | 1.2           | 0.00              |           | 21    |  |
| Dissolved beta                                              | 20 61         | = 20              | 14.5      | 3.0   |  |
| Solid beta                                                  | 21 7          |                   | 1.7       | 2.50  |  |

WATER QUALITY VARIATIONS



Tule River Basin. The Tule River Basin is located on the western slopes of the Sierra Nevada in the southern part of the Central Valley Region. The basin extends from the southern boundary of Sequoia National Park to Porterville in Tulare County and contains an area of 390 square miles. It is bounded on the north by the Kaweah River drainage divide, on the east by the Kern River watershed crest line, on the south by a drainage divide of Deer Creek, and on the west by the San Joaquin Valley. Tule River flows westward into the San Joaquin Valley and terminates at Tulare Lake sump.

The terrain along the upper reaches of the Tule River Basin is extremely rugged cut by steep-walled canyons and ravines, with mountainous ridges rising to altitudes greater than 7,000 feet. Progressing toward the San Joaquin Valley, the topography undergoes a gradual change to foothills interspersed by relatively broad river valleys. The Tule River flows out of the Sierra foothills, at an elevation of about 500 feet, into the San Joaquin Valley at Porterville. The average annual runoff of the Tule River is 140,000 acre-feet.

Activities in Tule River Basin include recreation, ranching, hydroelectric power development and limited lumbering and orcharding.

The newly constructed Success Dam on the Tule River, four miles east of Porterville, provides flood control and other benefits to nearby areas.

Waste discharges are relatively minor in quantity and have not created any deleterious effects on quality of water in the basin.

A surface water sampling station is maintained on Tule River near Porterville to monitor quality of runoff from this basin.



#### TULE RIVER NEAR PORTERVILLE (STA. 91)

Sampling Point Prior to September 1959, Station 91 was located in Section 25, Township 21 South, Range 28 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected at mid-stream from the county road bridge, 0.1 mile downstream from the South Fork, 8.8 miles east of Porterville. In September 1959, it was necessary to move the station due to construction of Success Dam. The new location is in Section 3, Township 22 South, Range 28 East, Mt. Diablo Base and Meridian. Monthly water samples were collected at mid-stream, from Worth Bridge, about 3 miles downstream from the location described for the former sampling station.

Period of Record July 1952 through December 1959.

Water Quality Characteristics Tule River at Station 91 generally exhibits a calcium bicarbonate characteristic, although a calcium-sodium bicarbonate type water has been recorded on several occasions. Mineral quality of the water is excellent and meets class 1 irrigation requirements and drinking water standards. Tule River water ranges from soft to very hard with the hardness attributable to the natural leaching of soils and rocks of the watershed.

|  |  | NCER |
|--|--|------|
|  |  |      |

|                                                                                                                                                                                                                                                                                                                                                                                                  | ATER QUALITY RAN                                | 052               |                           |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------|---------------------------|---------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                             | Hazimum of Record                               | Rinimes of Record | Rectard = 25° 9           | Rintma - 91   |
| Specific conductance (micromhom at 2500)                                                                                                                                                                                                                                                                                                                                                         | 112                                             | 2                 | 53                        | P0-s          |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                | -                                               | 41                | no                        | -4            |
| Dissolved caygen in parts per million<br>Percent materation                                                                                                                                                                                                                                                                                                                                      | ar.                                             | 1.3               | (22                       | 45            |
| Nq                                                                                                                                                                                                                                                                                                                                                                                               | - 14                                            | 0.00              | 8                         |               |
| Hineral constituents in parts per million Calcitum (Ca Ragnesium (Ng) Sodium (Ha) Potas raium (H) Acarbona ta (CD) Bicarbonata (CD) Bicarbonata (CD) Bicarbonata (CD) Bicarbonata (CD) Bicarbonata (CD) Bicarbonata (CD) Silirata (MO) Filancia (CD) Silirata (MO) | 77<br>11<br>1 1<br>29% 7 7<br>201 6 2 9<br>4 22 | P                 | P<br>P<br>PN<br>1 A<br>19 | 0<br>27<br>10 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                       | 326                                             | 66                | 324                       | 67            |
| ercent sodium                                                                                                                                                                                                                                                                                                                                                                                    | 27                                              | 18                | 26                        | 38            |
| lardness as CaCO3 in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                  | -85,4                                           | 75                | 200                       | 15.0          |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                        | An                                              | 100               | 85                        | 1             |
| Coliform in most probable number per milliter Radioactivity in micro-micro curies per liter Entrepolved alpha Solid alpha Dissolved beta                                                                                                                                                                                                                                                         | See 1959                                        | See 1959          | 0.24                      | -0.10         |

WATER QUALITY VARIATIONS



Kern River Basin. The Kern River Basin is located on the southwestern slope of the Sierra Nevada, and extends southwesterly from Sequoia National Park near Mt. Whitney to Bakersfield in Tulare and Kern Counties. The basin includes an area of 2,420 square miles, almost all in mountainous and hilly topography. It is bounded on the northwest by watersheds of the Kaweah and Tule Rivers and other minor streams draining into San Joaquin Valley, on the east and southeast by the Sierra Nevada crest line dominated by Mt. Whitney, and on the south by the drainage divide of minor intermittent streams draining into the San Joaquin Valley. Emerging from the foothills and into the valley area at Bakersfield, Kern River flows down a gently sloping alluvial fan to Buena Vista Lake.

Above the confluence of North Fork and South Fork Kern River, at Isabella Reservoir, the watershed is extremely rugged, rising to altitudes of about 13,000 feet. Deep, steep-walled canyons have been carved into the mountainous terrain by the Kern River. Below Isabella Reservoir the topography is moderately rugged, grading to rolling foothills toward the edge of the San Joaquin Valley. Total average annual runoff in the Kern River is about 736,000 acre-feet.

The headwater area of the Kern River in Sequoia National Park is generally inaccessible, and hence, development consists of limited recreation. Below the park, in the foothills, development consists chiefly of lumbering, ranching, hydroelectric power development, and recreation. Farming and crude oil production is the chief industry in the valley area. Isabella Dam, located about 22 miles northeast of Bakersfield on the Kern River, provides flood control and other benefits to the basin.

Waste discharges in the watershed are extremely mal the the valley floor and have caused no impairment problems.

The following tabulation presents the names of stations emittaired to monitor quality of surface water in this basin and the page on which each is discussed:

| Monitoring Sta                                                    | ation       | Number of<br>Discussion       |
|-------------------------------------------------------------------|-------------|-------------------------------|
| Kern River near Ker<br>Kern River below Is<br>Kern River near Bak | sabella Dam | 38 <sup>2</sup><br>390<br>392 |

#### KERN RIVER NEAR KERNVILLE (STA. 36b)

Sampling Point Kernville station is located in Section 14, Township 23
South, Range 32 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the right bank, at the USGS stream gaging station, about 3 miles upstream from the confluence with Salmon Creek, 15 miles north of Kernville.

Period of Record September 1955 through December 1959.

Water Quality Characteristics Kern River at Station 36b is characterized by a calcium-sodium bicarbonate type water, which is soft and relatively low in dissolved solids. The mineral quality of this water consistently meets the criteria for a class 1 irrigation supply and for drinking water.

Significant Water Quality Changes During 1959 the only significant quality change occurred in July when a boron concentration of 0.8 ppm rendered water at this station class 2 for irrigation. The reason for this relatively high boron concentration has not yet been ascertained.

| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATER QUALITY RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GES            |               |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hi man of hard | Recieus - III | Niles - UT |
| Specific conductance (micromnos at 2500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |               | -          |
| Pemperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | - 4           | 100        |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21             | 2.0           | - 1        |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |               |            |
| Wherel constituents in parts per million Galcium (Galcium | The state of the s | 17071-17071-   | 17.0          | totatat.   |
| Total dissolved solide in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24             | 197           | 49         |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -              |               |            |
| Hardness as CaCO3 in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 5.            | 5.         |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 400           | 1          |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *              | 7 (           | 100        |
| Radioactivity in micro-micro curies per liter<br>Elissolved slpha<br>Solid slpha<br>Elissolved beta<br>Solid bets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21 7<br>9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 2            | 1990          |            |





#### KERN RIVER BELOW ISABELLA DAM (STA. 36a)

Sampling Point Station 36a is located in Section 30, Township 26 South, Range 33 East, Mt. Diablo Base and Meridian. Monthly water samples were collected from the right bank, 500 feet downstream from the outfall tunnel of Isabella Dam.

Period of Record September 1955 through December 1959.

Water Quality Characteristics Water at Isabella Dam station is consistently a bicarbonate type with either calcium or calcium-sodium cations being predominant. Mineral quality of the water is excellent, soft to slightly hard, meets the criteria for class 1 irrigation use and drinking water standards. Comparison of analyses of samples from Kern River at Station 36b with those from Station 36c, located about 10 miles upstream and above Isabella Reservoir, show that in this reach there is an increase in specific conductance of from 10 to 92 micromhos. The reason for this increase has not as yet been ascertained; but it is probably attributable to the concentration of minerals caused by evaporation from Isabella Reservoir.

| WA                                              | ATER QUALITY RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GES               |              |             |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-------------|
| lt-m                                            | Haximm of Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum of Record | Resignar - P | Sintem - Fi |
| Specific conductance (micromhos at 250C)        | 77"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | -817         | 100         |
| Temperature in °F                               | - 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                 | -            | 1           |
| Dissolved oxygen in parts per million           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | -            |             |
| Percent saturation                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -7                | 7            | 24          |
| Н                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |             |
| Hineral constituents in parts per million       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |             |
| Calcium (Ca)<br>Hagnesium (Hg)                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0               | 10.          |             |
| Sodium (Hg)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 70.0         | 10.00       |
| Potaesium (K)                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |              |             |
| Carbonate (CO3)                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 9.4          | 0.1         |
| Bicarbonate (8003)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1.00         |             |
| Sulfate (SOL)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1.0          | 72.0        |
| Chloride (II)                                   | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |              |             |
| Nitrate (NO <sub>3</sub> )<br>Fluoride (P)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |             |
| Boron (B)                                       | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 2.7          |             |
| Silica (SiO2)                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |              |             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.1               |              | 1.5         |
| Total dissolved solids in parts per million     | -175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                | 1.75         | 20          |
| Percent sodium                                  | h2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |              | 70.         |
| Hardness as CaCO; in parts per million          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |             |
| fot al                                          | 91 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 66           | 100         |
| Moncarbonate                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |             |
| Turbidi ty                                      | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 21)          |             |
| Coliform in most probable number per milliliter | - hap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 191          | 1.00        |
| Radioactivity in micro-micro curies per liter   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |             |
| Dissolved alpha                                 | Acres (Acres (Ac |                   |              |             |
| Solid alpha                                     | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00              |              |             |
| Dissolved bets                                  | Ih i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.00             |              |             |
| Solid beta                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |             |







tation Number 126 126 13 13a 13b 13c 13d 13e 14

16a 16b 17 17a 17d 18 18a 19 20 20a 20a 21 21a 22 22a 22b

22c

Station Number



# Lahontan Region (No. 6)

The Lahontan Region extends from the Oregon border on the north to the southern boundary of the Mojave River Basin on the south, and comprises that area situated between the California-Nevada border to the east and the Sierra Nevada to the west. The region contains about 33,000 square miles and varies in width from less than 20 miles in the north to over 170 miles, across the Mojave Desert and Antelope Valley, in the south.

The terrain of the region is characterized by basins of interior drainage or sinks surrounded by mountain peaks. Areas classified as valley and mesa lands cover about 10,000 square miles, most of which are considered irrigable. The eastern slopes of the Sierra Nevada dominate the mountainous portions of the Lahontan Region.

The region has an estimated mean seasonal runoff of 3,177,000 acre-feet. Principal streams in the Lahontan area include the Susan, Truckee, Carson, Walker, Owens and Mojave Rivers. To provide a continuing check on the quality of surface runoff in this region, 12 sampling stations are maintained on the following surface water sources as indicated in the following tabulation. The number of sampling stations on each source is shown in parentheses.

> Susan River (1) Lake Tahoe (3) Truckee River (2)

Carson River (2) Walker River (2)

Mojave River (2)\*

<sup>\*</sup> The Mojave River is in Southern California and will be discussed in Part II of this bulletin.



## Lahontan Region (No. 6)

The Lahontan Region extends from the Oregon border on the north to the southern boundary of the Mojave River Basin on the south, and comprises that area situated between the California-Nevada border to the east and the Sierra Nevada to the west. The region contains about 33,000 square miles and varies in width from less than 20 miles in the north to over 170 miles, across the Mojave Desert and Antelope Valley, in the south.

The terrain of the region is characterized by basins of interior drainage or sinks surrounded by mountain peaks. Areas classified as valley and mesa lands cover about 10,000 square miles, most of which are considered irrigable. The eastern slopes of the Sierra Nevada dominate the mountainous portions of the Lahontan Region.

The region has an estimated mean seasonal runoff of 3,177,000 acre-feet. Principal streams in the Lahontan area include the Susan, Truckee, Carson, Walker, Owens and Mojave Rivers. To provide a continuing check on the quality of surface runoff in this region, 12 sampling stations are maintained on the following surface water sources as indicated in the following tabulation. The number of sampling stations on each source is shown in parentheses.

Susan River (1) Carson River (2)
Lake Tahoe (3) Walker River (2)
Truckee River (2) Mojave River (2)\*

<sup>\*</sup> The Mojave River is in Southern California and will be discussed in Part II of this bulletin.

#### Susan River Basin

Susan River Basin is a subbasin in the closed Honey Lake Basin located in the northeastern portion of California. The river originates on the slopes of the Sierra Nevada and flows eastward into Honey Lake Valley. Susan River watershed contains about 238 square miles and has an estimated mean seasonal runoff of 50,900 acre-feet.

Timber covered mountains and foothills comprise 157 square miles in the basin. Valley and mesa lands, some of which are also heavily forested, cover the remaining 81 square miles of watershed tributary to Susan River. Lumbering is the primary industry, followed in importance by the beef industry and agriculture devoted to the support of livestock.

Waste discharges entering the Susan River are primarily those associated with lumbermills and domestic or urban developments. Waste effluent from the City of Susanville is the only discharge in excess of 0.5 mgd entering the river. Serious impairment of water quality by waste discharges has not occurred or been reported in the Susan River.

A water quality monitoring station is maintained on Susan River at Susanville (17b) to monitor quality of runoff from the basin.



## SUSAN RIVER AT SUSANVILLE (STA. 17b)

Sampling Point Station 17b is located in Section 31 of Township 30 North, Range 12 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected from the left bank, USGS gaging station, 0.5 mile west of Susanville, 1.1 miles upstream from Piute Creek, 24 miles above the mouth at Honey Lake.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Past samples show water from Station 17b to be calcium-magnesium bicarbonate in character, class 1 for irrigation, varying from soft to moderately hard. Susan River water consistently meets drinking water standards. Only minor changes in water quality occur. Significant Water Quality Changes None.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                     |                                 |                                                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|-------------------------------------------------------------------|--|
| It-m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Haximum of Record                                                  | Minimum of Record                                   | Maximum - 1959                  | Hinimum - 1955                                                    |  |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | har.                                                               | 55.5                                                | 301                             | A.2                                                               |  |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75                                                                 | 33                                                  | 64                              | 33                                                                |  |
| Dispolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 1<br>98                                                         | 6.6                                                 | 11 9<br>95                      | 7.3                                                               |  |
| Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.1                                                                | 6.8                                                 | T 6                             | 7.3                                                               |  |
| Hieral constituents in parts per million Calcium (G. ) Ragnestum (Ng ) Sodium (Ng ) Potasatium (G. ) Carbonats (G. ) Sulfats (G. ) Sulfats (G. ) Chloride (Cf) Nitrate (W0) Flooride (Cf) Boron (B) Sulfats (W0) Flooride (F) Sodium (B) Sulfats (W0) Flooride (F) Sodium (B) Sulfats (W0) Flooride (F) Sodium (B) Sulfats (W0) Sulfats (W | 24<br>16<br>8, 4<br>4, 5<br>238<br>2-1<br>12<br>1<br>1, 2<br>6, 24 | 5.7<br>2.8<br>1.5<br>0.3<br>0.0<br>0.0<br>0.0<br>16 | 19 10 8 h h.5 13h 1 9 2.3 10 h2 | 8.8<br>8.6<br>3.0<br>0.7<br>0.7<br>56<br>6.5<br>0.5<br>0.6<br>0.7 |  |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370                                                                | 115                                                 | 152                             | 72                                                                |  |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.                                                                | 11                                                  | 19                              | 15                                                                |  |
| iardnese es CaCO3 in parts per million<br>Total<br>Noncarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                                                | 23                                                  | 93                              | 41<br>0.0                                                         |  |
| Parbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                  | 5,5                                                 | 15                              | 1                                                                 |  |
| oliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,000.                                                             | 0.145                                               | 2,400                           | 0.106                                                             |  |
| Addicactivity in micro-micro curies per liter<br>Dissolved elpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.65<br>13.7                                                       | 0.00<br>.00<br>0.00<br>0.00                         | 0 30<br>0.55<br>7.64<br>4,03    | 0.26<br>0.00<br>4.16                                              |  |

### WATER QUALITY VARIATIONS



## Truckee River Basin

The Truckee River drains an area near the central portion of the Lahontan Region at the "elbow-bend" in the California-Nevada border. The California portion of the river basin is predominantly alpine with 621 of the 805 square miles classed as mountainous. Mean annual runoff from the California portion of the basin exceeds 580,000 acre-feet.

Lake Tahoe, formed by the down-dropping of a fault block along the Sierran-Nevadan fault, is one of the prominent physical features of the Truckee River Basin. With a mean water surface elevation of 6,228 feet and an approximate 120 miles of shore line, it has become an internationally known recreation and vacation attraction. Valley and mountain meadow land contain 184 square miles in the California portion of the watershed. Development is primarily associated with recreation. Lumbering is carried on to a minor degree in the basin.

Waste discharged into the waterways of the area have been small in quantity; however, those entering Lake Tahoe have caused some concern as to their effect on this important body of water. A review of available data reveals that no significant impairment to the lake has been detected under present conditions.

The following tabulation presents the names of stations maintained to monitor quality of surface water in this basin and the page on which each is discussed:

| Monitoring Station         | Page Number of Station Discussion |
|----------------------------|-----------------------------------|
| Lake Tahoe at Bijou        | 402                               |
| Lake Tahoe at Tahoe Vista  | 404                               |
| Lake Tahoe at Tahoe City   | 406                               |
| Truckee River near Truckee | 408                               |
| Truckee River near Farad   | 410                               |
|                            |                                   |



## LAKE TAHOE AT BIJOU (STA. 39)

Sampling Point Bijou station is located on the south end of the lake in Section 33 of Township 13 North, Range 18 East, Mt. Diablo Base and Meridian. The monthly grab samples were collected from a pier in Bijou.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Lake Tahoe water is calcium bicarbonate in character, soft, and excellent for all uses. The quality is very similar to that reported at Tahoe Vista (Station 37) and Tahoe City (Station 38), with only minor variations noted. Variation in quality has been nearly imperceptible during the period of record.

| WATER QUALITY RANGES                            |                   |                   |                |                |  |
|-------------------------------------------------|-------------------|-------------------|----------------|----------------|--|
| Itom                                            | Maximum of Record | Minimum of Record | Maximum - 1959 | Hinimum - 1955 |  |
| Specific conductance (micromhos at 25°C)        | 14                | 100.7             | X0             | 75.4           |  |
| Temperature in OF                               | 74                | la la             | 66             | $l_k l_k$      |  |
| Dissolved oxygen in parts per million           | Mary .            | 1.2               | 9 9            | 7.6            |  |
| Percent saturation                              | (0.               | 7                 | 1 1            | 70             |  |
| PR                                              |                   | 6.8               | 7 7            | 7.3            |  |
| dineral constituents in parts per million       |                   | 7.6               | 9.4            | 8 4            |  |
| Calcium (Ca)                                    |                   | 1.6               | 2 3            | 1.7            |  |
| Magnesium (Mg)                                  | 1.2               | 4 1               | 2              | 5.2            |  |
| Sodium (Na)                                     | 21                | 7.1               | 1.9            | 1.7            |  |
| Potassium (X)                                   | 21                | 2.0               | 0.0            | 0.0            |  |
| Carbonata (CO3)                                 |                   | 36                | 52             | 42             |  |
| Bicarbonate (HCO3)                              | 4.8               | 10                | 2.9            | 2.0            |  |
| Sulfata (SOL)                                   | 6                 | 3.0               | 4.1            | 1.8            |  |
| Chloride (CI)                                   |                   |                   | 0              | 0.0            |  |
| Nitrate (NO3)                                   | 1                 |                   | 0.0            | 0.0            |  |
| Fluorida (F)                                    |                   | 2.0               | 0.2            | 0.0            |  |
| Boron (B)                                       | .25               | 8.8               | 13             | 11             |  |
| Silica (3102)                                   | 18                | 8.0               |                | -              |  |
| Total dissolved solids in parts per million     | 86                | 45                | 67             | 51             |  |
| Percent sodium                                  | 37                | 23                | 32             | 25             |  |
| Rardness as CaCO2 in parts per million          |                   |                   | 37             | 27             |  |
| Total                                           | 40                | 21                |                | 0.0            |  |
| Moncarbonate                                    |                   | 0.0               | 0.0            | 0.0            |  |
| Purbidity                                       | <b>Q</b> 5        | 0.0               | 15             | 0.3            |  |
| Coliform in most probable number per milliliter | 7,300.            | 0.004             | 23.            | 0.045          |  |
| Radioactivity in micro-micro curies per liter   |                   |                   |                |                |  |
| Dissolved alpha                                 | 17                | 0,00              | 0.10           | 9,00           |  |
| Solid alpha                                     | 1.20              | 0.00              | 0.51           | 0.37           |  |
| Dissolved bets                                  | 14.77             | 0.70              | 7.23           | 2.64           |  |
| Solid beta                                      | 9.83              | 0.00              | 3.77           | 0.00           |  |

WATER QUALITY VARIATIONS



### LAKE TAHOE AT TAHOE VISTA (STA. 37)

Sampling Point Station 37 is located in Section 14 of Township 16 North,
Range 17 East, Mt. Diablo Base and Meridian. Monthly grab samples were
taken from the end of a pier located on the north end of the lake 0.1
mile west of Tahoe Vista, 8 miles northeast of Tahoe City.

Period of Record April 1951 through December 1959.

<u>Water Quality Characteristics</u> Antecedent data show the mineral character of the lake, at Station 37, to be calcium bicarbonate, low in concentration of all constituents, soft, of excellent mineral quality, and suitable for nearly all beneficial uses. The water varies very little in mineral quality.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                          |                           |                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|---------------------------|---------------------------------------------|--|
| ltes .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maximum of Record                               | Minimum of Record                                        | Maximum - 1959            | Hinimum - 1955                              |  |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160                                             | Re R                                                     | 0 1                       | 91 6                                        |  |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                              | 6.1                                                      | 68                        | is is                                       |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nA.                                             | 6-b                                                      | 1 -<br>10                 | 7 b<br>81                                   |  |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.4                                            | 8.6                                                      | - 14                      | 7                                           |  |
| Mineral constituents in parts per million Calcium (Calcium (Calciu | 1 1 2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 7<br>1 5<br>1 8<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7<br>0<br>6<br>2 9<br>4 8 | 9, b<br>1<br>1,6<br>39<br>2,0<br>1 5<br>0,1 |  |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73                                              | 59                                                       | 67                        | 65                                          |  |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 314                                             | 22                                                       | 34                        | 24                                          |  |
| Hardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                              | 75                                                       | 39                        | 32<br>0.                                    |  |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>125</b>                                      | 0.0                                                      |                           | 0.3                                         |  |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240.                                            | -, 45                                                    | 23.                       | i* n4                                       |  |
| Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid slpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 43<br>7.90<br>13.58                           | 0.50<br>9,00<br>9,00<br>0.00                             | 3<br>3.64<br>7.55         | .00<br>- 18<br>1 07<br>2.81                 |  |

WATER QUALITY VARIATIONS



LAKE TAHOE AT TAHOE VISTA (STA. 37)

### LAKE TAHOE AT TAHOE CITY (STA. 38)

Sampling Point Station 38 is located on the west side of Lake Tahoe in Section 7 of Township 15 North, Range 17 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected on the upstream side of the control gates at the outlet of the lake (Truckee River).

Period of Record April 1951 through December 1959.

Water Quality Characteristics Water at Station 38 is calcium bicarbonate in character, soft, and in all respects very similar to the water at Tahoe Vista (Station 37). These waters are consistently excellent in quality and within mineral requirements for nearly all beneficial uses.

Significant Water Quality Changes None.

| WATER QUALITY RANGES                           |                   |                   |                |                |  |
|------------------------------------------------|-------------------|-------------------|----------------|----------------|--|
| Item                                           | Maximum of Record | Minimum of Record | Maximum = 1959 | Miniaum =  955 |  |
| Specific conductance (micromnos at 25°C)       | - 2               | 0.7               |                |                |  |
| Temperature in OF                              | 79                |                   | - 100          | -              |  |
| Dissolved oxygen in parts per million          | D100              | =6.7              | 0.6            |                |  |
| Percent saturation                             | 1 99              | q                 | 11.            | 79             |  |
| Ho                                             |                   |                   |                |                |  |
| fineral constituents in parts per million      |                   |                   |                |                |  |
| Calcium (Ca)                                   |                   | 8.1               |                |                |  |
| Hagnesium (Ng)<br>Sodium (Na)                  | 3 4               | 1.7               |                |                |  |
| Potentium (K)                                  | 7.2               | 0.90              |                |                |  |
| Carbonate (003)                                | 7                 | 10                |                |                |  |
| Bicarbonate (HCO2)                             | 75                | lala              | 1.9            | 158            |  |
| Sulfata (SOL)                                  | 1.8               |                   | 4.8            |                |  |
| Chloride (CI)                                  | 6                 | 0.0               | , A            | 7.9            |  |
| Nitrata (NO3)                                  | 1.5               |                   |                | 11             |  |
| Fluorida (F)                                   | 1                 |                   |                | - 5.8          |  |
| Boron (B)                                      | □.28              | 10,00             |                |                |  |
| Silica (SiO <sub>2</sub> )                     | 15                | 11                |                | . 4            |  |
| otal dissolved solids in parts per million     | 95                | 58                | 64             | 62             |  |
| ercent sodium                                  | 36                | 55                | 31             | 27             |  |
| ardness as CaCO; in parts per million          |                   |                   |                |                |  |
| Total                                          | 43                | 30                | 38             | 32             |  |
| Noncarbonate                                   | 5                 | 0.0               |                | 10.0           |  |
| project A                                      | 25                | 0.00              | 10             | 1.5            |  |
| oliform in most probable number per milliliter | 2,400.            | J.02              | 230.           | 31.E45         |  |
| adicactivity in micro-micro curies per liter   |                   |                   |                |                |  |
| Edgis bevice in                                | 1 . 44            | 0.00              | 0.10           | 0.00           |  |
| Solid alpha                                    | .67               | 0.00              | 0 37           | 0.50           |  |
| Dissolved beta                                 | 16.6              | 0.00              | 5.56           | 5.17           |  |
| Solid beta                                     | 8.28              | 0.00              | 3.55           | 2.67           |  |

WATER QUALITY VARIATIONS



### TRUCKEE RIVER NEAR TRUCKEE (STA. 52)

Sampling Point Station 52 is located 1.4 miles upstream from Donner Creek, 2.5 miles southwest of Truckee, in Section 28 of Township 17

North, Range 16 East, Mt. Diablo Base and Meridian. Monthly water samples were collected on the left bank, at the USGS gage, approximately 11.5 miles downstream from the outlet of Lake Tahoe.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Chemical classification of water from Truckee River, at Station 52, shows the water usually to be calcium bicarbonate in character, class 1 for irrigation, and excellent for domestic and industrial use. Tributary inflow in the reach between Lake Tahoe and Truckee has no apparent effects on water quality in the Truckee River.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                         |                                         |                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------|--|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                            | Minimum of Record                       | Maximum - 1959                          | Minimum - 195                                                    |  |
| Specific conductance (micromhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125                                                                          | 47.2                                    | 1.00                                    | 14.9                                                             |  |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0)                                                                           | 19                                      | 65                                      | 40                                                               |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.4                                                                         | 7.2                                     | 10°-1<br>100                            | 7 5<br>76                                                        |  |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.4                                                                         | 8                                       | 7.9                                     | 7.1                                                              |  |
| Himaral constituents in parts per million Calcium (Calcium (Calciu | 1. G<br>1. G<br>1. v<br>2. v<br>2. v<br>2. v<br>2. v<br>2. v<br>2. v<br>2. v | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 3 7 7 1 1 1 7 7 1 1 1 1 1 1 1 1 1 1 1 | 6 8<br>1 2<br>2 6<br>6 1.8<br>0 0 7<br>26<br>2 6<br>0 .8<br>0 .1 |  |
| total dissolved solide in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qr.                                                                          | 34                                      | 73                                      | lak                                                              |  |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                            | 18                                      | 32                                      | 19                                                               |  |
| Mardness as CaCO3 in parts per million<br>Total<br>Noncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .A<br>,                                                                      | 18                                      | 5<br>75                                 | 22<br>0.                                                         |  |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                                           | 0.0                                     | 120                                     | 0.3                                                              |  |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7 00u                                                                       | . 45                                    | 230                                     | 0 %                                                              |  |
| <pre>ladioactivity in micro-micro curies per liter</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , Oli<br>16 1<br>9.26                                                        | 0.00<br>0.00<br>0.00                    | 0 30<br>0 55<br>9.19<br>8.54            | 0.26<br>0.17<br>1.03<br>1.26                                     |  |





TRUCKEE RIVER NEAR TRUCKEE (STA. 52)

## TRUCKEE RIVER NEAR FARAD (STA. 53)

Sampling Point Station 53 is located approximately 2 miles upstream from the California-Nevada state line in Section 12 of Township 18 North, Range 17 East, Mt. Diablo Base and Meridian. Monthly water samples were collected from the left bank at the USGS gage.

Period of Record April 1951 through December 1959.

Water Quality Characteristics Analyses show water at Station 53 to be bicarbonate in type, generally with no predominant cation, although during periods of high runoff the water becomes calcium bicarbonate in character. The water is class 1 for irrigation, soft, and meets drinking water requirements for mineral content. Very little change is noted between Station 52 (near Truckee) and Station 53. In some instances the quality improves slightly in this reach of the river due to the excellent quality of tributary inflow.

| WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TER QUALITY RAN                                       | GES                         |                                                             |                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|-------------------------------------------------------------|----------------------------------------------------------------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                     | Minimum of Record           | Haximum - 1959                                              | Minimum - 195                                                  |
| Specific conductance (micromhos et 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,117                                                 | Pb. I                       | 1734                                                        | 54.7                                                           |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nh.                                                   | t la                        |                                                             | 38                                                             |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                   | 7.4                         | 21.49<br>1.90                                               | 7.8                                                            |
| Hq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 2                                                   | 6 7                         | 1.0                                                         | 7.3.                                                           |
| timeral constituents in parts per million Calcium (Calcium (Calciu | 12<br>- 7<br>- 7<br>- 8<br>- 9<br>- 9<br>- 17<br>- 92 | 7 - 3<br>1<br>2, b<br>6<br> | 11<br>2 1<br>5 4<br>1 2<br>0 0<br>62<br>4 8<br>5 2<br>4 0 0 | 5.8<br>2 1<br>2.8<br>7<br>28<br>1.0<br>.8<br>0.1<br>0.0<br>0.0 |
| otal dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1                                                    | 37                          | A1                                                          |                                                                |
| Parcent sodium  Hardness as CaOO <sub>3</sub> in parts per million  Total  Noncerbonate  Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 146<br>1<br>50                                        | 18<br>0.0                   | 34<br>39<br>1<br>50                                         | 23<br>0.0<br>0.3                                               |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >7,000.                                               | 0.06                        | 2,400.                                                      | 0.06                                                           |
| Radicactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solld alpha<br>Dissolved bate<br>Solld bets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.32<br>.76<br>8.85<br>7.78                           | 0.00<br>0.00<br>0.00        | 0.30<br>0.44<br>6.37<br>7.78                                | 0,00<br>0.27<br>2.76<br>3.09                                   |





### Carson River Basin

The Carson River Basin drains an area in California of 449 square miles in the central portion of the Lahontan Region. The Carson River system originates in the Sierra Nevada and flows eastward into the State of Nevada. The California watershed of the Carson River is classified as mountainous and foothill terrain. Annual natural mean runoff from the California portion of the basin is about 389,300 acre-feet.

The economy in the basin is based on livestock raising, supplemented by recreational activities. There are no significant waste discharges entering the river system.

The following tabulation presents the names of stations maintained to monitor quality of surface waters in the basin and the page on which each is discussed:

| Monitoring Station                        | Page Number of<br>Station Discussion |
|-------------------------------------------|--------------------------------------|
| Carson River, West Fork at Woodfords      | 414                                  |
| Carson River, East Fork near Markleeville | 416                                  |



## CARSON RIVER. WEST FORK AT WOODFORDS (STA. 115a)

Sampling Point The Woodfords station is located in Section 34 of Township 11

North, Range 19 East, Mt. Diablo Base and Meridian. Samples were collected

monthly at the USGS gage on the left bank 3-1/2 miles downstream from

Willow Creek, 0.8 mile west of Woodfords.

Period of Record August 1958 through December 1959.

Water Quality Characteristics Past analyses show the water at Station 115a to be characteristically calcium bicarbonate, soft, class 1 for irrigation, and within drinking water requirements for mineral content. Total radio-activity reached 15.16  $\mu\mu$ c/1 in September 1959, which is slightly higher than is usually encountered in surface streams, but below the recommended safe limit.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |                                                                          |                                                                  |                                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|--|
| It.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Haximum of Record                                                        | Minimum of Record                                                        | Maximum - 1959                                                   | Minimum - 1955                                                    |  |
| Specific conductance (micromhom at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87.2                                                                     | h5 5                                                                     | 87.2                                                             | 45.5                                                              |  |
| Temperature in °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64                                                                       | 34                                                                       | 60                                                               | 34                                                                |  |
| Dissolved coygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.6<br>100                                                              | 7.6<br>78                                                                | 11.6<br>100                                                      | 8.2<br>78                                                         |  |
| pR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                                                      | 7.1                                                                      | 7.8                                                              | 7.1                                                               |  |
| Minoral constituents in parts per million Calcium (c) Calcium (c) Magnesium (Mg) Sodium (Hg) Fotas dum (c) Carbonate (CS) Sulfate (SO) Sulfate (SO) Sulfate (SO) Filtrate (MC) Filtrate | 19<br>2.9<br>5.4<br>1.8<br>0.0<br>5.0<br>2.5<br>1.5<br>1.5<br>0.1<br>0.1 | 6.0<br>0.9<br>1.9<br>0.6<br>0.0<br>25<br>0.0<br>0.5<br>0.0<br>0.0<br>0.0 | 10<br>2.7<br>5.4<br>1.8<br>0.0<br>51<br>6.0<br>2.5<br>1.5<br>0.1 | 6.0<br>0.9<br>1.9<br>0.6<br>0.0<br>25<br>0.0<br>0.5<br>0.0<br>0.0 |  |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85                                                                       | 36                                                                       | 85                                                               | 36                                                                |  |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                       | 13                                                                       | 30                                                               | 13                                                                |  |
| Hardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Woncarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3%                                                                       | 18<br>0.0                                                                | 34<br>0.0                                                        | 18                                                                |  |
| Torbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                       | 0.5                                                                      | 10                                                               | 0.5                                                               |  |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 230.                                                                     | 0.13                                                                     | 230.                                                             | 0.13                                                              |  |
| Radinactivity in micro-micro curies per liter<br>Dissolved elpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.36<br>0.54<br>8.79<br>6.67                                             | 0.00<br>0.00<br>4.16<br>0.96                                             | 0.33<br>0.54<br>8.79<br>6.04                                     | 0.00<br>0.00<br>4.16<br>0.96                                      |  |

WATER QUALITY VARIATIONS



Sampling Point Station 115 is located in Section 27 of Township 10

North, Range 20 East, Mt. Diablo Base and Meridian. Monthly grab samples were collected in mid-stream, from State Highway 4 bridge, about 2.5 miles south of Markleeville.

Period of Record September 1958 through December 1959.

<u>Water Quality Characteristics</u> The water is calcium bicarbonate in character, soft to slightly hard, class 1 for irrigation use, within drinking water requirements for mineral content and suitable for all but the most exacting industrial uses.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |                                                                 |                                                                           |                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|--|
| It-m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                         | Minimum of Record                                               | Maslaus - 1959                                                            | Minimum - 195                                              |  |
| Specific conductance (microwhos at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7%                                                        | 58.4                                                            | 17%                                                                       | 5h h                                                       |  |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64                                                        | 33                                                              | 64                                                                        | 31                                                         |  |
| Dissolved oxygen in parts per million<br>Percent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.7                                                      | 8.2<br>78                                                       | 11-7<br>92                                                                | 8.2<br>78                                                  |  |
| Pil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 19                                                      | 1.1                                                             | 7.9                                                                       | 7.3                                                        |  |
| Minneal constituents in parts per million Calcium (Ca) Calcium (Sa) Calcium (Sa) Pota stum (f) Pota stum (f) Bicerbonate (800) Bicerbonate (800) Calcium (Sa) Calcium (Sa) Calcium (Sa) Calcium (Sa) Financiae (F) Bitrate (Sa) Financiae (F) Fina | 8 1 12 2.5 8 17 7.2 8 6 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1,2<br>7<br>1,4<br>0,9<br>0,0<br>27<br>2,9<br>0,8<br>0,0<br>0,0 | 16<br>8-1<br>12<br>2.5<br>17<br>7<br>7<br>7<br>7<br>7<br>7<br>9<br>9<br>9 | 5 ?<br>0.7<br>3.4<br>0.9<br>1.0<br>27<br>3.8<br>0.0<br>1.0 |  |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                        | 20                                                              | 30                                                                        | 21                                                         |  |
| Hardness as CaCO3 in parts per million<br>Total<br>Moncarbonsts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62<br>3                                                   | 19<br>0.0                                                       | 62                                                                        | 19 0.0                                                     |  |
| Purbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                        | 3                                                               | la la                                                                     | 3                                                          |  |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 230.                                                      | 07.13                                                           | 230.                                                                      | 0.13                                                       |  |
| Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid slpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.17<br>0.43<br>3.38<br>8.11                              | 0.00<br>0.62<br>0.84<br>2.61                                    | 0.43                                                                      | 0.00<br>0.84<br>2.81                                       |  |





CARSON RIVER, EAST FORK NEAR MARKLEEVILLE (STA. 115)

### Walker River Basin

Walker River Basin encompasses the northern section of Mono County in the central part of the Lahontan Region. The California portion of this basin includes about 910 square miles along the eastern slopes of the Sierra Nevada. Estimated mean annual runoff in this portion of the basin is 484,000 acre-feet.

The terrain of the Walker River watershed is predominantly mountainous with only 61 square miles in California classified as valley and mesa lands. Livestock raising, the production of winter feed, and recreation sustain the existing economy of the basin.

There are no significant waste discharges entering the waterways of the basin. Quality impairment of runoff from the watershed area by waste discharges has been negligible.

The following tabulation presents the names of stations maintained to monitor quality of surface water in the basin and the page on which each is discussed:

| Monitoring Station                 | Page Number of<br>Station Discussion |
|------------------------------------|--------------------------------------|
| Walker River, West near Coleville  | 420                                  |
| Walker River, East near Bridgeport | 422                                  |



## WALKER RIVER. WEST NEAR COLEVILLE (STA. 116)

Sampling Point Station 116 is located in Section 9 of Township 6

North, Range 23 East, Mt. Diablo Base and Meridian. Monthly water
samples were collected from the left bank 300 feet downstream from

U. S. Highway 395 bridge, 700 feet downstream from East Fork, 500 feet
downstream from USGS gage, 13 miles southeast of Coleville.

Period of Record August 1958 through December 1959.

Water Quality Characteristics Analyses of West Walker River indicate a water generally bicarbonate in type with no predominant cation, class 1 for irrigation, soft and within drinking water requirements for mineral content. However, during months of higher flows this water was calcium bicarbonate in character, with calcium receding in prominence in months when surface runoff diminished.

| WATER QUALITY RANGES                                        |                   |                   |                |              |  |
|-------------------------------------------------------------|-------------------|-------------------|----------------|--------------|--|
| It-                                                         | Maximum of Record | Minimum of Record | Haximum - 1959 | Hinimm - 195 |  |
| Specific conductance (microshoe at 25°C)                    | 185               | 31 3              | 180            | 31 3         |  |
| Temperature in OF                                           | 67                | 33                | 67             | 33           |  |
| Dissolved oxygen in parts per million<br>Percent saturation | 11.6<br>104       | 7.0               | 11.6<br>104    | 7 7<br>76    |  |
| pit                                                         | 8.2               | 7.3               | 8.2            | 7.3          |  |
| Mineral constituents in parts per million                   |                   |                   |                |              |  |
| Calcium (Ca)                                                | 17                | h.2               | 17             | 4.2          |  |
| Magnesium (Mg)                                              | h, t              | 0.2               | 4.3            | 0.2          |  |
| Sodium (Na)                                                 | 22                | 1.7               | 5.5            | 1.7          |  |
| Potassium (E)                                               | 2.1               | 11.3              | 2.1            | 0.3          |  |
| Carbonate (CO1)                                             | 10.0              | 0.0               | 0.0            | 0.0          |  |
| Bicarbonate (BCO3)                                          | 88                | 17                | 88             | 17           |  |
| Sulfate (SOL)                                               | 13                | 0.=               | 11             |              |  |
| Chloride (CI)                                               | 7.5               | 0.2               | 7.0            | 0.2          |  |
| Witrate (WO1)                                               | 0.9               | 0.0               | 0.9            | 0.0          |  |
| Fluoride (F)                                                | 0.2               | 0.0               | 0.2            | 0.0          |  |
| Boros (B)                                                   | 0.3               | 0.0               | 0.3            | 0.0          |  |
| Silica (S102)                                               | 19                | 5.1               | 19             | 5.1          |  |
| Total dissolved solids in parts per million                 | 119               | 5#                | 118            | 5#           |  |
| Percent sodium                                              | 52                | 14                | 52             | 14           |  |
| Hardness as CaCO; in parts per million                      |                   |                   |                |              |  |
| Total                                                       | 56                | 12                | 56             | 12           |  |
| Honcarbona te                                               | 0.                | 0.0               | 0.0            | 9.0          |  |
| Partidity                                                   | 15                | 1                 | 15             | 1            |  |
| Coliform in most probable number per milliliter             | 620.              | <0.045            | 620.           | 10 045       |  |
| ladioactivity in micro-micro curies per liter               |                   |                   |                | 1            |  |
| Dissolved alpha                                             | .20               | 0.00              | 0.20           | 0.17         |  |
| Solid alpha                                                 | 1.36              | 0.08              | 0.26           | 0.08         |  |
| Dissolved beta                                              | 4.16              | 0.64              | 4.16           | 0.64         |  |
| Solid beta                                                  | 6.54              | 0.00              | 6.54           | 0.00         |  |

WATER QUALITY VARIATIONS



## WALKER RIVER, EAST NEAR BRIDGEPORT (STA. 116a)

Sampling Point Station 116a is located in Section 34 of Township 6
North, Range 25 East, Mt. Diablo Base and Meridian. Monthly grab
samples were collected from the right bank, 500 feet downstream from
Bridgeport Reservoir and 5 miles north of Bridgeport.

Period of Record August 1958 through December 1959.

Water Quality Characteristics During periods of high flow, the water is calcium bicarbonate in character, class 1 for irrigation, and meets drinking water standards for mineral content. During low flow conditions the water becomes bicarbonate in type with no predominant cation.

| WATER QUALITY RANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                              |                                                                        |                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|
| Itom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum of Record                                                         | Minimum of Record            | Maximum - 1959                                                         | Hinimum - 195                                           |
| Specific conductance (micromhos et 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 268                                                                       | 12"                          | 268                                                                    | 195                                                     |
| Temperature in OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70                                                                        | Sac                          | 70                                                                     | lac.                                                    |
| Dissolved oxygen in parts per million<br>Fercent saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.9                                                                      | 6-6<br>69                    | 109                                                                    | 6.6                                                     |
| Hq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.5                                                                       | 7 2                          | 8 1                                                                    | 7.3                                                     |
| Minoral conetitumnie in parte per million Galcium (Ga) Magnusdium (Mg) Sodium (Ma) Potamadium (G2) Carbonate (G2) Carbonate (G2) Salirate (S0) Salirate (S0) Salirate (S0) Flooride (C1) Fitrate (W0) Flooride (C1) Floor | 26.<br>8. m<br>90.<br>6.<br>1.24<br>36.<br>7.5<br>2.0<br>0.6<br>0.2<br>28 | 7 ?                          | 24.<br>h. 9<br>3 h<br>6<br>12h<br>36<br>7.5<br>1.8<br>0.6<br>0.2<br>28 | 22<br>14<br>3.2<br>92<br>0.1<br>1.5<br>.0<br>1.1<br>0.0 |
| Total dissolved solids in parts per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 187                                                                       | Во                           | 187                                                                    | 124                                                     |
| Percent sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43                                                                        | 24                           | 43                                                                     | 27                                                      |
| Hardness as CaCO <sub>3</sub> in parts per million<br>Total<br>Moncarbonats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                                                                        | 45<br>0.0                    | 82                                                                     | 59                                                      |
| Terbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                        | 5                            | 60                                                                     | 5                                                       |
| Coliform in most probable number per milliliter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,400.                                                                    | <0.045                       | 2,400                                                                  | 70.045                                                  |
| Radioactivity in micro-micro curies per liter<br>Dissolved alpha<br>Solid alpha<br>Dissolved beta<br>Solid beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.42<br>33<br>0.54<br>3.60                                                | 0.33<br>0.00<br>0.36<br>0.00 | 0.33                                                                   | 0.33<br>0.36<br>0.00                                    |

WATER QUALITY VARIATIONS



WALKER RIVER, EAST NEAR BRIDGEPORT (STA. 116a)







### SURFACE WATER QUALITY, OTHER AGENCIES' MONITORING PROGRAM

One objective of this bulletin is to present all available data of a continuous and reliable nature on quality of surface waters in California. Several agencies, not under the administration of the State of California, Department of Water Resources, have surface water quality monitoring programs comparable to the department's. Mineral analyses of samples collected from surface waters in California under other agencies' programs are presented in Appendix B of this bulletin.

To supplement analyses of other agencies a brief description of their sampling stations and, when known, period of record, are included in the following alphabetical listing:

### AMERICAN RIVER AT FAIR OAKS (STA. 22d)

Sampling Point Station 22d is located in Section 13 of Township 9 North, Range 6 East, Mt. Diablo Base and Meridian. Samples were collected 1,000 feet below Old Fair Oaks Bridge, 2.4 miles east of Fair Oaks, 0.4 mile downstream from Nimbus Dam. Samples were collected quarterly and analyzed by the U. S. Bureau of Reclamation.

Period of Record January 1938 through October 1959.

CACHE SLOUGH BELOW LINDSEY SLOUGH (STA. 110a)

Sampling Foint Station 110a is located in Section 31, Township 5 North, Range 3 East, Mt. Diablo Base and Meridian. Samples were collected at the surface, at Liberty Island Ferry, about 0.5 mile downstream from Lindsey Slough, 6 miles north of Rio Vista. Samples were collected quarterly, usually in January, April, July, and October, and analyzed by the U. S. Bureau of Reclamation.

Period of Record April 1952 through October 1959.



### SURFACE WATER QUALITY, OTHER AGENCIES' MONITORING PROGRAM

One objective of this bulletin is to present all available data of a continuous and reliable nature on quality of surface waters in California. Several agencies, not under the administration of the State of California, Department of Water Resources, have surface water quality monitoring programs comparable to the department's. Mineral analyses of samples collected from surface waters in California under other agencies' programs are presented in Appendix B of this bulletin.

To supplement analyses of other agencies a brief description of their sampling stations and, when known, period of record, are included in the following alphabetical listing:

## AMERICAN RIVER AT FAIR OAKS (STA. 22d)

Sampling Point Station 22d is located in Section 13 of Township 9 North, Range 6 East, Mt. Diablo Base and Meridian. Samples were collected 1,000 feet below Old Fair Oaks Bridge, 2.4 miles east of Fair Oaks, 0.4 mile downstream from Nimbus Dam. Samples were collected quarterly and analyzed by the U. S. Bureau of Reclamation.

Period of Record January 1938 through October 1959.

# CACHE SLOUGH BELOW LINDSEY SLOUGH (STA. 110a)

Sampling Point Station 110a is located in Section 31, Township 5 North, Range 3 East, Mt. Diablo Base and Meridian. Samples were collected at the surface, at Liberty Island Ferry, about 0.5 mile downstream from Lindsey Slough, 6 miles north of Rio Vista. Samples were collected quarterly, usually in January, April, July, and October, and analyzed by the U. S. Bureau of Reclamation.

Period of Record April 1952 through October 1959.

### CARQUINEZ STRAIT AT MARTINEZ (STA. 28a)

Sampling Point The Martinez station is located in Section 13, Township 2
North, Range 3 West, Mt. Diablo Base and Meridian. Samples were collected
from the left bank at Benicia-Martinez ferry slip. A U. S. Bureau of
Reclamation continuous salinity recorder is located at the sampling point.
Monthly samples were collected and analyzed by the U. S. Bureau of
Reclamation when the salinity recorder was operating.

Period of Record March 1955 through December 1959.

CONTRA COSTA CANAL AT FIRST PUMP LIFT (STA. 109a)

Sampling Point The station is located in Section 25, Township 2 North, Range 2 East, Mt. Diablo Base and Meridian. The samples were collected at the discharge of the first pump lift of Contra Costa Canal approximately 0.5 mile southeast of Oakley. Monthly samples were collected and analyzed by the U. S. Bureau of Reclamation.

Period of Record January 1955 through December 1959.

DUTCH SLOUGH AT FARRAR PARK BRIDGE (STA. 108b)

Sampling Point Farrar Park Bridge station is located in Section 22,

Township 2 North, Range 3 East, Mt. Diablo Base and Meridian. Samples were collected at Farrar Park Bridge (Bethel Island Bridge) about 4 miles east of Oakley. A U. S. Bureau of Reclamation continuous salinity recorder is located at the sampling point. Monthly samples were collected and analyzed by the U. S. Bureau of Reclamation when the salinity recorder was in operation.

Period of Record May 1955 through December 1959.

### FALSE RIVER AT WEBB PUMP (STA. 112a)

Sampling Point The station is located in Section 36, Township 3 North, Range 3 East, Mt. Diablo Base and Meridian. Samples were collected on the south side of Webb Tract, approximately 10 miles northeast of Antioch. A U. S. Bureau of Reclamation continuous salinity recorder is located at this site. Monthly samples were collected and analyzed by the U. S. Bureau of Reclamation.

Period of Record May 1955 through December 1959.

MOKELUMNE RIVER BELOW COSUMNES RIVER (STA. 23b)

Sampling Point The Cosumnes River station is located in Section 29,
Township 5 North, Range 5 East, Mt. Diablo Base and Meridian. Samples
were collected below the confluence of the Cosumnes and Mokelumne Rivers
about 2 miles north of Thornton. The U.S. Bureau of Reclamation collected
and analyzed monthly samples from this station during periods when the
Delta Cross Channel gates are open.

Period of Record June 1952 through December 1959, except for 1956.

MOKELUMNE RIVER EELOW GEORGIANA SLOUGH (STA. 23c)

Sampling Point The station is located in Section 7, Township 3 North,

Range 4 East, Mt. Diablo Base and Meridian. Samples were collected and
analyzed monthly by the U. S. Bureau of Reclamation during periods when
the Delta Cross Channel gates are open below the confluence of Georgiana
Slough, near State Highway 12 bridge crossing approximately 3 miles
east of Isleton.

Period of Record May 1952 through December 1959, except for 1956.

### OLD RIVER AT HOLLAND TRACT (STA. 108a)

Sampling Point The station is located in Section 19, Township 2 North, Range 4 East, Mt. Diablo Base and Meridian. Samples were collected from the left bank on the east side of Holland Tract about 5 miles northeast of Knightsen. A U. S. Bureau of Reclamation continuous salinity recorder is located at the sampling point. Monthly samples were collected and analyzed by the U. S. Bureau of Reclamation when the salinity recorder is operating.

Period of Record March 1952 through December 1959.

### SACRAMENTO RIVER NEAR MALLARD SLOUGH (STA. 15c)

Sampling Point Station 15c is located in Section 5, Township 2 North, Range 1 East, Mt. Diablo Base and Meridian. Samples were taken from the left bank and at Pacific Gas and Electric Company dock at Pittsburg. A U. S. Bureau of Reclamation continuous salinity recorder is located at this sampling point. Samples were collected and analyzed by the U. S. Bureau of Reclamation when the salinity recorder was operating. Period of Record March 1955 through December 1959.

## SACRAMENTO RIVER AT SNODGRASS SLOUGH (STA. 97)

Sampling Point The station is located in Section 22, Township 6 North, Range 4 East, Mt. Diablo Base and Meridian. Samples were taken from the left bank at the structure housing a U. S. Bureau of Reclamation continuous salinity recorder, at Greens Landing approximately 2 miles northeast of Courtland. Monthly samples were collected and analyzed by the U. S. Bureau of Reclamation.

Period of Record June 1938 through December 1959.

#### SACRAMENTO RIVER AT TOLAND LANDING (STA. 15a)

Sampling Point Station 15a is located in Section 21, Township 3 North, Range 2 East, Mt. Diablo Base and Meridian. The samples were collected from the right bank at the structure housing a U. S. Bureau of Reclamation continuous salinity recorder, approximately 6 miles downstream from Rio Vista. Samples were collected and analyzed monthly by the U. S. Bureau of Reclamation when the salinity recorder was operating.

Period of Record July 1952 through December 1959.

SAN JOAQUIN RIVER AT BRANDT BRIDGE (STA. 101a)

Sampling Point Station 101a is located in Section 9, Township 1 North, Range 6 East, Mt. Diablo Base and Meridian. Samples were collected at the tide stage recorder on Brandt Bridge approximately 7.0 miles south of Stockton. Samples were collected every three months and analyzed by the U. S. Bureau of Reclamation.

Period of Record August 1940 through June 1945; March 1948 through December 1955; and March 1957 through December 1959.

SAN JOAQUIN RIVER AT CROWS LANDING BRIDGE (STA. 26b)

Sampling Point Station 26b is located in Section 7 of Township 6 South,

Range 9 East, Mt. Diablo Base and Meridian. Samples were collected at

Crows Landing Bridge 4.5 miles northeast of Crows Landing. Monthly

samples were collected and analyzed by the U. S. Bureau of Reclamation.

Feriod of Record June 1952 through December 1959.

SAN JOAQUIN RIVER NEAR DOS PALOS (STA. 25a)

Sampling Point The station is located in Section 12 of Township 11 South,
Range 13 East, Mt. Diablo Base and Meridian. Samples were collected about

0.7 mile downstream from the head of Temple Slough and 7 miles east of Dos Palos. Samples were collected and analyzed monthly by the U.S. Bureau of Reclamation.

Period of Record September 1938 through December 1959.

SAN JOAQUIN RIVER AT JERSEY POINT (STA. 28b)

Sampling Point The station is located in Section 6, Township 2 North, Range 3 East, Mt. Diablo Base and Meridian. Samples were collected from the left bank on the northern portion of Jersey Island approximately 9 miles northeast of Antioch. Monthly samples were collected and analyzed by the U. S. Bureau of Reclamation when the salinity recorder located at this site is operating.

Period of Record July 1952 through December 1959.

SAN JOAQUIN RIVER ABOVE MERCED RIVER (STA. 30a)

Sampling Point Station 30a is located in Section 3 of Township 7 South, Range 9 East, Mt. Diablo Base and Meridian. Samples were collected 0.2 mile upstream from Hills Ferry Bridge, 0.1 mile upstream from the mouth of the Merced River 2.3 miles northeast of Newman. Samples were collected and analyzed monthly by the U. S. Bureau of Reclamation.

Period of Record January 1938 through December 1959.

SAN JOAQUIN RIVER AT PATTERSON WATER COMPANY (STA. 27a)

Sampling Point The station is located in Section 15 of Township 5 South,

Range 8 East, Mt. Diablo Base and Meridian. Samples were collected at

Patterson Water Company Intake at Patterson Bridge 3.6 miles northeast

of Patterson. Monthly samples were collected and analyzed by the U. S.

Bureau of Reclamation.

Period of Record June 1938 through December 1959.

SAN JOAQUIN RIVER ABOVE SALT SLOUGH (STA. 111b)

Sampling Point Station 111b is located in Section 26 of Township 7

South, Range 10 East, Mt. Diablo Base and Meridian. Samples were collected from the surface approximately 4 miles upstream from Salt Slough 3 miles south of Stevinson. Samples were collected and analyzed monthly by the U. S. Bureau of Reclamation.

Period of Record September 1955 through December 1959.

SAN JOAQUIN RIVER AT SAN ANDREAS LANDING (STA. 112b)

Sampling Point The station is located in Section 13, Township 3 North, Range 3 East, Mt. Diablo Base and Meridian. Samples were collected from the left bank at Andrus Island approximately 6 miles south of Isleton. This station is maintained and operated by the U. S. Bureau of Reclamation.

Period of Record March 1952 through December 1959.

SAN JOAQUIN RIVER AT WEST STANISLAUS IRRIGATION DISTRICT INTAKE (STA. 27b)

Sampling Point The station is located in Section 10 of Township 4

South, Range 7 East, Mt. Diablo Base and Meridian. Samples were collected at the intake canal to West Stanislaus Irrigation District 4 miles north of Westley 0.2 mile upstream from Tuolumne River. Samples were collected monthly and analyzed by the U. S. Bureau of Reclamation.

Period of Record June 1938 through December 1959.

SAN JOAQUIN RIVER AT WHITEHOUSE (STA. 24b)

Sampling Point Station 24b is located in Section 25 of Township 13 South, Range 15 East, Mt. Diablo Base and Meridian. Samples were collected approximately 12 miles upstream from Mendota Dam at the head of Willow Slough. Conductivity is determined semimonthly and mineral analyses

made bimonthly during the irrigation season by the U. S. Bureau of Reclamation.

Period of Record November 1953 through December 1959.

A P P E N D I X A
PROCEDURES AND CRITERIA



## TABLE OF CONTENTS

# Appendix A

|                                   |     |       |   |   |   |   |   |   |   |   |   |   |   | Page |
|-----------------------------------|-----|-------|---|---|---|---|---|---|---|---|---|---|---|------|
| Field Methods and Procedures      |     |       |   |   |   |   | ٠ |   |   |   |   |   |   | A-2  |
| Laboratory Methods and Procedures | ٠   |       | ٠ |   | ٠ |   | ٠ |   | ٠ |   |   |   |   | A-3  |
| Water Quality Criteria            |     |       | ٠ |   |   |   |   |   |   |   | ٠ |   |   | A-6  |
| Criteria for Drinking Water       |     |       | ٠ |   |   | ٠ | ٠ |   |   | ٠ |   | ٠ |   | A-6  |
| Criteria for Irrigation Water     | ٠.  |       | ٠ | ٠ | ٠ |   |   | ٠ | ٠ |   |   |   | • | A-10 |
| Criteria for Industrial Water     | ٠.  |       |   |   |   |   |   | • |   |   |   |   |   | A-11 |
| Criteria for Fish and Aquatio     | : L | 1 f e | 9 |   |   |   |   |   | ٠ |   |   |   |   | A-12 |
|                                   |     |       |   |   |   |   |   |   |   |   |   |   |   |      |
|                                   |     |       |   |   |   |   |   |   |   |   |   |   |   |      |

#### TABLES

| Table No. |                                                                      | Page |
|-----------|----------------------------------------------------------------------|------|
| A-1       | Types of Analysis                                                    | A-4  |
| A-2       | Limiting Concentrations of Mineral<br>Constituents in Drinking Water | A-7  |
| A-3       | Hardness Classification of Waters U. S. Geological Survey            | A-9  |
| A-4       | Qualitative Classification of Irrigation Waters                      | A-11 |
| A-5       | Water Quality Tolerance for Industrial Uses                          | A-13 |

#### Field Methods and Procedures

Agencies which participated in the field sampling program during 1959 are listed below, together with the number of stations sampled by each agency:

| Agency                              | Number of<br>stations<br>sampled |
|-------------------------------------|----------------------------------|
| Department of Water Resources       | 146                              |
| Department of Fish and Game         | 1                                |
| United States Corps of Engineers    | 4                                |
| United States Bureau of Reclamation | 22                               |
| City and County of San Francisco    | 5                                |
| Total                               | 178                              |

Water samples are collected in May and September for mineral, radiological and bacterial examination. Water samples are collected the other ten months for partial mineral analysis and bacterial examination. The samples collected monthly for bacterial examination (see Table A-1 for explanation) are kept in portable ice boxes until mailed to the laboratory in special containers. Every effort is made to get the samples to the laboratory as quickly as possible.

At the time the samples are collected for laboratory examination, field determinations are made for dissolved oxygen (DO), by the modified Winkler method; water temperature; and pH. Visual inspection is made of the stream or lake and the physical conditions are noted.

Where possible, the sampling stations have been selected so as to be at or near stream gaging stations so that gage heights can also

be recorded at the time the water samples are collected. Instantaneous stream discharges at the time of sample collection are then obtained.

#### Laboratory Methods and Procedures

Methods of mineral and bacterial analysis, in general, are those described in the American Public Health Association publication "Standard Methods for the Examination of Water and Sevage", 10th Edition, 1955. In some cases, the methods described in the following publications also have been employed:

U. S. Geological Survey, "Methods of Water Analysis", 1950.

California Department of Public Works, Division of Water Resources, "Methods of Analysis", October 1955.

Table A-1 indicates the constituents analyzed for in the various types of analysis performed in connection with this program.

TABLE A-1
Types of Analysis

| Constituent                      | :Standard: |         | : | Bacterial | Radiological |
|----------------------------------|------------|---------|---|-----------|--------------|
| 0011002040110                    | : mineral: | mineral | : |           | :            |
| Specific Conductance             | Х          | Х       |   |           |              |
| pHa.                             | X          | X       |   |           |              |
| Total dissolved solids           | X          |         |   |           |              |
| Percent sodium                   | X          | X       |   |           |              |
| Hardness                         | X          | X       |   |           |              |
| Turbidity                        | X          | X       |   |           |              |
| Coliform                         |            |         |   | X         |              |
| Temperature <sup>b</sup>         | X          | X       |   |           |              |
| Dissolved oxygenb                | X          | X       |   |           |              |
| Calcium                          | X          | Х       |   |           |              |
| Magnesium                        | X          | X       |   |           |              |
| Sodium                           | X          | X       |   |           |              |
| Potassium                        | X          |         |   |           |              |
| Carbonate                        | X          | Х       |   |           |              |
| Bicarbonate                      | X          | X       |   |           |              |
| Sulfate                          | X          |         |   |           |              |
| Chloride                         | Х          | Х       |   |           |              |
| Nitrate                          | Х          |         |   |           |              |
| Fluoride                         | Х          |         |   |           |              |
| Boron                            | Х          | Х       |   |           |              |
| Silica                           | X          |         |   |           |              |
| Phosphate                        | X          |         |   |           |              |
| Zincc                            | X          |         |   |           |              |
| Iron <sup>c</sup>                | X          |         |   |           |              |
| Connerc                          | X          |         |   |           |              |
| Aluminum <sup>c</sup>            | X          |         |   |           |              |
| Manganese <sup>C</sup>           | X          |         |   |           |              |
| Arsenic                          | X          |         |   |           |              |
| Hexavalent chromium <sup>c</sup> | X          |         |   |           |              |
| Dissolved alpha                  |            |         |   |           | X            |
| Solid alpha                      |            |         |   |           | X            |
| Dissolved beta                   |            |         |   |           | X            |
| Solid beta                       |            |         |   |           | X            |

a pH is determined both in the field and in the laboratory.

b Field determination.

c These constituents are normally designated as heavy metals.

The methods and procedures of sample preparation and determination

#### I. Sample Preparation

of radioactivity in surface waters is as follows:

- A. On receipt in the laboratory, each sample is well mixed, and two 250-ml portions taken. Each is acidified with a few drops of glacial acetic acid, and two drops of colloidal graphite suspension (Aquadag) added.
- B. Each portion is filtered under suction through a membrane ("Millipore") filter, which retains suspended particles of approximately 0.2 microns diameter and larger. Filters are treated with an antistatic preparation (Merix Anti-Static No. 79-0L) to eliminate any extraneous electrostatic charge.
- C. The filtrate is placed in a 250-ml volumetric flask, inverted, and the mouth placed in a 1-3/4" x 1/4" aluminum culture dish in a "chicken-feeder" type arrangement. The flask is supported by a ring stand; the dish rests on a hotplate adjusted so that the sample is taken to dryness at a temperature well below boiling.
- D. At this point, there are duplicate samples of both suspended solids and dissolved material from each original water sample ready for determination of radioactive content.

### II. Determination of Radioactivity

- A. Two determinations are made on each sample, one for gross beta, one for gross alpha radioactivity. This represents a total of eight determinations for each original sample.
- B. Beta activity is determined with an internal gas flow counter operating in the proportional region, using argon-methane mixture as a flow gas. Background determinations are made before the first sample count each day, and then after each two sample counts throughout the day. Determinations of counter efficiency are made with a reference standard (thallium 204) at least twice daily. Each determination of sample and background count rate is made for a total of 1000 counts.
- C. Alpha activity is determined with a scintillation counter utilizing an activated zinc sulfide phosphor. Sample, background and efficiency measurements are made in the same manner as are the beta measurements. Uranium 238 is used as an alpha reference standard. Each determination of sample and background count rate is made for a pre-set time of 32 minutes.

#### III. Calculations

- A. Results are expressed as micro-micro curies per liter (μμc/1). One micro-micro curie is equivalent to 2.22 disintegrations per minute. Four values are reported for each sample:
  - (a) beta activity in the solids retained on the filter, (b) beta activity in the filtrate (dissolved material).
  - (c) alpha activity in the solids, and (d) alpha activity in the filtrate.
- B. Sample counts are corrected for background and geometric efficiency.
- C. Standard statistical procedures are utilized to compute the 0.9 error. The final result is expressed (symbolically) as x ± y μμc/l. This means that in a series of determinations on the same sample, the value of x should fall between x - y and x + y. 90% of the time.

#### Water Quality Criteria

Criteria used by the Department of Water Resources in the evaluation of the acceptability of water for the most common beneficial uses are described hereinafter. In general, the values presented herein should be considered only as guides to judgment, and not as absolute limiting standards.

#### Criteria for Drinking Water

Chapter 7 of the California Health and Safety Code contains laws and standards relating to domestic water supply. Section 4010.5 of this code refers to the drinking water standards promulgated by the United States Public Health Service for water used on interstate carriers. These criteria have been adopted by the State of California. They are set forth in detail in United States Public Health Report, Volume 61, No. 11, March 15, 1946, re-issued in March 1956.

According to Section 4.2 of the above-named report, chemical substances in drinking water, either natural or treated, should not exceed the concentrations shown in Table A-2.

TABLE A-2

#### LIMITING CONCENTRATIONS OF MINERAL CONSTITUENTS FOR DRINKING WATER

United States Public Health Service Drinking Water Standards, 1946

| Constituent                                                                                                                                                                                     | : | Parts per<br>million                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------|
| Mandatory                                                                                                                                                                                       |   |                                                                |
| Fluoride (F) Lead (Pb) Selenium (Se) Hexavalent chromium (Cr <sup>+6</sup> ) Arsenic (As)                                                                                                       |   | 1.5<br>0.1<br>0.05<br>0.05<br>0.05                             |
| onmandatory but Recommended Values                                                                                                                                                              |   |                                                                |
| Iron (Fe) and manganese (Mn) together Magnesium (Mg) Chloride (Cl) Sulfate (SO <sub>14</sub> ) Copper (Cu) Zinc (Zn) Phenolic compounds in terms of phenol Total solids - desirable - permitted |   | 0.3<br>125<br>250<br>250<br>3.0<br>15<br>0.001<br>500<br>1,000 |

Interim standards for certain mineral constituents have recently been adopted by the California State Board of Public Health.

Based on these standards, temporary permits may be issued for drinking water failing to meet the United States Public Health Service Drinking Water Standards, provided the mineral constituents in the following tabulation are not exceeded.

UPPER LIMITS OF TOTAL SOLIDS AND SELECTED MINERALS IN
DRINKING WATER AS DELIVERED TO THE CONSUMER

|                             | Permit      | Temporary Permit |
|-----------------------------|-------------|------------------|
| Total solids                | 500 (1000)* | 1500 ppm         |
| Sulfates (SO <sub>4</sub> ) | 250 (500)*  | 600 ppm          |
| Chlorides (Cl)              | 250 (500)*  | 600 ppm          |
| Magnesium (Mg)              | 125 (125)*  | 150 ppm          |

<sup>\*</sup> Numbers in parentheses are maximum permissible, to be used only where no other more suitable waters are available in sufficient quantity for use in the system.

The California State Board of Health recently has defined the maximum safe amounts of fluoride ion in drinking water in relation to mean annual temperature.

| Mean annual<br>temperature<br>in °F | Mean monthly maximum fluoride ion concentration in ppm |
|-------------------------------------|--------------------------------------------------------|
| 50                                  | 1.5                                                    |
| 60                                  | 1.0                                                    |
| 70 - above                          | 0.7                                                    |

The relationship of infant methomoglobinemia (a reduction of oxygen content in the blood, constituting a form of asphyxia) to nitrates in the water supply has led to limitation of nitrates in drinking water. The California State Department of Public Health has recommended a tentative limit of 10 ppm nitrogen (44 ppm nitrates) for domestic waters. Water containing higher concentrations of nitrates may be considered to be of questionable quality for domestic and municipal use.

Limits may be established for other organic mineral substances if their presence in water renders it hazardous, in the judgment of state or local health authorities.

An additional factor with which water users are concerned is hardness. Hardness is due principally to calcium and magnesium salts and is generally evidenced by inability to develop suds when using soap. The United States Geological Survey has suggested the following four degrees of hardness:

TABLE A-3

Hardness Classification of Waters
U. S. Geological Survey

| Range of hardness    | : | Relative        |
|----------------------|---|-----------------|
| in parts per million | : | classification  |
| 0 - 55               |   | Soft            |
| 56 - 100             |   | Slightly hard   |
| 101 - 200            |   | Moderately hard |
| Greater than 200     |   | Very hard       |
|                      |   |                 |

According to the International Commission on Radiological Protection  $^1$ , tentatively concurred in by the National Committee on Radiation Protection  $^2$ , if the Radium - 226 and Radium - 228 activity in water is substantially less than 10  $\mu\mu$ c/1, the maximum permissible concentration of otherwise unidentified radionuclides in water for individuals in the population at large may be considered to be 100  $\mu\mu$ c/1.

For the purposes of the environmental survey of surface water made for this report, it has been assumed that the total dissolved and solid alpha activity is derived from Ra<sup>226</sup> and Ra<sup>228</sup>.

<sup>1 &</sup>quot;Report on Decisions of the 1959 Meeting of the Interantional Committee on Radiological Protection (ICRP)". Radiology, Vol. 74, No. 1, January 1960, pp. 116-119.

<sup>2</sup> Somatic Radiation Dose for the General Population, Ad Hoc Committee of the National Committee on Radiation Protection and Measurements. Science, Vol. 131, No. 3399, February 19, 1960, pp. 482-486.

During the 1959 reporting year, the highest alpha activity observed in monitored surface waters was 1.86  $\mu\mu$ c/1. Consequently, it is believed that the maximum permissible concentration of 100  $\mu\mu$ c/1, as recommended by the I.C.R.P., was met by all stations sampled in the Surface Water Monitoring Program during 1959.

#### Criteria for Irrigation Water

Because of the diverse climatological conditions, crops, soils, and irrigation practices in California, criteria which may be set up to evaluate the suitability of water for irrigation use must necessarily be of a general nature, and judgment must be used in their application to individual cases. Suggested limiting values for total dissolved solids, chloride concentration, percent sodium and boron concentration for three general classes of irrigation water are shown in Table A-4.

TABLE A-4
QUALITATIVE CLASSIFICATION OF IRRIGATION WATERS

|                                                                                                            | : Class 1                        | : Class 2                    | : Class 3        |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|------------------|--|--|--|--|--|--|
|                                                                                                            | : Excellent to good              | :Good to injurious           |                  |  |  |  |  |  |  |
|                                                                                                            | :                                | :                            | :unsatisfactory  |  |  |  |  |  |  |
| Chemical properties                                                                                        | :(Suitable for most              |                              |                  |  |  |  |  |  |  |
|                                                                                                            | :plants under any                |                              | :most crops and  |  |  |  |  |  |  |
|                                                                                                            | :conditions of soil              |                              |                  |  |  |  |  |  |  |
|                                                                                                            | :and climate)                    | : soil conditions)           | :for all but the |  |  |  |  |  |  |
|                                                                                                            | *                                | :                            | :most tolerant)  |  |  |  |  |  |  |
| Total dissolved solids $ \begin{array}{c} \text{In ppm} \\ \text{In conductance, EC x } 10^6 \end{array} $ | Less than 700<br>Less than 1,000 | 700 - 2,000<br>1,000 - 3,000 |                  |  |  |  |  |  |  |
| Chloride ion concentration                                                                                 |                                  |                              |                  |  |  |  |  |  |  |
| In milliequivalents                                                                                        |                                  |                              |                  |  |  |  |  |  |  |
| per liter                                                                                                  | Less than 5                      | 5 - 10                       | More than 10     |  |  |  |  |  |  |
| In ppm                                                                                                     | Less than 175                    | 175 - 350                    | More than 350    |  |  |  |  |  |  |
|                                                                                                            |                                  |                              |                  |  |  |  |  |  |  |
| Sodium in percent of                                                                                       |                                  |                              |                  |  |  |  |  |  |  |
| base constituents                                                                                          | Less than 60                     | 60 - 75                      | More than 75     |  |  |  |  |  |  |
|                                                                                                            |                                  |                              |                  |  |  |  |  |  |  |
| Boron in ppm                                                                                               | Less than 0.5                    | 0.5 - 2.0                    | More than 2.0    |  |  |  |  |  |  |
|                                                                                                            |                                  |                              |                  |  |  |  |  |  |  |
|                                                                                                            |                                  |                              |                  |  |  |  |  |  |  |

#### Criteria for Industrial Water

The water quality criteria for the diversified uses of water in industry range from the exacting requirements for make-up water for high pressure boilers to the minimum requirements for water washdown and metallurgical processing.

Because of the large number of industrial uses of water and widely varied quality requirements, it is practicable to suggest only very broad criteria of quality. These variable conditions make it desirable to consider water quality requirements in broad and general terms only, and, where possible, for groups of related industries rather than individually. The general quality requirements of several individual and major groups of water uses are listed in Table A-5.

The values shown in this table are those suggested in the Progress Report of the Committee on Quality of Tolerance of Water for Industrial Uses in the Journal of the New England Water Works Association, Volume 54, 1940.

#### Criteria for Fish and Aquatic Life

Water of suitable quality and quantity is a fundamental requirement for the existence of an abundant supply of fish and aquatic life. It is very important that water quality conditions be such as to maintain an abundant supply of food required by fish and other desirable forms of aquatic life. Streams utilized for the propagation of fish and aquatic life should be free of toxic or harmful concentrations of mineral and organic substances and excessive turbidity. Extensive field and laboratory studies conducted by the United States Fish and Wildlife Service show that, among other things, the water in streams supporting a mixed fauna of fresh water fish such as bluegill, bass, crappie and catfish should have the following properties:

- (a) Dissolved oxygen not less than 5 ppm (at least 6 ppm for Salmonids),
- (b) pH range between 6.5 and 8.5,
- (c) Ionizable salts, as indicated by conductivity, between 150 and 500 micromhos at 25° Centigrade, and in general not exceeding 1,000 micromhos,
- (d) Ammonia not exceeding 1.5 ppm.

Mineral salts of high toxicity to fish are those of silver, mercury, copper, zinc, lead, cadmium, nickel, trivalent and hexavalent chromium, and others. Some pairs of toxicants, such as copper and zinc (also copper and cadmium, nickel and zinc) are far more toxic when combined than when they occur individually. Other toxic substances, when combined,

TABLE A-5
UALITY TOLERANCE POR INDUSTI

| WATER QUALITY TOLERANCE FOR INDUSTRIAL USESA | Allowable limits in parts per million |
|----------------------------------------------|---------------------------------------|
|                                              |                                       |

| Miscellansous Requirements | Other    | No corrosiveness, slime formation |                  | NaCl less than 275 ppm (pH 6.5-7.0). | NaCl less than 275 ppm (pH 7.0 or more) |         |             |                            | Urganic color plus oxygen consumed less | than 10 ppm. |                                         |                                         |                 | S102 Isss than 10 ppm. |               |                  |           |                 | No grit, corrosivensss. |             |                  |            |                 |                  |                 | 27 ppm, on 1900 com 2 ppm, |            |             |                   | Constant composition. Residual alumina.<br>less than 0.5 ppm. |               |                  |  |
|----------------------------|----------|-----------------------------------|------------------|--------------------------------------|-----------------------------------------|---------|-------------|----------------------------|-----------------------------------------|--------------|-----------------------------------------|-----------------------------------------|-----------------|------------------------|---------------|------------------|-----------|-----------------|-------------------------|-------------|------------------|------------|-----------------|------------------|-----------------|----------------------------|------------|-------------|-------------------|---------------------------------------------------------------|---------------|------------------|--|
|                            | Health   | 1                                 | Potable          | Potableb                             | Potableb                                |         | Potable     | Potable b                  | Potable_                                | delablab     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                         | rotable<br>p h  | Potable                | 1 1 1 1 1 1 1 |                  | 1 1 1 1 1 |                 | 1 1 1 1 1               | 1 1 1 1 1 1 | 1 1 1 1 1 1      |            | 1 1 1 1 1 1 1 1 |                  | 1 1 1 1 1 1 1 1 |                            |            |             | 1 1 1 1 1 1       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       | 1 1 1 1 1     |                  |  |
| Hydro-                     | sulfide  | 1                                 | 0.2              | 0.2                                  | 0.2                                     |         | → .         | 1                          | 2.0                                     | 0            | ,<br>,                                  | `                                       | 1               | 1 1                    | 1 1 1         |                  | 1 1 1 1   |                 | 1 1 1 1 1               | 1 1 1 1     | 1 1 1            |            | 1 1 1 1         |                  | 1 1 1 1         |                            |            |             | 1 1 1 1           |                                                               | 1 1 1         |                  |  |
| Odor,                      |          | - Low                             | - Low            | Low                                  | Low                                     |         | - Low       | - Low                      | Low                                     | Tool         |                                         |                                         | MO7 -           | - POM                  | 1 1 1 1       |                  | 1 1 1 1   |                 | 1 1 1                   | 1 1 1 1     | 1 1              |            | 1 1 1           |                  | i<br>i          | 1                          | 1 1 1      |             | 1 1               | 1 1 1 1                                                       | 1 1 1         | - Lov            |  |
| Alkalinity                 | Eases on | 1                                 | Total Total      | 75                                   | 150                                     |         | Pow         | ı                          | 20-100                                  |              | 1 1                                     |                                         | 1 1 1 1 1       | 1 1 1 1 1 1            | 1 1 1 1 1 1   |                  | 1 1 1 1 1 |                 | 1 1 1 1 1               | 1 1 1 1 1   | 1 1 1 1          |            | 1 1 1 1         |                  | total 50;       | O antroindi                | total 135: | hydroxide 8 | 1 1 1 1 1 1 1     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1  |  |
| Total                      |          | 1                                 | 1                | 200                                  | 1,000                                   |         | 1 1 1 1     | 1 1 1 1 1                  | 020                                     | 300          | 204                                     |                                         | 1               | 1 1 1                  | 1 1 1 1 1     |                  | 200       |                 | 1 1 1 1                 | 300         | 200              |            | 200             |                  | 100             | 1                          |            |             | 1 1 1             | 200                                                           | 1             | 1 1              |  |
| Man-                       | as Mn    | 0.5                               | 0.2              | 0.1                                  | 0.1                                     |         | 0.2         | 0.2                        | 0.2                                     | 0            | 2 0                                     |                                         | 7.0             | 0.2                    | 0.2           |                  | 0.02      |                 | 0.5                     | 0.1         | 0.05             |            | 0.05            |                  | 0.03            | 0.0                        | 0.2        |             | 0.25              | 0.25                                                          | 1,0           | 0.2              |  |
| Iron <sup>o</sup>          |          | - 0.5                             | . 0.2            | 0.1                                  |                                         |         | 0.2         | 0.5                        | 0.2                                     | 0            |                                         |                                         |                 |                        | 0.2           |                  | - 0.02    |                 | 1.0                     | 0.2         | 0.1              |            | 0.1             |                  | 0.05            | 0.0                        | 0.2        |             |                   | 0.25                                                          |               | . 0.2            |  |
| Hard-<br>ness              | CaCO     |                                   | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1                     | 1 1 1 1 1 1 1                           |         | 25-75       | 8<br>8<br>1<br>1<br>1<br>8 | 250                                     |              |                                         | 2                                       | 8 1 1 5 1 1 5 1 | 1 1 1                  | 20            |                  | 1 1 1 1   |                 | 180                     | 100         | 100              |            | 20              |                  | 00              | 2                          | 50-135     |             | 1 1 1             | 1<br>1<br>1<br>1                                              | 1 1           | 1<br>1<br>1<br>1 |  |
| rolog                      | 100      | 1                                 | 10               | 1                                    | 1 1                                     |         | 1<br>1<br>1 |                            | 10                                      |              | 1                                       | 1                                       | 8 1             | 2                      | 1 1 1         |                  | 2         |                 | 20                      | 15          | 10               |            | 2               |                  | 2               |                            | 10-100     |             | 20                | 5-20                                                          | 7             | 5                |  |
| Tur-                       | 6        |                                   | 10               | 10                                   | 10                                      |         | 10          | 10                         | 2                                       |              | 8<br>8<br>8<br>8                        | 2.5                                     | 10              | 2                      | 1 1 1 1 1     |                  | 2         |                 | 22                      | 25          | 15               |            | 2               |                  | 2               | 0                          | 20         |             | 2                 | 2                                                             | 1 1 1         | 2                |  |
| 9 8 0                      |          | Air conditioning                  | Baking           | brewing<br>Light Beer = = = = =      | Dark Beer                               | Canning | Legumes     | Ganeral                    | Carbonated beverages                    |              |                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Food: General   | Ico 00I                | Laundering    | Plastins, clear, | Unsolored | Paper and pulp: | Groundwood              | Draft pulp  | Soda and sulfide | H1gh-grade | light papers    | Rayon (viscose); | Pulp production | Manufactura                | 1 1        |             | Textiles: General | Dyeing                                                        | Wool scouring | Cotton bandage   |  |

a-Moore, E. W., Progress Report of the Committee on Quality Toleranoss of Water for Industrial Uses: Journal New England Water Works Association, Volume 54, Page 77, 1340.

Polume 54, Page 77, 1340.

De Oable water, onforming to U. S. P.M.S. standards, is necessary.

-Latt gives applies to both from alone and the sum of from and manganese.

neutralize each other through antagonism or chemical reaction (e.g., free cyanide combines with toxic heavy metal cations, such as nickel and copper ions, to form relatively harmless metallocyanide complexes).

The increasing use of household and industrial detergents, as well as the expansion in the manufacture and use of agriculture insecticides, poses serious hazards to fish and aquatic life. Preliminary studies, for example, indicate that one of the most common household detergents is lethal to relatively hardy fish at very low concentrations. This detergent was lethal to fish in fresh water at concentrations below 0.1 ppm and below 0.005 ppm in salt water. The increase in toxicity in salt water can probably be attributed to the fact that marine fishes must ingest water to maintain their osmotic balance.

Development and use of water resources, including the construction of dams for storage of water, frequently affects water temperatures which in turn affect fish and other aquatic life. Optimum water temperatures for cold water fish, such as trout and salmon, normally lie between 32° and 65° Fahrenheit. The cold water species are generally intolerant of temperatures above 75° Fahrenheit and will seek the lower temperature where possible. Warm water fish such as minnows, carp, catfish, perch, sunfish, and bass normally live in water having temperatures ranging from near 32° to 86° Fahrenheit. Acclimatization enables certain warm water species to live in waters having temperatures as high as 90° Fahrenheit, although they will migrate, where possible, to waters below 86° Fahrenheit.

APPENDIX B
BASIC DATA



## TABLE OF CONTENTS

| able No. |                                  | Page  |
|----------|----------------------------------|-------|
|          | Mineral Analyses                 |       |
| B-1      | North Coastal Region (No. 1)     | B-3   |
| B-2      | San Francisco Bay Region (No. 2) | B-35  |
| B-3      | Central Coastal Region (No. 3)   | B-41  |
| B-14     | Central Valley Region (No. 5)    | B-49  |
| B-5      | Lahontan Region (No. 6)          | B-189 |
|          |                                  |       |
|          |                                  |       |
|          | Radiological Assay               |       |
| в-6      | North Coastal Region (No. 1)     | B-199 |
| B-7      | San Francisco Bay Region (No. 2) | B-203 |
| B-8      | Central Coastal Region (No. 3)   | B-205 |
| B-9      | Central Valley Region (No. 5)    | B-207 |
| B-10     | Lahontan Region (No. 6)          | B-217 |
| B-11     | Radioassay of Snow               | B-219 |



ANALYSES OF SURFACE WATER TABLE B-1

B NTR COASTAL REGION (NO. 1)

AMPRIOPE CHEEK MEAN TENNAMT (STA. 10)

Analysed 9060 Hordness Dud. Colifornia As-8 × 8 8 E. × 8 10 Tereil Personnes and Personnes £ 8 8 28 7e 0.03 POL 0.0 6 Other constituents P. 0.03 AL 0.05 Fino- Boron S equivolente per million parts per million 1701e (NO<sub>3</sub>) 0.0 0.0 0.00 Chio-2.5 0.4 0.0 0.0 Sul -fote (SO<sub>6</sub>) 2.0 0.00 Mineral constituents 24 34 34 17 0.0 0.0 1.4 5.04 8.00 90.0 2.6 Polos 8.8 0.0 3.6 3.7 0.80 3.7 9.40 2.7 3 8 3.0 4.18 5.8 6.8 5.6 0.28 8 8 ° Į 3. Specific Osselved conductorical Osygen (micromhos ppm %301 84 in cfs in of Dore ond time compiled p S T

Sum of calcium and magnessum in epm

Jan or currow and magnetize (As), copper (Cu), lead (Pb), manganese (Mn), sinc (Zn), and hexarolent chromium (Cr<sup>48</sup>), reparted here as 0 0 except as shown from (Cr<sup>48</sup>), reparted here as 0 0 except as shown Desived from conductivity vs TDS curves

Gray,metric determination

March Body of Desired States Control Server, Ochshy of Worse Branch (USGS), United States Department of this Interior, Burson of Rectionation (USBS), United States Department of this Interior Server (USPS), Sen Burson Server ( Annual median and rage, respectively. Calculated from analyses of duplicate manhly samples made by Colistens Department of Public Health, Division of Laboratories, or United States Public Health Series

ANALYSES OF SURFACE WATER

WORTH COASTAL REGION (NO. 1)

94

Not 200 (est.)

ond time sompled

9

(cet.) 50 (eet.) 25 (est.) ( sot.) 10 (est.) 8 eet.) 5 (eet.)

2/4 1,400 1,713 8/3

vailabl Availabl

by 1 SUBI

Hardness bid-Colformh os CoCO<sub>3</sub> IIIy MPN/mi Totol N.C. 25 8 47 8 8 8 Total Par-dis-solved sod-solids lum in ppm 88 52 8 98 63 152 8 66 89 re 0.01 Al 0.04 d 0.02 0.05 Zn 0.03 constituents 0.13 A1 Other PO. Boron Silico (B) (SiO<sub>2</sub>) 0.37 0.2 7. 0.1 7.0 0.5 6:5 4.0 equivalents per million ports per million Fluo-0.0 0.0 0.0 frate (NO<sub>4</sub>) 0.0 0.1 0.0 0.0 000 BIG RIVER NEAR MOUTH (STA. 8c) 0.50 9.50 8.5 39 5/2 0.0 Chlo Cis fote (SO<sub>4</sub>) 9.6 č constituents Bicor-bonate (HCO<sub>4</sub>) 1 8 921 18 112 800 Corbon-ote (CO<sub>3</sub>) Mineral Potas-Rium (K) (No) 12 Mogna-sium (Mg) 8.8 8.1 15 170 112 17 27 201 1.10 1.05 200 3 8 25 2.5 Hd Specific conductance (micromhos at 25°C) 143 146 166 211 ppm %Sot Dissolved 8 8 8 8 8 g 8 8 8 26 Dischorgs Temp

65

25

o Field pH

Laboratory p.H.

Sum at colcium and magneshum in Spin. Iron (Fe), aluminum (AI), arsanic (As), copper (Cu), Iead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (C+5), reported here as  $\frac{0.0}{0.00}$  except as shown. Derived from conductivity vs TDS curves Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents.

Meent onely ser mode by United Street Geological Survey, Obellity of Mater Street Blanch (USGS), United Street Defendent on the Street Company of Red funding the Company of Red funding on the Street Palit is Held Survey of Street Palit is Held Street (USPS); Sur Benneding County Flood Company of Street Palit is Held Street (USPS); Sur Benneding County Flood County Fl Annel redion and angs, respectively. Calculated from analyses of deplicate monthly samples made by California Department of Public Health, Division of Lebaratories, or United States Public Health Service. Gravimetric determination.

# ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE B.1

|                                    | _                       | _                                                                      | -                   |       |      |             |                   |      | _           |               |                 |       |       |      | <br> |              |  |
|------------------------------------|-------------------------|------------------------------------------------------------------------|---------------------|-------|------|-------------|-------------------|------|-------------|---------------|-----------------|-------|-------|------|------|--------------|--|
|                                    |                         | Nordness Bid - Koliform Analyzed os CaCO <sub>5</sub> - 17 MPN/md by 3 |                     | tisda |      |             |                   |      |             |               |                 |       |       |      |      |              |  |
|                                    |                         | Month and                                                              |                     |       |      |             |                   |      |             |               |                 |       |       |      |      |              |  |
| Ì                                  |                         | 7                                                                      |                     |       |      |             | %,                |      |             |               |                 |       |       |      |      |              |  |
|                                    |                         | 000                                                                    | ∪ €<br># d          |       | 0    | 0           |                   | A.   |             |               |                 |       |       |      |      |              |  |
|                                    |                         | Hoyd<br>os C                                                           | Totol               |       | 8    | %           | sk.               | ć.   | 2.          |               | js,             |       | K     | 3/   |      |              |  |
|                                    |                         | 0.00                                                                   |                     |       | 7    | 18          | 9.8               | 53   | 5           | X             | vi              | -     | %     | К    |      |              |  |
|                                    | Total                   | dis cant                                                               | Eas                 |       | 72   | 63          | 2                 | 0    | F           | 54            | 41              | +     | φ.    |      |      |              |  |
|                                    |                         |                                                                        |                     |       |      |             | 7e 0.08 A1 0.11 6 |      |             |               | 7e - 06 POL - d |       |       |      |      |              |  |
|                                    |                         | Silico                                                                 | (%)<br>(%)          |       | 2    | 38          | 8                 | 8    | 8           | 5             | 2               | 22    | 33    | 22   |      |              |  |
|                                    | 6                       | 1 8                                                                    | 6                   |       | 0.0  | 0.0         | 0.0               | 0.0  | 0.0         | 0             | 0.0             | 0     | 0.0   | 0.0  |      |              |  |
|                                    | aullion<br>sr mill      | Fluo-                                                                  | (F)                 |       | 0.0  | 0.0         | 0.0               | 0.0  | 2.0         | 15            | 080             | 200   | 0.0   | 0.1  |      |              |  |
| STA, 1d                            | squivolents per million | ž                                                                      | (NO <sub>5</sub> )  |       | 0.0  | 0.0<br>0.01 | 0.7               | 5.0  | 0 8         | 0 18          | 6.0             | 0.0   | 0.0   | 0.0  |      |              |  |
| CDOET (                            | 04:00 8                 | Chio.                                                                  | (C1)                |       | 0.04 | 0.03        | 0.00              | 0.04 | 2.2         | 0 8           | 0.03            | 0.0   | 0.0   | 6.0  |      |              |  |
| NEAR NO                            | u.                      | Sul                                                                    | (\$05)              |       | 9.6  | 0.04        | 0.10              | 3.8  | 0.00        | 0.0           | 0.0             | 2.0   | 0.02  | 0.0  |      |              |  |
| BUTTE CREEK NEAR MACDOEL (STA. 14) | constituents            | Bicor                                                                  | (HCO <sub>2</sub> ) |       | 30   | 38          | 0.74              | 200  | 20 2        | 17 c          | ¥10             | 0.69  | 0.67  | 3 °C |      |              |  |
| BUTT                               | Mineral con             | - no pour                                                              | (°00)               |       | 0.0  | 0.0         | 0.0               | 0.0  | 0,0         | 0.8           | 0.0             | 08    | 0.0   | 0.0  |      |              |  |
|                                    | N.                      | Potos.                                                                 | E(X)                |       | 0.03 | 0.03        | 0.03              | 0.03 | 2.2         | 1.0           | 0.08            | 1.4   | 1.7   | 0.07 |      |              |  |
|                                    |                         | Sadium                                                                 |                     |       | 0.19 | TE C        | 3.8               | 3.4  | 5.2         | - 18          | 8.4             | 0.18  | 0.19  | 5.3  |      |              |  |
|                                    |                         | - eubon                                                                | (G)                 |       | 0.20 | 0.16        | 3.9               | 9.9  | 2.9         | 4.8           | 0.10            | 2.20  | 0.12  | 0.22 |      |              |  |
|                                    |                         | Calcium                                                                | (Co)                |       | 6.8  | 0.80        | 0.80              | 0.24 | 8.8<br>23.0 | 0.0           | 6.4             | 0.0   | 0.36  | 0.8  |      |              |  |
|                                    |                         | °z,                                                                    |                     |       | 7.3  | 7:3         | 7.3               | 7.3  | -1          | 4.9           | 7.6             | .e    | -     | 5    |      |              |  |
|                                    | Sanai (1)               | Conductance                                                            | 0.67                |       | 8.69 | 71.9        | £<br>\$:          | 6.95 | 0.50        | 81.3          | 81.2            | 12.5  | 73.1  | 79.7 |      |              |  |
|                                    |                         | 7.5                                                                    | % Saf               |       | 28   | 8           | 8                 | 8    | 8           | 16            | 8               | 80    | 81    | 8    |      |              |  |
|                                    |                         | Ossoivad                                                               | 200                 |       | 10.7 | 10.1        | 9.5               | 9.5  | 7.6         | 5.7           | 8.1             | 9.6   | 11.5  | 11.4 |      |              |  |
|                                    |                         | E 6                                                                    |                     |       | 15   | 2/          | 9                 | 51   | - 67        | ٤             | 3               | 50    | 4     | St.  |      |              |  |
|                                    |                         | Dischorge Tamp                                                         |                     |       | 20*  | %           | ж                 | 8    | 3.2         | 0.9           | h.3             | 6.7   | 8.3   | 6.8  |      | Mean         |  |
|                                    |                         | Dots<br>and time                                                       | T S F               | 1959  | 3/3  | 14/8        | 5/6               | 6/3  | 7/15        | 8/11<br>11/00 | 9/7             | 10/14 | 11/11 | 12/8 |      | · Dally Wean |  |

Hd blas 4 o

b Laboratory pH

c. Sum of calcium and magnessum in opm.

Sum at calcum and magnessum in spin.

Iron (Fe), aluminum (A1), areas (As) capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Cr), reparted here as 0 0 except as shown Iron (Fe), aluminum (A1), areas (As) Determined by addition of analyzed constituents Derived from conductivity vs. TDS curves. Gravimetric determination

Accord median and roops, respectively. Colculated from analyses and objective monthly senales mode by California Department of Polic Health. Division of Lobornians, or United States Polic Health Service.

Manual analyses node by United States Contigued Services, Collective Member States Contigued Services (1997) Services.

Control Daniel (1987) Collective With Datas Collective Wild). As support of the Angels Septement of Memory and Memory Collective Memory Collective With Datas and Services (1997). Control Lead Angels Septement of Memory Collective Memory Collecti

ANALYSES OF SURFACE WATER TABLE 3-1

|                              | -            |                      |                                         |      |             |             |             |             |                                 |             |       |            |                                           |             |      |      | <br> |
|------------------------------|--------------|----------------------|-----------------------------------------|------|-------------|-------------|-------------|-------------|---------------------------------|-------------|-------|------------|-------------------------------------------|-------------|------|------|------|
|                              |              |                      | Analyses<br>by 1                        | USGS |             |             |             |             |                                 |             |       |            |                                           |             |      |      |      |
|                              |              | -                    | MPN/ml                                  |      |             |             |             |             |                                 |             |       |            |                                           |             |      |      |      |
|                              |              | 5                    | 250                                     |      |             |             |             |             | н                               |             |       | S          | 4                                         | m           | ~    | 90   |      |
|                              |              |                      | N CO                                    |      | 00          | m           | 9           | en          | 0                               | <u>۳</u>    | o.    | 00         | 5                                         | 0           | CV   | 16   |      |
|                              | L            |                      |                                         |      | 20          | 3           | 45          | ± −         | 6                               | 108         | 102   | 100        | 100                                       | 119         | 118  | 136  | <br> |
|                              |              | Per                  | o o o                                   |      | 15          | 16          | 15          | 13          | 13                              | 71          | . 17  | 19         | 8                                         | 17          | 91   | 97   | <br> |
|                              |              | Total                | solide<br>in ppm                        |      | 16L         | 717         | 781         | 984         | 123 <sup>f</sup>                | 145         | 134€  | 138        | 145                                       | 158         | 15%  | 168  |      |
|                              |              |                      | Other constituents                      |      |             |             |             |             | A1 0.06 PO <sub>1, 0.00</sub> d |             |       |            | PO <sub>4</sub> 0.00 Zn 0.03 <sup>d</sup> |             |      |      |      |
|                              |              |                      | Silica<br>(SiOg)                        |      | 9           | 2           | 되           | 킈           | 9.0                             | al          | 4.2   |            | 13                                        |             |      |      |      |
|                              |              | lion                 | Beron (B)                               |      | 0.2         | 0.1         | 0.1         | 0.0         | e e                             | 7.0         | 6     | 7.0        | 7:0                                       | 8.0         | 8.0  | 31   |      |
|                              |              | per million          | Fluo-<br>ride<br>(F)                    |      | 0.1         | 0.1         | 0.0         | 0.1         | 0.0                             | 0.1         | 0.01  |            | 0.0                                       |             |      |      |      |
| MORTH COASTAL REGION (NO. 1) |              |                      | rote<br>(NO <sub>3</sub> )              |      | 0.02        | 0.00        | 0.8<br>0.01 | 0.00        | 0.0                             | 0.00        | 0.0   |            | 0.0                                       |             |      |      |      |
|                              | STA.         | equivalents          | Chio-<br>ride<br>(CI)                   | _    | 6.13        | 0 00        | 2.8<br>0.08 | 3.0<br>0.08 | 5.0                             | 6.0         | 5.8   | 5.0        | 10<br>0.28                                | 6.0         | 0.21 | 0.25 |      |
|                              | OG RIOS      | ē                    | Sul -<br>fate<br>(SO <sub>4</sub> )     |      | 0 25        | 0.23        | 0.23        | 8.6         | 0.16                            | 0.35        | 0.35  |            | 0.35                                      |             |      |      |      |
|                              | RIVER MEAR I | netituent            | Bicar-<br>banate<br>(HCO <sub>3</sub> ) |      | 5 th        | 52<br>0.85  | 95          | 1.43        | 1.9                             | 128<br>2.10 | 25.00 | 11.84      | 1.90                                      | 145<br>2.38 | 2.31 | 2.39 |      |
|                              | EEL RIVE     | Mineral constituents | Carbon-<br>ate<br>(CO <sub>3</sub> )    |      | 0.0         | 0.0         | 0.00        | 0.0         | 0.00                            | 0.0         | 0.00  | 0.0        | 0.0                                       | 0.0         | 0.0  | 0.0  |      |
|                              |              | N.                   | Potas-<br>sium<br>(K)                   |      | 0.03        | 1.6         | 0.8         | 0.7         | 0.03                            | 1.6         | 1.4   |            | 1.4                                       |             |      |      |      |
|                              |              |                      | Sodium<br>(No)                          |      | 4.4         | 4.1<br>0.18 | 4 0         | 5.4         | 6.9                             | 8.4         | 0.1   | 11<br>0.48 | 0.52                                      | 11          | 0.44 | 0.52 |      |
|                              |              |                      | Magne-<br>sium<br>(Mg)                  |      | 0.34        | 3.9         | 6.38        | 5.8         | 7.2                             | 8.6         | 9.4   |            | 9.1                                       |             |      |      |      |
|                              |              |                      | Calcium<br>(Ce)                         |      | 1.4<br>0.70 | 0.60        | 1.4<br>0.70 | 8           | 1.35                            | 29          | 1.35  | ≥.∞        | 1.25                                      | 2.38        | 2.36 | 2.72 |      |
|                              |              |                      | Ĭ.                                      |      | 7.4°        | 7.49        | 7.7b        | 8.24        | 8.2b                            | 8.29        | 8.29  | 8.2        | 7.8                                       | 8.10        | 7.7b | 8.5  |      |
|                              |              | Specific             | conductance<br>(micromhos<br>at 25°C)   |      | 124         | 100         | 121         | 165         | 221                             | 234         | 236   | 231        | 235                                       | 92          | 257  | 580  |      |
|                              |              |                      | year<br>%Sat                            |      | 103         |             |             |             | 88                              | 95          | 8.    | 116        | 68                                        | 84          | 15   | 104  |      |
|                              |              |                      | Dissolved<br>oxygen<br>ppm %Sat         |      | 10.6        |             |             |             | 1.8                             | 8.2         | 7.3   | 4.6        | 9.6                                       | 9.1         | 10.4 | 13.2 |      |
|                              |              |                      |                                         |      | 28          | 542         | 52          | 19          | 89                              | 19          | 8     | 8          | 63                                        | 96          | 64   | 2    |      |
|                              |              |                      | Discharge Temp                          |      | 370         | 11,690      | 1,034       | 176         | St.                             | 26.6        | 8.1   | 2.5        | 41.2                                      | 17.8        | 12.4 | 9.6  |      |
|                              |              |                      | and time<br>eampled<br>P.S.T.           | 1959 | 1/7         | 2/17        | 3/5         | 1350        | 5/14                            | 6/10        | 7/14  | 8/5        | 9/15                                      | 10/7        | 11/5 | 12/9 |      |

b Laboratory pH. a Field pH.

Sum of calcium and magnesium in epm.

Iron (Fe), and hexavolent chromium (Gr<sup>3</sup>s), reparted here as  $\frac{0.0}{0.00}$  except as shown. Sum of calcium and magnessum in epm.

Derived from conductivity vs TDS curves.

Amont median and stope, supportively. Calculated from analyses and subjects monthly samples small by Calcination beganness of Boblic Health Survives.

Market and projects and by United States Goodle for American (USGS), bind States Department of the Internor, Surviva of Redountion (USBS), bind States Department of the Internor, Surviva of Redountion (USBS), bind States Department of Surviva (USBS), bind States Department of Surviva (Surviva) (USBS), bind States on Present (LADPP), City of Loss Angeles, Department of Poblic Health (LADPP), Survival (LADPP), Survival (USBS), Surv Determined by addition of analyzed constituents.

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE D-1

|                                  |                      | Analyzed                                     |           | 9090 |               |                  |      |      |                    |             |              |             |                   |      |             |             |  |   |
|----------------------------------|----------------------|----------------------------------------------|-----------|------|---------------|------------------|------|------|--------------------|-------------|--------------|-------------|-------------------|------|-------------|-------------|--|---|
|                                  |                      | Hardness Bid California<br>os CaCOs In allow |           | 20 C | Marchan<br>23 | Mtotmum<br>0.046 |      |      |                    |             |              |             |                   |      |             |             |  |   |
|                                  |                      | 30.0                                         |           |      | \$            |                  | £    | 1    | 0                  |             |              |             |                   | C    | -           | -           |  |   |
|                                  |                      | 03                                           | P C       |      |               | E.               | E.   | 0.   |                    | 2           | -            | 7           | 7                 | K    | 8           |             |  |   |
|                                  |                      | Hardy<br>on Co                               | Tatal N C |      | £             | 3                | 69   | 8    | 8                  | 10          | 130          | 124         | 130               | 135  | 135         | ź           |  |   |
|                                  |                      | 000                                          |           |      | =             | 1                | 10   | 0    | 9                  | S           | 7            | 3           | 00                | 15   | 4           | 60          |  |   |
|                                  | Total                | 60 00 00 00 00 00 00 00 00 00 00 00 00 0     | E 863     |      | 194           | 90               | 73.  | 72,  | 3.8.7              | 100         | 230          | 182         | 161               | 162  | 160         | 0 1 P B     |  |   |
|                                  |                      | 1                                            |           |      |               |                  |      |      | AL 0.05 PO, 0.05 d | Tot Alk 112 | Tot Alk 128  | Tot Alk 138 | Pe 0 02 A1 0.0g d |      |             |             |  |   |
|                                  |                      |                                              | O S       |      |               |                  |      |      | 10                 |             |              |             | 0:1               |      |             |             |  | _ |
|                                  | 00                   |                                              | (8)       |      | 0.1           | 71               | 0.1  | 0.0  | 0.1                | 0.2         | 1.0          | 0.0         | 0.2               | 7    | 0           | 6           |  |   |
|                                  | million<br>million   | F luo-                                       | (F)       |      |               |                  |      |      | 0.0                |             |              |             | 10.0              |      |             |             |  |   |
| TA. 5)                           | porte per million    | ż                                            | (NO B)    |      |               |                  |      |      | 0.1                |             |              |             | 0.7               |      |             |             |  |   |
| CAN'T (S                         | 9 100                | Chia-                                        | (CI)      |      | 0.4           | 3.0              | 0.08 | 0.08 | 3.0                | 3.5         | 5.5          | 6.5         | 5.5               | 0.37 | 8.8         | 0.20        |  |   |
| HEAR HE                          | 61                   |                                              | (80°)     |      |               |                  |      |      | 12<br>0.83         |             |              |             | 80                |      |             |             |  |   |
| ICIT. RIVIN HEAR MCCARR (STA. 5) | natifuani            | Bicor-                                       | (HCO)     |      | 1.33<br>1.33  | 22               | 1.15 | 70   | 200                | 110         | 2.8          | 2.13        | 2.31              | 12.8 | 2.28        | 3.7         |  |   |
|                                  | Mineral constituents | Carbon                                       | (603)     |      | 0.00          | 0.0              | 0.0  | 0.00 | 0.0                | 0.03        | 0.0          | 0.13        | 0.0               | 0.0  | 0.0         | 0.00        |  |   |
|                                  | 3                    | Polos                                        | (K)       |      |               |                  |      |      | 0.5                |             |              |             | 1.b<br>0.04       |      |             |             |  |   |
|                                  |                      |                                              | ()<br>Z   |      | 0.18          | 0.7              | 3.3  | 2.9  | 3.7                | 5.3         | 0.33         | 7.4         | 8.6               | 100  | 10<br>0. EA | 8.k<br>0.37 |  |   |
|                                  |                      | - Bragna-                                    | (Mg)      |      |               |                  |      |      | 0.42               |             |              |             | 9.6               |      |             |             |  |   |
|                                  |                      | Colcium                                      | (00)      |      | 2             | 1.36             | 1.30 | 1.3  | 200                | 2.12        | 2.60         | 2.54        | 7.8.<br>E8:1      | 2.70 | 2.69        | 1.08        |  |   |
|                                  |                      | e I                                          |           |      | 7.3           | 7.6              | 4.   | 4.   | 7.3                | 7.16        | 7.8          | 7.6         | 4.8               | 7.7  |             | 7.7         |  | _ |
|                                  |                      | Conductorce                                  |           |      | 11/7          | 149              | 137  | 134  | 180                | 8           | 38           | 592         | 240<br>240        | 303  | 92          | 38          |  |   |
|                                  |                      | 9                                            | 96 301    |      | 8             | 8                | 901  | 8    | 8                  | 100         | 8            | 5           | 8                 | 93   | 108         | %           |  | - |
|                                  |                      | Dissolved                                    | pp.m. 9   |      | 11.8          | 11.8             | п.3  | 0.0  | 8.9                | 9.3         | 8 7          | 8.8         | 9.6               | 6.5  | 9.01        | 10.9        |  |   |
|                                  |                      | 60                                           | -         |      | 3             | Li .             | 15   | 8    | 62                 | 19          | K            | 69          | ٤                 | 61   | 5           | 25          |  |   |
|                                  |                      | Dischorge Tamp                               |           | No   |               |                  |      |      |                    |             |              |             |                   |      |             |             |  |   |
|                                  |                      | Octa<br>and time                             | - es      | 1989 | 1/21          | 2/8              | 3/3  | 0630 | 5/5                | 6/1         | 7/14<br>1015 | 8/4         | 9/7               | 10/6 | 11/3        | 12/9        |  |   |

Hd Plaid a

Sum of calcium and magnesium in epm. b Loborotory pH.

Jum of calculus and magnetium in spin. If the second of th

Determined by addition of analyzed constituents. Gravim etric determination.

Derived from conductivity vs TDS curves

A worsal medion and roops, respectively. Calculated from analysts of displacementally properly mode by Calculated Department of Poblic Health, Division of Loboratorists, or United States Poblic Health Service, USPNS, David States Department of Health and Calculated States Department of States Calculated States Calculated States Calculated States Calculated States Calculated States Department of States Calculated States Cal

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE 3-1

|                       |                                              | Analysed<br>by 1               |               | SDGO |                  |                   |       |            |                                            |               |               |               |                                          |             |            |       |  |  |
|-----------------------|----------------------------------------------|--------------------------------|---------------|------|------------------|-------------------|-------|------------|--------------------------------------------|---------------|---------------|---------------|------------------------------------------|-------------|------------|-------|--|--|
|                       | 4                                            | bid - Coliform"  Ity MPN/mi    | dedian        | 2.3  | Max1snus<br>620. | Minimum<br><0.045 | į.    |            |                                            |               |               |               |                                          |             |            |       |  |  |
| Ì                     | į                                            | - Ald -                        | T             |      | R                | 6                 | 8     | 20         | 10                                         | CI .          | -             | 9             | 15                                       | ev .        | v          | 10    |  |  |
|                       |                                              | 00 N<br>00 S                   | E             |      | 7                | 9                 | -     | 0          | 60                                         | 15            | .4            | 23            | 60                                       | 12          | #          | 12    |  |  |
| ١                     |                                              | Hordn<br>oe Co<br>Total        | Edd           |      | 15               | %                 | 8:    | 88         | 16                                         | 122           | 119           | 109           | 106                                      | 144         | 159        | 150   |  |  |
|                       | à                                            | po m                           | T             |      | 13               | 13                | 8     | 15         | 9                                          | 25            | 15            | 16            | 18                                       | 77          | 13         | 1,4   |  |  |
|                       | Total                                        | solved<br>solids<br>in ppm     |               |      | 38"              | 91.0              | 141e  | 82         | Ħ                                          | 133           | 151           | 1240          | 1361                                     | 179         | 196        | 183   |  |  |
|                       |                                              | Other constituents             |               |      |                  |                   |       |            | 7e 0.01 A1 0.02 d<br>PO <sub>12</sub> 0.05 | Tot. Alk. 130 | Tot. Alk. 140 | Tot. Alk. 105 | Pe 0.02 A1 0.03 d<br>PO <sub>1</sub> 0.0 |             |            |       |  |  |
|                       |                                              | Silica<br>(SiO <sub>E</sub> )  | T             |      |                  |                   |       |            | 15                                         |               |               |               | 7                                        |             |            |       |  |  |
|                       | lo                                           | 5                              |               |      | 0.1              | 0.0               | 10    | %          | []                                         | 9.5           | 7.            | 0.1           | ا<br>در                                  | 0.2         | 7          | 0.2   |  |  |
|                       | er mill                                      | Fluo-<br>ride                  | T             |      |                  |                   |       |            | 0.00                                       |               |               |               | 0.2                                      |             |            | -     |  |  |
| A, 6)                 | porte per million<br>equivolents per million | Prote (NO.)                    | $\rightarrow$ |      |                  |                   |       |            | 0.00                                       |               |               |               | 0.5                                      |             |            |       |  |  |
| MIA (ST               | od                                           | Chio-                          | 1             |      | 5.8              | 0.11              | 12    | 3.0        | 0.11                                       | 6.0           | 8.5           | 0.21          | 8.2                                      | 8.4         | 0.28       | 8.0   |  |  |
| RIVER AT SCOTIA (STA. | Ē                                            | Sul -<br>fate<br>(SO.)         |               |      |                  |                   |       |            | 12                                         |               |               |               | 0.35                                     |             |            |       |  |  |
| EEL RIVE              | etituents                                    | Brear-<br>bonate               |               |      | 1.28             | 1.8               | 112   | 72<br>1.18 | 8<br>1.5.1                                 | 2.10          | 2.13          | 1.59          | 1.97                                     | 161<br>2.64 | 2.9        | 2.75  |  |  |
| pa.                   | Mineral constituents                         | Corbon-                        |               |      | 0.0              | 0.0               | 0.0   | 0.0        | 0.0                                        | 0.03          | 5.17          | 0.13          | 0.00                                     | 0.0         | 0.0        | 0.0   |  |  |
|                       | M                                            | Potos-                         | T             |      |                  |                   |       |            | 0.6                                        |               |               |               | 0.04                                     |             |            |       |  |  |
|                       |                                              | Sodium<br>(No)                 |               |      | 0.23             | 6.19              | 0.48  | 0.18       | 4.4<br>0.19                                | 7.3           | 9.7           | 9.5           | 0.48                                     | 11<br>0.48  | 31<br>0.48 | 0.48  |  |  |
|                       |                                              | Mogne-<br>sium<br>(Ma)         |               |      |                  |                   |       |            | 5.8                                        |               |               |               | 0.92                                     |             |            |       |  |  |
|                       |                                              | (Ca)                           |               |      | 1.50             | 1.32              | 1.98  | 1.36       | 1.25                                       | 2.14          | 2.380         | 2.18          | 1.20                                     | 2.88°       | 3.18       | 3.00  |  |  |
|                       |                                              | g <sup>H</sup>                 |               |      | <br>             | 7.5               | 7.3   | t−<br>-a.  | 4. ⊢                                       | 7.5           | 8.0           | 0.8           | 8.3                                      | 8.1         | 7.T        | 7.6   |  |  |
|                       | Spanific                                     | conductance pH at 250 C)       |               |      | 165              | 152               | 245   | 143        | 186                                        | 231           | 893           | 215           | 243                                      | 315         | 341        | 318   |  |  |
|                       |                                              | lved<br>gen                    |               |      | 8.               | 6                 | 10%   | 10%        | 102                                        | 102           | 148           | 83            | 139                                      | 77          | 8          | %     |  |  |
|                       |                                              | Oisso                          |               |      | 11.5             | 11.2              | 10.5  | 10.4       | 10.2                                       | 10.0          | 12.3          | 17.11         | 11.9                                     | 10.8        | 9.01       | 11.11 |  |  |
|                       |                                              | Temp<br>in oF                  | T             |      | 5                | 64                | 8     | 9          | 19                                         | 29            | 82            | 69            | 75                                       | 63          | 57         | 9     |  |  |
|                       |                                              | Dischorge Temp<br>in cfs in PF |               |      | 5,410            | 6,350             | 8,890 | 6,080      | 3,830                                      | %             | 174           | 109           | 76                                       | 168         | 174        | 136   |  |  |
|                       |                                              | Date<br>and time<br>sampled    |               | 1959 | 1/21             | 1520              | 3/3   | 1,77       | 5/5                                        | 6/2           | 7/14          | 8/4<br>1430   | 9/7                                      | 10/6        | 17/1       | 12/9  |  |  |

B-8

b Labaratory pH.

Sum of colcium and magnesturan in epim.

Iran (Fa), aluminum (AI), areasic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>2</sup>6), reported here as  $\frac{0.0}{0.00}$  except as shown. Sum of calcium and magnessum in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

Annul median and roops, respectively. Calculated from analyses of depictate manthy samples mode by Calcination Department of Public Health, Davision of Laboratories, or United States Debigs of Stores, Quality of Marter Beneful (USCS), Later States (1965), States Beneful (USCS), Later States (1965), States Beneful States (1965), States Beneful States (1965), States and Public Health States (1965), States Beneful States (1965), States Beneful States (1965), States and Public Health (LADPH), City of Late States (1965), States and Public Response (1965), States and Public Response (1965), States (1965), Gravimetric determination.

ANALYSES OF SURFACE WATER ROPTH COASTAL REGION (NO. 1) TABLE P-1

|                      | 1                                                                       | _    |        | _           |              | -          |           |       |         |                      | -                  |         | -        |        |
|----------------------|-------------------------------------------------------------------------|------|--------|-------------|--------------|------------|-----------|-------|---------|----------------------|--------------------|---------|----------|--------|
|                      | Acoryz<br>6 p 1                                                         | 4    |        |             |              |            |           |       |         |                      |                    |         |          |        |
|                      | Hordness 1975 - Colliter & Analyzed as CaCO <sub>3</sub> 17 MPN/md 6p 1 |      |        |             |              |            |           |       |         |                      |                    |         |          |        |
|                      | 100                                                                     |      |        |             |              |            |           |       |         |                      | -                  |         |          |        |
|                      | Merdiness<br>as CaCO <sub>3</sub><br>Tato N C<br>ppm ppm                |      | -      |             |              |            |           |       | Т       |                      | 5                  | 7       | >        | );     |
|                      |                                                                         |      | -      |             | 5            | 4          | 2         | P     | 2       | 1                    | 9                  | Ł       | 3        | 8      |
|                      | 1000                                                                    |      | 4      |             | 9            |            |           | =     | =       | 5                    | 10                 |         |          | 8.     |
| Total                | 001.00 00d -                                                            |      | 7 p. 7 |             | Ė            | 'n.        | _         | ,K    | 100     | - 10<br>- 10<br>- 10 | N.                 |         | 2        | 1      |
|                      | Other constituents                                                      |      |        |             |              |            | 70 A1 4 d |       |         |                      | Ye - 24 Zr D - 1 d |         |          |        |
|                      | Silic<br>(5:02)                                                         |      | 01     |             | 5.5          | 80         | 7         | 16    | 0       |                      | 3                  |         |          |        |
| 100                  | Boron Silica<br>(B) (5:0 <sub>2</sub> )                                 |      | 0.5    |             | 0:0          | 0          | П         | 7     | -1      | E                    | 0                  | 0       | 10       | 7      |
| ost million          | F 100-                                                                  |      | 0.0    |             | 0.0          | 8          | 100       | 70 6  | 100     |                      | S.F.               |         |          |        |
|                      | 1 -                                                                     |      | 0 00   |             | 0.0          | 0.0        | S FK      | 8     | 200     |                      | × 8                |         |          |        |
| equivolents          | CNIG-                                                                   |      | 0.12   |             | 250          | 0.0        | 2.0       | : [   | 100     | 16                   | 8                  | 200     | 86       | X.E    |
| ē                    | Sut -<br>fote<br>(\$0 <sub>0</sub> )                                    |      | 210    |             | 15           | 0.00       | 9.0       | 16    | 21 0 21 |                      | 18                 |         |          |        |
| #19 cents            | Bonate<br>HCO <sub>3</sub> J                                            |      | ≈      |             | 5 th<br>0.89 | E 12       | 1 15      | 8 2   | 2 16    | 116                  | ¥11                | 3 12    | 56       | 1 1 10 |
| Mineral constituents | Petas Carbon - E                                                        |      | 0.00   |             | 0.00         | 0.0        | 00.0      | 0.0   | 0.0     | 0.00                 | 18 ×               | 2 20    | - 80 6   | 18     |
| Mine                 | Petos-<br>(X)                                                           |      | 1.1    |             | 9.00         | 200        | 8.0       | 9.00  | 76      |                      | 0 1.8<br>N         |         |          |        |
|                      | Sodium<br>(Na)                                                          |      | 0.18   |             | T.           | 2.2        | F         | 2 2 2 | 000     | 120.92               | 71 C               | 110     | 19 0     | 100    |
|                      | M 0gne<br>(Mg)                                                          |      | 4 6    |             | 76           | 6.6        | 910       | 2.00  | 5 P     |                      | 18                 |         |          |        |
|                      | Calcium<br>(Ca)                                                         |      | 910    |             | 200          | 210<br>151 | 918       | × 12  | 200     | 100                  | 9.18               | 12/2    | ja<br>in | 18     |
|                      | Ĭ.                                                                      |      | P      |             | -60.<br>-    | 7.50       | 2         | 9 19  | 0       | 6                    | 4 2                | E<br>eu | ac .     | 9.17   |
|                      | Specific<br>conductance<br>(micrombos<br>at 25°C)                       |      | 121    |             | 1115         | 139        | 135       | 1 98  | 99      | 9%                   | 352                | 11.1    | 397      | 37.6   |
| _                    | 25 Jac 2                                                                |      | 18     |             |              |            | 4         | 8     | E       | *                    | 100                | ŧ       | 8        |        |
|                      | 010001ve d<br>0 0 y gen<br>pp.m 9/6 Sat                                 |      | 10.5   |             |              |            | 9. 7      | v e0  | 1.6     | 6                    | 0                  | e e     | 4        |        |
|                      |                                                                         |      | 8      | Total .     | 9            | 5 %        | 49        | K     | 4       | 12                   | 8                  | 9       | 3        | 9      |
|                      | Discharge Temp<br>in cfa in of                                          |      | 1,420  | Sot Sempled | 2,670        | 1.522      | 900       | 9,    | 24-1    | 11.11                | ń                  | 2       | 100      | S      |
|                      | Dete<br>and time<br>ampled<br>P S T                                     | 1959 | 1,77   | 2/17        | 3/5          | 6/4        | 5/14      | 6/10  | 1/16    | 1222                 | 9/15               | 1 1     | 11 NO. 1 | 12/0   |

o FalloH

Me construction of

Special decimand despectant in many.

The of a command is usually copied to the copied of the copied of the first command is used to the copied of the copie

1. Desembned by addition of one year constituents.

Grey sim gir deresmin et en

Access regions and requirements to see from the second of the second of

named to see an

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

|                       |              | Analyzed<br>by 1          |                     | 9090          |                |                  |            |            |                   |               |      |               |                                            |          |            |            |      |  |
|-----------------------|--------------|---------------------------|---------------------|---------------|----------------|------------------|------------|------------|-------------------|---------------|------|---------------|--------------------------------------------|----------|------------|------------|------|--|
| ĺ                     |              | bid - Coliform Analyzed   |                     | Median<br>2.3 | Maximus<br>62. | M101mm<br><0.045 |            |            |                   |               |      |               |                                            |          |            |            |      |  |
|                       | 3            | - piq                     |                     |               | 80             | 80               | 54         | S.         | ev .              | CH            | -    | 2             | ~                                          | 7        | ۳ _        | 10         |      |  |
|                       |              | 800<br>800                | D E                 |               | н              | л                | 0          | м          | 0                 | <b>1</b> 0    | 0    | 0             | 0                                          | -        | 0          | #          |      |  |
|                       |              |                           | Tatol               |               | 99             | 25               | \$         | 28         | F                 | 89            | 101  | 88.           | 107                                        | 117      | 111        | 124        |      |  |
|                       |              | eod -                     |                     |               | 19             | 17               | 18         | 15         | 91                | 16            | 17   | 17            | 17                                         | 91       | 17         | 77.        |      |  |
|                       | Total        | solios<br>solide          | Edd                 |               | ®              | 72               | 78         | 78         | 101               | 112           | 133  | 132           | 136 <sup>f</sup>                           | 156      | 158        | 155        |      |  |
|                       |              | Other constituents        |                     |               |                |                  |            |            | 70 0.01 A1 0.03 d | Tot. Alk. 103 |      | Tot. Alk. 124 | PO <sub>1, 0.00</sub> A1 0.03 <sup>4</sup> |          |            |            |      |  |
|                       |              | Slico                     | (3015)              |               |                |                  |            |            | 7                 |               |      |               | 4.0                                        |          |            |            | <br> |  |
|                       | million      | Borom                     |                     |               | 0:0            | 0.0              | []         | 0.0        | 0.0               | 0.0           | 0.1  | 0.1           | 0.1                                        | 0        | 0.1        | 0.5        |      |  |
| A. 7)                 | per m        | Fluo-                     | (F)                 |               |                |                  |            |            | 0.00              |               |      |               | 0.0                                        |          |            |            |      |  |
| NEAR MIRANDA (STA. 7) |              | - IN                      | (NO <sub>3</sub> )  |               |                |                  |            |            | 0.00              |               |      |               | 0.01                                       |          |            |            |      |  |
| AR MIR.               | ports pr     | Chlo-                     | (CI)                |               | 5.2            | 0.11             | 0.13       | 0.13       | 0.13              | 6.0           | 5.8  | 6.0           | 8.5                                        | 0.22     | 8.5        | 10<br>0.28 |      |  |
| FORK                  | Ē            | Sul -                     |                     |               |                |                  |            |            | 0.16              |               |      |               | 8.0                                        |          |            |            |      |  |
| , BOUTH               | constituents | Bicar-                    | (HCO <sub>3</sub> ) |               | 1.15           | 0.97             | 67<br>1.10 | 66<br>1.08 | 37.43             | 1.59          | 2.10 | 1.90          | 134<br>8.80                                | 2.33     | 2.33       | 2.26       |      |  |
| KEL RIVER, BOUTH      | Mineral car  | Carbon                    | (00)                |               | 0.0            | 0.00             | 0.0        | 0.0        | 0.0               | 3             | 0.0  | 0.13          | 0.00                                       | 0.00     | 0.00       | 0.00       |      |  |
| EX                    | 25           | Potos-                    |                     |               |                |                  |            |            | 0.0               |               |      |               | 0.05                                       |          |            |            |      |  |
|                       |              | Sadium                    |                     |               | 6.1            | 0.55             | 5.2        | 4.8        | 6.1               | 0.33          | 7.6  | 0.3           | 0.44                                       | 10       | 11<br>0.48 | 9.6        |      |  |
|                       |              | Magne                     | (Mg)                |               |                |                  |            |            | 5.7               |               |      |               | 9.6                                        |          |            |            |      |  |
|                       |              | Calcium                   | (60)                |               | 1.16°          | 1.04             | 1.08       | 1.16       | 0.95              | 1.78°         | 2.02 | 1.8           | 1.35                                       | 2.34     | 2.28       | 2.18       |      |  |
|                       |              | Ĭ.                        | _                   |               | 7.3            | 7.5              | 7.2        | F.         | 7.3               | 7.3           | 0.8  | 7.9           | 7.9                                        | 7.5      | 6.         | 7.9        |      |  |
|                       | Coace        | conductance<br>(micramhae |                     |               | 135            | 121              | 133        | 132        | 170               | 189           | 555  | 553           | 546                                        | <b>%</b> | 566        | 562        |      |  |
|                       |              | p e A                     | %Sat                |               | %              | 76               | 100        | 84         | 16                | 16            | 85   | 88            | 8.                                         | 81       | 102        | 93         |      |  |
|                       |              | Otssolvad                 | Edd                 |               | 11.6           | 11.3             | 11.11      | 9.3        | 9.0               | 8.1           | 7.7  | 7.9           | 8.1                                        | 8.1      | 11.2       | 11.9       |      |  |
|                       |              | Temp<br>In OF             |                     |               | 39             | 9                | 52         | 65         | 19                | 1/2           | 69   | 70            | 70                                         | 8        | 53         | 4          |      |  |
|                       |              | Oischarge Temp            |                     |               | 1,610          | 1,650            | 1,510      | 1,277      | 705               | 180           | 89   | 37            | 35                                         | 55       | 94         | 3          |      |  |
|                       |              | Date<br>and time          | P.S.T               | 1959          | 1/21           | 2/4              | 3/3        | 1600       | 5/5               | 6/1           | 7/14 | 8/4           | 9/8<br>0930                                | 9/01     | 11/3       | 12/9       |      |  |

b Labaratary pH.

Sum of colcium and magnessum in Spm.

Sum of Colcium and magnessum in Spm.

Iron (Fe), aluminum (AI), respected here as  $\frac{0.0}{0}$  except as shawn. Iron (Fe), aluminum (AI), respected here as  $\frac{0.0}{0}$  except as shawn. Sum of calcium and magnesium in epm.

Darived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Gravimetric determination.

Annual median and rouge respectively. Calculated from analyses and adoptions monthly samples made by Calcination Department of Public Health, Division of Lobardments, or United States Public Health Service.

Missed analyses under by United States Casolity of Water Brack (USCS): United States Department of the Interior, Service (USRS): United States Department of New (USRS): United States Department of New (USRS): United States States (USRS): United States Department of New (USRS): United States (USRS): States States (USRS): States States (USRS): States States (USRS): St

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE 1-1

6961

808 Total Age Herdenss Not Castrons Age 101 Winterson And Cale Medical Median 23 8 Pi, 22 179 PW 0 11 AL 2 02 0 75 1 A O G Other constituents Silico (\$10g) Fluo-Baron S DUALALA RIVIR. SOUTH PORK MEAR ARRAPOLIS (STA. (m.) parte per million 1 0 1 Note NO. 000 Chio-O. 28 5 8 5 5ul -fote (50<sub>6</sub>) 5 Constituents 3 165 0.10 0.10 (CO.5) 10.0 Mineral Potos-114 115 Brum Brum (Mo) 8 19 8 8 8 19 20 13 100 28 25 2 3 6.9 H Specific canductance (micromhos of 25°C) 57.0 6 189 ppm % Sat Dissolved 8 9 8 8 130 3 Dischorge Tamp 629 Dots and time sempled P S T 7/13

reported here as 0.0 as ept as shawn 0.00

sinc Zn and headvolent

1/6

b Lobertony pH

right as amphign logal File oluminum A. arsen. (As logger Co.) lend (Pb.). Derved from tendoctristy is TDS curves. Sum of tolcom and magnetical in spin.

Devemoned by odds on of onelyzed constituents.

Conversation of determinations

Annual many tanks the foreign of the control of the Automation and many requirements and content mentions and show core manship samples made by California Department of Public Heart III Division to Laboration as an area Stores Public Heart II Serves

# ANALYSES OF SURFACE WATER TABLE 3-1

NORTH COASTAL REGION (NO. 1)

Analyzad 0808 Tur-bid-Caliform ity MPN/mi Maxtania 7,000. Minimum 0.28 Median 96. 2 0 0 1 н O. 9 9 2 90 Hardnese os CaCOs Total N.C. 0 0 0 0 0 0 0 0 0 0 99 28 8 29 4 ė 7 25 99 6 25 51 Per-35 × œ, 2 4 Ħ 22 2 38 18 8 % Total dra-solved solide in ppm 136 121 153<sup>£</sup> 9 .80T . IS 13hf , T. 060 1000 1040 1400 800 POL 0.75 A1 0.07 d 0.03 A1 6.14 d constituente Other 200 Silico (SiO<sub>E</sub>) 81 8 뢰 Boron (B) 0.0 11 7. 7. --7 7. 0.1 7 equivolents per million ports per million Fluo-000 0.0 0.2 GLAMATH RIVER NEAR COPCO (STA. 1) Ni-Prote NO. 0,00 3.0 200 Chlo-3.14 5.2 810 114 8.0 fore (SO<sub>e</sub>) 5 Mineral canatituents Carbon 0.0 0.0 000 0.0 0.0 000 0.0 0.0 0.0 Potae-eum (K) 200 9.6 6.0 (NO) 15 77.0 14 10 6.1 7.5 P. 2 19 000 (Ca) 13 0 B. W. 8 07.50 8 13 e de Specific conductance (micramhoe at 25°C) 191 197 181 241 70 152 170 181 145 Dissolved ppm %Sat 64 73 20 \$ E 9 8.2 Discharge Temp 39 20 63 51 p3 Ħ 99 2,800 3,130 1,445 .500 .560 1,140 3,980 2.550 2,550 2,350 Date and time campted P.S.T. 5/17 97/9 7/14 1000

Mineral analyses made by Unived Strees Geological Survey, Quality of Warer Branch (USGS), Unived States Department of the Internor, Bureau of Reclamation (USBR), Unived States (USPRS), San Bemandino County Flood C

Labaratary pH. o Field pH.

John Structure on white Angeline in spin.

Then (F a blummun (Ct \* 5), respected here as \$\frac{0.0}{0.00}\$ except as shown \$\frac{0.0}{0.00}\$. Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and range, sequencely. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Strees Public Health Series.

# ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE 3-1

|                         | Activities by 1                                     | 9090  |             | _            |      |            |                  |      |       | _             |                                                        |              |      |       |
|-------------------------|-----------------------------------------------------|-------|-------------|--------------|------|------------|------------------|------|-------|---------------|--------------------------------------------------------|--------------|------|-------|
|                         | Per Co Cos 17 MPN/mu<br>Total N C perm              |       |             |              |      |            |                  |      |       |               |                                                        |              |      |       |
| 3                       | 2.4                                                 |       |             |              |      |            | "                |      |       |               |                                                        |              |      |       |
|                         | Pordness<br>or CoCOs<br>Totol N.C                   |       |             | 0            | 3    | A          |                  |      |       |               |                                                        |              |      |       |
|                         | Totol<br>Ppp                                        |       |             | \$           | 8    | P          | 3.               |      | 3     | 30            | 2                                                      | 4            |      | 1     |
| -                       | 5 9 5                                               |       |             | 8            | 9    | 8          | 0                |      | 8     | 2             | a                                                      | 1.           | 7    | 18    |
| Tptel                   | epice<br>solids                                     |       |             | 138          | Ē    | 18         | 3                | 27   | 8.    | 8,            | 157                                                    | ş            | 5    | ć     |
|                         | Other constituents                                  |       |             |              |      |            | POL 01 AL 0.12 & |      |       |               | PO <sub>k</sub> No |              |      |       |
|                         | (30.5)<br>(30.5)                                    |       |             | 2            | 2    | 8          | 13               | 2    | 23    | 8             | 9.                                                     | 5.           | 24   | 2)    |
| 001                     | Boron Silico<br>(8) (5:0 <sub>8</sub> )             |       |             | 0.1          | 0.1  | 0.0        | 3                | 0.1  | 0     | 5             | 5                                                      | ~            | ~    | 3     |
| million<br>er mil       | Fluo-<br>ride<br>(F)                                |       |             | 0.0          | 0.0  | 0.0        | 000              | 100  | 2 4 0 | 100           | 7 6                                                    | -10          |      | 00    |
| equivolents per million | 1,010<br>(NO3)                                      |       |             | 080          | 0.00 | 500        | 2 0 c            | 9.0  | - 8   | 1000          | 8 8                                                    | 0 K          | CA P | 1 0 X |
| 04:00                   | Chio-<br>ride<br>(Ci)                               |       |             | 5.7          | 5.0  | 55         | 100              | 0.50 | 0.0   | 200           | 7 2 0                                                  | 100          | - K  | 112   |
| 4                       | Sul -<br>fore<br>(\$0 <sub>0</sub> )                |       |             | 28           | 23.0 | 2.50       | 31.0             | 118  | 17    | 111           | × 100                                                  | 110          | 101  | 35    |
| Tiluente                | Bicor -<br>bonete<br>(HCO <sub>3</sub> )            |       |             | 23           | 8    | 100        | 118              | 1 C  | 8 1   | <b>8</b>      | 90 L                                                   | 88           | a E  | £     |
| Mineral constituents    | 0.000 (CO <sub>b</sub> )                            |       |             | 000          | 0.00 | 0.8        | 0.8              | 0.00 | - 18  | 0 8           | 0 15                                                   | - 19         |      | j.    |
| e cript                 | Pates: Carbon-<br>eum ete<br>(K) (CO <sub>B</sub> ) |       |             | 200          | 3.04 | 100        | : =              | 6 C  | - B   | 980           | - 10                                                   | 2.8          | ~ hi | 48    |
|                         | Sodium<br>(No)                                      |       |             | 120          | 16   | 10.0       | 800              | 110  | 60.0  | 270           | 9 10                                                   | 71 0<br>12.0 | 91   | 5.68  |
|                         | 0 gne                                               |       |             | 6.0          | 0.78 | 310        | 8.00             | 23.0 | 8.8   | 200           | F                                                      | F 6          | 0    | . 10  |
|                         | Catchum<br>(Ca)                                     |       |             | 0.70         | 0.85 | 0.0        | 01 c             | 0 40 | 27/2  | 26            | 20                                                     | 200          | 100  | 21.0  |
|                         | Ĭ.                                                  |       |             | 0,4          | 4 80 | .0.<br>.0. | 40.              | 4.   | 46.F  | 1 Cp          | 45.7                                                   | 4            | 400  | 1     |
| Specific                | Chicrometer PH<br>of 25°C                           |       |             | 197          | 122  | 546        | 30               | 213  | 3     | 1.70          | 30.5                                                   | 16           | 181  | 170   |
|                         | 85°                                                 |       |             | ь            | 8    | 103        | 801              | 106  | 901   | Æ             | E                                                      | 501          | 6    | 8     |
|                         | ppm % Ser                                           |       |             | 12.3         | 11.7 | 11.11      | 5.6              | 4.6  | 4.0   | 1.7           | 1.0                                                    | 0 1          | 1    | 11    |
|                         |                                                     |       | 7           | 7            | 3    | 4          | 5                | 8    | #     | 69            | 3                                                      | 9            | 9    | 2     |
|                         | Oracharge Tamp                                      | Obego | Not Sampled |              |      |            |                  |      |       |               |                                                        |              |      |       |
| 9                       | and time<br>sampled<br>P S T                        | 1959  | 1/1         | 8/h<br>11 b5 | 3/3  | 1330       | 5/13<br>13k5     | 4 9  | 7,114 | 8 111<br>x815 | 8/6                                                    | 0.000        | 1.15 | 12/8  |

b Loberstory pH o Forph

I Sup of told on and magnes un a spin.

a later for examination where the copper of lead Pa representation is the form of the common transfer with a second of a second of the common of the common

<sup>1.</sup> Denominal by oddition of enalyzed constituents. · Derived from Landschierty +s TDS curves

General desembled on

A completed integration of the control of the contr

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

|                                     | _                                     | _                                              | _     |               | _                    |                 |              | _                                          |       |       |       | _                |            |              |          | <br> |
|-------------------------------------|---------------------------------------|------------------------------------------------|-------|---------------|----------------------|-----------------|--------------|--------------------------------------------|-------|-------|-------|------------------|------------|--------------|----------|------|
|                                     |                                       | Anolyzed<br>by 1                               | Tedas |               |                      |                 |              |                                            |       |       |       |                  |            |              |          |      |
|                                     | ,                                     | bid - Colleerm" ity MPN/ml                     |       | Median<br>6.2 | Martinian<br>>7,000. | Minimum<br>0.06 |              |                                            |       |       |       |                  |            |              |          |      |
|                                     | 1                                     | - 24                                           |       | ж             | м                    | 8               | £            | 9                                          | 5     | -     | 2     | 15               | o,         | In.          | 8        |      |
| ı                                   |                                       | CO. M.C.                                       |       | m             | -                    | 23              | <b>-</b>     | C)                                         | 60    | 0     | 0     | 0                | 0          | 0            | <b>I</b> |      |
|                                     |                                       | Hardness<br>se CaCO <sub>S</sub><br>Total N.C. |       | 8             | %                    | 8               | 5.4          | 96                                         | 69    | 57    | 92    | 8                | 92         | 8            | 95       |      |
|                                     | 9                                     | sod -                                          |       | 16            | #1                   | 15              | 6            | 13                                         | 13    | 19    | 18    | 8                | 80         | 83           | 83       |      |
|                                     | Total                                 | solved<br>solved<br>in spin                    |       | 98            | 85                   | 811             | <sub>6</sub> | 88                                         | 81.   | 106   | 113   | 129              | 126        | 131          | 152      |      |
|                                     |                                       | Other constituents                             |       |               |                      |                 |              | 70 0.06 A1 0.09 d<br>PO <sub>14</sub> 0.05 |       |       |       | Po. 0.03 At 0.03 |            |              |          |      |
|                                     |                                       | Silico<br>(SiO <sub>2</sub> )                  |       |               |                      |                 |              | 7                                          |       |       |       | 8                |            |              |          |      |
|                                     | e o                                   | 8                                              |       | 0.1           | 0.0                  | 0.0             | 0.0          | 9:                                         | 0.1   | 7     | 10    | 0.1              | 10         | 0.1          | 0.1      |      |
|                                     | million<br>ser mill                   | Fluo-                                          |       |               |                      |                 |              | 0.0                                        |       |       |       | 0.1              |            |              |          | <br> |
| STA. 3                              | ports par million<br>votents par mill | Ni-<br>trota<br>(NO <sub>3</sub> )             |       |               |                      |                 |              | 0.0                                        |       |       |       | 1.4              |            |              |          |      |
| LAMATE                              | equivalents per million               | Chio-<br>ride<br>(Ci)                          |       | 3.5           | 0.07                 | 0.07            | 0.08         | 3.5                                        | 0.0   | 0.14  | 3.2   | 6.0              | 5.4        | 6.5          | 6.5      |      |
| NBAR KO                             | Ē                                     | Sul -<br>fate<br>(SO <sub>e</sub> )            |       |               |                      |                 |              | 6.7                                        |       |       |       | 0.23             |            |              |          |      |
| KLAMATE RIVER REAR KLAMATE (STA. 3) | afifuenta                             | Bicor-<br>bonote<br>(HCO <sub>3</sub> )        |       | 1.15          | 67<br>1.10           | 69              | 5.7<br>0.93  | 1.08                                       | 1.15  | 1.51  | 8 5:  | 1.64             | 101        | 105          | 1.61     |      |
| KLAMA                               | Minarol constituents                  | Carbon-<br>ate<br>(CO <sub>3</sub> )           |       | 0.0           | 0.0                  | 0.0             | 0.00         | 0.0                                        | 0.0   | 0.00  | 0.0   | 0.0              | 0.0        | 0.0          | 0.00     |      |
|                                     | Min                                   | Potos-<br>sium<br>(K)                          |       |               |                      |                 |              | 0.03                                       |       |       |       | 0.06             |            |              |          |      |
|                                     |                                       | Sodium<br>(No)                                 |       | 0.23          | 0.18                 | 3.6             | 0.11         | 0.17                                       | 2.5   | 0.33  | 7.9   | 0.48             | 12<br>0.52 | 110          | 0.52     |      |
|                                     |                                       | Mogne-<br>sium<br>(Mg)                         |       |               |                      |                 |              | 5.7                                        |       |       |       | 8.1<br>8.80      |            |              |          |      |
|                                     |                                       | Colcium<br>(Co)                                |       | 1.200         | 1.120                | 1.30            | 1.08         | 13                                         | 1.30  | 1.44  | 1.52  | 0.80             | 1.55°      | 1.60         | 1.70     |      |
| ĺ                                   |                                       | Ĭ.                                             |       | 7.3           | 7.5ª                 | 7.5ª            | 7.5          | -6                                         | 7.5   | 4.8   | 7.5   | 7.8b             | 4.5        | 7.5          | 7.5      |      |
|                                     | Specific                              | conductance<br>(micromhos<br>of 25°C)          |       | 136           | 131                  | 129             | 103          | 125                                        | 125   | 164   | 175   | 184              | 19         | 800          | 188      |      |
|                                     |                                       | gen (%                                         |       | 101           | 101                  | 6               | 8.           | 78                                         | 101   | 16    | 16    | 108              | 5          | 26           | 8        |      |
|                                     |                                       | Dissolvad<br>osygen<br>ppm %Sot                |       | 15.4          | 12.4                 | 11.5            | 10.1         | 9.1                                        | 9.8   | 0.0   | 4.9   | 9.6              | 10.0       | 10.3         | 9.01     |      |
|                                     |                                       |                                                |       | 3             | 3                    | 14              | 92           | 42                                         | 62    | 72    | 73    | 72               | 200        | 20           | 9        |      |
|                                     |                                       | Dischorge Temp<br>in cfe in of                 |       | 50,600        | 23,900               | 30,800          | 30,400       | 13,200                                     | 9,880 | 040,4 | 2,930 | 2,350            | 3,900      | 3,000        | 2,960    |      |
|                                     |                                       | and time<br>sompled<br>P.S.T.                  | 1959  | 1/20          | 2/3                  | 3/4             | 1620         | 5/5                                        | 6/2   | 7/15  | 8/5   | 9/1              | 10/7       | 11/5<br>0805 | 12/10    |      |

Loborotory pH.

Sum of calcium and magnesium in epm.

Jum or catching and suggestation (As), capper (Cu), lead (Pb), monganese (Mn), zinc (Zn), and hexarolem chromium (C<sup>+5</sup>), reported here as 0.0 except as shown.

Determined by addition of analyzed constituents.

Derived from conductivity vs TDS curves.

Minest instruction of the United States Geological Servey, Duality of Water Branch (USGS), United States Department of the Interest Development (USGS), United States Control of Servey, Duality of Water States (USPS), Servey States (USPS), Ser Amount adian and range, respectively. Calculated from analyses of dupitate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health, Service. Gravimetric determination.

### ANALYSES OF SURFACE WATER TABLE 8-1

NORTH COASTAL REGION (NO. 1)

|                         | A noryzod                                             |                        | 1    |                                          |             |       |        |      |              |                                       |       |        |       |       |
|-------------------------|-------------------------------------------------------|------------------------|------|------------------------------------------|-------------|-------|--------|------|--------------|---------------------------------------|-------|--------|-------|-------|
|                         | Herdness old-Celsform Analyzed os CeCOs 12 MPN/mu 051 |                        |      |                                          |             |       |        |      |              |                                       |       |        |       |       |
| ,                       | 100                                                   |                        |      |                                          |             |       | ×      |      |              |                                       |       |        |       |       |
|                         | 0000                                                  | Yoro! N.C.             |      |                                          | Q.          |       |        |      |              | 1-                                    |       |        |       |       |
|                         | Hero<br>Pa                                            | T0101                  |      | F                                        | 4           |       | 2      | 1    |              | ×.                                    | 6     | ×.     | ×     | 2     |
|                         | Cent.                                                 | 5                      |      | 8                                        | К           | 5     | 8      | 8    | X            | -                                     |       | î.     |       | 2     |
| Total                   | Solved Conti                                          | 20 dd G                |      | 16                                       | ~           |       | E      | 9    | 1            | Ь                                     | 1     | 1      | 3     | 3     |
|                         |                                                       | amaninamon samo        |      |                                          |             |       | Fr 2 A |      | m. Alk 91    |                                       | · Two |        |       |       |
|                         | 0011                                                  | o o                    | _    | 2                                        | 13          |       | B. II. | 8    | id.          | d                                     | 2     |        | oi.   | 2     |
| 100                     | Baron Sinca                                           | (8)                    |      | -1                                       | SI.         | ~     | 7      | -    | 1            | 7                                     |       | Col    | -1    |       |
| million<br>er milli     | -071                                                  | (F)                    |      | 2.0                                      | 200         | - 180 | 200    | 18   |              | - 12                                  | 76    | - K    | 2 5   | - [   |
| perte per million       | 2                                                     | (NO <sub>3</sub> )     |      | 20.0                                     | 200         | 28    | 700    | 1 1  | 180          | 78                                    | 200   | 1      | 9 2   | 45    |
| 90                      | CNo.                                                  |                        |      | 24                                       | 56          | F     | 9110   | 1    | 0 17         | - 12                                  | N/C   | R      | 5 9 2 | , K   |
| ě                       | Sul -                                                 | -                      |      | 0.23                                     | 88          | 9.6   | 118    | 25   | 2 13         | 9 13                                  | 86    | 3/6    | ¥L s  | E     |
| 100000                  |                                                       | (HCO <sub>3</sub> )    |      | 82                                       | 100         | 1 38  | 8 12   | 5    | 1 36         | 200                                   | 911   | 1 1 B  | 52    | E .   |
| Mineral conetifuents in | r bon –                                               | (x) (CO <sub>b</sub> ) |      | 0.00                                     | 0.00        | 0.K   | 0.0    | 0 8  | FIG          | 0.16                                  | 0,18  | 0.5    |       | 9     |
| Miner                   | . eo.                                                 | 5 ×                    |      | 1.6                                      | 900         | 0.03  | 2.5    | 3.5  | 9 6          | 120                                   | o E   | of the | 000   | 000   |
|                         | Sodium                                                | (0)                    |      | 0.44                                     | 1910        | 18.   | 113    | F.   | 12           | 10.0                                  | £     | F      | 92 9  | 18    |
|                         | 9 o do 9                                              |                        |      | 0.9                                      | 0.9         | 180   | - F    | - F  | 7.1          | 7.2                                   | 110   | -15    | -     | # 15° |
|                         | Calcium                                               | (0)                    |      | 2 PE | 717<br>7.88 | 110   | 8.80   | 4    | 110          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - F   | 170    | 14.0  | 210   |
| $\vdash$                | 1 3                                                   |                        | _    | 0,                                       | 5           | 1.    | 9      | 4.   | d            | 9.1 <sub>0</sub>                      | d     | e      | 0     | e m   |
| -                       | Conductorios pH                                       | 3                      |      | T                                        |             | -     | -      | -    | - 00         |                                       | -     | 60     | ju .  |       |
| 3                       | Conduc                                                | 5                      |      | 30                                       | 57          | 1 19  | 88     | 53   | 171          | -                                     | 8     | 189    | 5     | E     |
|                         | 2 8                                                   | % Sat                  |      | 9                                        | 100         | 6     | 84     | ā    | 112          | K                                     | Ь     | 1      | 8     | 8     |
|                         | Desgived                                              | u dd                   |      | 12.1                                     |             | 10.7  | 0      |      |              | ×                                     | 6     | -      | -     | 5.    |
|                         | 90 0                                                  |                        |      | 3                                        | 9           | 01    |        | 19   | Æ            | 0                                     | 9     | 7      | 5     | 9.    |
|                         | Discharge Temp                                        |                        |      | ,79°                                     | 5,15        | 6,530 | 1 1    | 2,24 | 1.6          | 1,394                                 | ş     | 1.50   | 2. 12 | 2,000 |
|                         |                                                       | PST                    | 1969 | 2/8                                      | 3/3         | 1,72  | 5/33   | 55   | 7114<br>1430 | lina<br>* *                           | 9/8   | 1000   | 30    | 12/3  |

o Loberthery off

c. Sum of policion and magnession in som.

is have a galaxim and angivenum in them.

It is capper Co. lead Pb. transpressed that sinc Zo and hearvaltest chronium Ci<sup>-15</sup> reported have as 0 except as sharen at less share as 0.000. Decreed from anductivity or TDS serves

Desembled by odds on of one yand protestioners General deferred of the

Annual magning assert cars, the most time and assert of age, were authority amounts and age for deliberation Department of Decision of Lithering Bayes of Decision of Lithering Bayes of Bayes and Decision of Dec

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

|                                    |                                      | Analyzed<br>by 1                        |                     | 0808          |                 |                 |             |        |                                            |                 |             |       |                    |       |         |             |   |  |
|------------------------------------|--------------------------------------|-----------------------------------------|---------------------|---------------|-----------------|-----------------|-------------|--------|--------------------------------------------|-----------------|-------------|-------|--------------------|-------|---------|-------------|---|--|
|                                    | 4                                    | bid - Coliform Analyzed ity MPN/mi by i |                     | Median<br>17. | Maximus<br>620. | Minimum<br>0.62 |             |        |                                            |                 |             |       |                    |       |         |             |   |  |
| Ī                                  | 3                                    | - 2-E                                   |                     |               | 80              | 4               | 35          | 3      | 00                                         | н               | н           | 5     | 15                 | 4     | 15      |             |   |  |
|                                    |                                      | 000                                     | j Edd               |               | m               | 0               | 4           | 6      | -                                          | 0               | 0           | -11   | 0                  | 0     | 0       |             | _ |  |
|                                    |                                      | Herd<br>Os Co                           | pp.m                |               | 62              | 95              | 99          | 58     | 62                                         | 28              | %           | 88    | 42                 | 69    | 8       |             |   |  |
|                                    | Par                                  | sod -                                   |                     |               | 22              | 18              | 16          | 9      | 15                                         | 18              | Ж           | 16    | 31                 | 34    | 32      |             |   |  |
|                                    | Total                                | eolvad<br>solids                        | 1                   |               | 100             | %               | 101         | 73°    | 8                                          | 91 <sub>e</sub> | 110         | 132°  | 149                | 127   | 126°    |             |   |  |
|                                    |                                      | Other constituents                      |                     |               |                 |                 |             |        | Pe 0.06 At 0.13 d<br>PO <sub>11</sub> 0.05 |                 | Tot. Alk 22 |       | Pou 0.04 A1 0.10 d |       |         |             |   |  |
|                                    |                                      | Silica                                  | il o                |               |                 |                 |             |        | 15                                         |                 |             |       | 33                 |       |         |             |   |  |
|                                    | ion                                  | 6                                       | 9                   |               | 0.0             | 0.0             | 0.0         | 0.0    | 0.0                                        | 0.0             | 0.1         | 0.5   | 0.1                | 0.1   | 0:0     |             |   |  |
| (2                                 | squivolents per million              | Fluo-                                   |                     |               |                 |                 |             |        | 0.0                                        |                 |             |       | 0.0                |       |         |             |   |  |
| (STA.                              | ports per million<br>volents per mil | - in                                    | (NO 8)              |               |                 |                 |             |        | 0.5                                        |                 |             |       | 0.03               |       |         |             |   |  |
| OMESBAR                            | oviupe.                              | Chlo-                                   | (0)                 |               | 3.8             | 3.5             | 2.8<br>0.08 | 0.07   | 3.8                                        | 3.0             | 4.8         | 4.8   | 6.0                | 5.5   | 6.2     |             |   |  |
| KLAMATH HIVER AT SOMESBAR (STA. 2) | Ē                                    | Sul -                                   | (80%)               |               |                 |                 |             |        | 8.6                                        |                 |             |       | 0.23               |       |         |             |   |  |
| MTH HIV                            | atifuante                            | Bicor-                                  | (HCO <sub>3</sub> ) |               | 72              | 74              | 1.23        | 0.98   | 1.21                                       | 1.28            | 1.4         | 100   | 1.80               | 2011  | 81.1    |             |   |  |
| KUW                                | Mineral constituents                 | Corbon-                                 |                     |               | 0.0             | 0.00            | 0.0         | 0.0    | 0.0                                        | 0.0             | 0.07        | 0.0   | 0.0                | 000   | 0.0     |             |   |  |
|                                    | Mine                                 | Petos-                                  |                     |               |                 |                 |             |        | 0.0                                        |                 |             |       | 0.00               |       |         |             |   |  |
|                                    |                                      | Sodium                                  | (DE)                |               | 0.33            | 5.6             | 5.8         | 1.8    | 5.2                                        | 5.8             | 0.44        | 7.4   | 3.70               | 15    | 14 0.61 |             |   |  |
|                                    |                                      | Magne-                                  | (Mg)                |               |                 |                 |             |        | 7.2                                        |                 |             |       | 6.1                |       |         |             |   |  |
|                                    |                                      | Coloum Magne-                           | (60)                |               | 1.24            | 1.12            | 1.32        | 1.16   | 13                                         | 1.16            | 1.32        | 1.72  | 1.7<br>0.85        | E.    | 1.32    |             |   |  |
|                                    |                                      | ž.                                      |                     |               | 7.3             | 7.6             | 4.7         | 4.7    | 7.7                                        | 7.5             | 8.0         | 7.8   | 7.7                | 7.9   | 7.3     |             |   |  |
|                                    |                                      | Condustance<br>(misromhos p             |                     |               | 248             | 142             | 149         | 108    | 141                                        | 134             | 162         | 194   | 208                | 187   | 188     |             |   |  |
|                                    |                                      | 9 5                                     | %Sat                |               | 8               | 102             | 101         | 100    | 100                                        | 100             | %           | 6     | 100                | 8     | 6       |             |   |  |
|                                    |                                      | Dissolved<br>oxygen                     | b mdd               |               | 13.3            | 13.1            | 11.9        | 11.3   | 10.9                                       | 10.1            | 1.8         | 8.3   | P. 9               | 10.2  | 11.6    |             |   |  |
|                                    |                                      |                                         |                     | -             | 17              | 17              | 17          | 20 3   | 53                                         | 9               | 18          | 45    | -33                | - 92  | 9       | per         |   |  |
|                                    |                                      | Discharge Tamp                          |                     |               | 10,700          | 11,900          | 12,200      | 12,000 | 6,360                                      | 5,310           | 2,740       | 2,540 | 2,630              | 3,510 | 2,370   | Not Sampled |   |  |
|                                    |                                      | ond time                                | P.S.T               | 1959          | 1/20            | 2/3             | 3/5         | 1100   | 5/6                                        | 6/3             | 7/15        | 8/6   | 9/10               | 10/8  | 11/6    | 12/         |   |  |

Laboratory pH.

Sum of calcium and magnesium in apm.

Sum of calcium and magnessum in spim.
Iron (Fe), alumnum (A1), arsenic (A3), capper (CQ), lead (Pb), manganese (Mn), zinc (Zn), and hazavalent chromium (Cr\*6), reported here as  $\frac{0.0}{0.00}$  except as shown.

Datemined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Amed median and range, respectively. Calculated from analysts and about California Department of Public Meeth, Division of Loborateuss, or United States Public Health Survice.

Mannel consyster ander by United States Consistency, Quality of free and Perch States Department of the foreign Entering Entering Consistence (USPR); See Berendine Consey. Flood

Carnel District (SEC CO), Manupolation from Entering Consequence (MeD); Let Advoped Department of Meet and Perch States (LADPP); City of Let Angeles, Department of Public Health (LADPP); City of Lang Beach, Department of

Public Health (LADPP); Terminal Tening absorations, in (CTL); or California Department of Meet Resources (DMR); as Indicated.

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE 1-1

|                      | A notyzed<br>by 1                                                      |                     | UBOR          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |       |         |                |      |                                         |             |       |                   |      |  |
|----------------------|------------------------------------------------------------------------|---------------------|---------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|---------|----------------|------|-----------------------------------------|-------------|-------|-------------------|------|--|
|                      | Mardness big - Caliform Analysed os CaCO <sub>3</sub> ity Manyand by 3 |                     | Median<br>1.2 | Maximum<br>7 oor | Manage Contraction of the Contra |            |       |         |                |      |                                         |             |       |                   |      |  |
|                      | 100                                                                    |                     |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3          |       | ě       |                |      |                                         | -           |       | -                 | 7    |  |
|                      |                                                                        | N C                 |               | А                | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 9     |         | -              |      | -                                       |             |       |                   |      |  |
|                      | Mord<br>os Co                                                          | Terai N. C.         |               | 8                | Ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2          | 2     | 2       | 10             | 5    | 1                                       | 5.          | 3     | 3                 | 3    |  |
|                      | 000                                                                    |                     |               | Cr.              | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0          | =     |         | 2              | 5    | =                                       | 6           | d-    | 0                 | 7    |  |
| Total                | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                | E 66 6 9            |               | 787              | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100        | 4     | 9.0     | 3              | 142  | 180                                     | 64 m        | 111   | 9.0<br>2.1<br>1.1 | 1    |  |
|                      | Other constituents                                                     |                     |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       | A 2 PO. | 70 08 A) 02 da |      |                                         | PO TO TO TO |       |                   |      |  |
|                      | 93116                                                                  | (2°0°E)             |               | 5.9              | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125        | 15    | 80.     | 1 6            | 20   | 2                                       | 4           |       |                   |      |  |
| 907                  | 1 8                                                                    | (8)                 |               | 1.0              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1        | 0.0   | 0       |                | 31   | 11                                      | 11          | -1    |                   | 6    |  |
| neillion and         | 6                                                                      |                     |               | 0.2              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0       | 080   | 08      | 0.00           | 100  | 8                                       | - 100       | 100   |                   |      |  |
| ports per million    |                                                                        | (NO 8)              |               | 00.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0        | 08    | 100     | 000            | 18   | 28                                      | ~           | 4 G   |                   |      |  |
| OA IND O             | Chig.                                                                  | (C)                 |               | 0.12             | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F 00.0     | 000   | 50.0    | 0.0            | 1    | 2 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 F         | · F   | of the            | o F  |  |
| ē                    | Sul -                                                                  | (80°)               |               | 5.7              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.6        | 8.8   | 11 0.23 | 0.23           | 410  | 0.23                                    | - L         | 200   |                   |      |  |
| alituen1s            | Bicor-                                                                 | (MCO <sub>2</sub> ) |               | 88<br>E.         | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26         | 810   | 128     | 104            | 25   | T.                                      | 2 K         | 3 6   | ä                 | 5/5  |  |
| Mineral constituents | ar bon -                                                               | (400)               |               | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0        | 0.0   | 0.0     | 0.0            | 000  | 10                                      | 1           | 000   | 68                | E    |  |
| Bein                 | Petos.                                                                 | 3                   |               | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0        | 9.0   | 0.0     | 1.4<br>0.04    | 1.2  | 700                                     | 1 5         | 0.0   |                   |      |  |
|                      | Sodiem                                                                 |                     |               | 6.0              | T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.6        | 8.8   | T.      | 5.5            | 0.90 | 5.00                                    | -           | 15    | 00                | 7.   |  |
|                      | Mogne                                                                  | (b Mg g)            |               | 97.0             | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7        | 000   | 9.0     | 2.0            | 400  | 250                                     | 6 K         | 9.1   |                   |      |  |
|                      | Coleron                                                                | (00)                |               | 18               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # 0<br># 0 | 200   | 22      | 28             | E.E. | 1                                       | SE          | 17    | 100               | 7 45 |  |
|                      | d X                                                                    |                     |               | 7.3              | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96.1.7.3   | ~     | -       | F-             | Pr.  | 5.5                                     | T<br>F      | 5     | r-1               | 7.3  |  |
|                      | Conductorce<br>(m.g.romhoe                                             | 3                   |               | 131              | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8          | 1114  | 155     | 197            | 232  | 530                                     | 540         | É     | £                 | 3    |  |
|                      | 55                                                                     | 6.501               |               | 9                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8          | 100   | 5       | 106            | 109  | 108                                     | 9           | 9     | 8                 | 8    |  |
|                      | Dissolved                                                              | ppm %3a1            |               | 9.11             | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.2       | 20.8  | ©<br>0  | 1              | 5.7  | 6.9                                     |             | 9.6   | 5                 | 9 1  |  |
|                      | G to                                                                   |                     |               | 12               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9          | 9.5   | 90,     | 69             | Į.   | £                                       |             | 9     | 5                 | 60   |  |
|                      | Ossenorge Temp                                                         |                     |               | 1,330            | 1,540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,86       | 1,34  | ¥       | 1 = 7          | 8    | 5                                       | 16          | o o   | £                 | 2    |  |
|                      |                                                                        | P S T               | 1959          | 1/20             | 2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/4        | 26.10 | 2/3     | 1,79           | 7/14 | 1500                                    | 6/6         | 10.40 | 1375              | 1130 |  |

F a 1 M

Sym II --- maynes -- spm

And is a rest former of a region of a rest former of the second of the second former of the second former as a to see from the trust on TDS turnes

stem of by ... It as of one red ... st tuests

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

|                                       | _                    |                                         |               |                    | _               | _                |             |                    |                    |             |               |                              |              |             | _           | _ |  |
|---------------------------------------|----------------------|-----------------------------------------|---------------|--------------------|-----------------|------------------|-------------|--------------------|--------------------|-------------|---------------|------------------------------|--------------|-------------|-------------|---|--|
|                                       |                      | Analyzed<br>by 1                        | 8DBD          |                    |                 |                  |             |                    |                    |             |               |                              |              |             |             |   |  |
|                                       |                      | Coliform"<br>MPN/mi                     | Median<br>2.3 | Maxtana<br>2, 400. | Minimum<br>0.06 |                  |             |                    |                    |             |               |                              |              |             |             |   |  |
|                                       | 1                    | 2 2                                     |               |                    |                 | 2                |             | R                  | -                  |             |               | CV.                          |              |             |             |   |  |
|                                       |                      | 0 N 0                                   |               | 9                  | 4               | co .             | -11         | 9                  | <b>-</b>           | Oi          | 7             | Ť.                           | 13           | 19          |             |   |  |
|                                       |                      |                                         |               | 57                 | 53              | 22               | 77          | &                  | 8/                 | 84          | ま             | 113                          | 134          | 136         |             |   |  |
|                                       |                      | 1 E                                     |               | 97                 | 18              | 17               | 17          | 18                 | 12                 | 11          | 17            | 12                           | 13           | 15          |             |   |  |
|                                       | Total                | acived<br>solide<br>in ppm              |               | 88                 | 9               | 28               | 28          | 115                | 128                | 123         | 124           | 149                          | 184          | 164         |             |   |  |
|                                       |                      | Other constituents                      |               |                    |                 |                  |             | Pe 0.04 PO, 0.05 d | 70 0.01 POL 0.05 d |             | Tot. Alk. 101 | PO <sub>2</sub> 0.04 01 0.03 |              |             |             |   |  |
|                                       |                      | ( <sup>®</sup> OIS)                     |               | a                  | 15              | 27               | 15          | 2.7                | ᆲ                  | 의           | 6.5           | 7.1                          | 12           | 5.8         |             |   |  |
|                                       | 69                   | 8                                       |               | 0.0                | 0.1             | 0.0              | 0.0         | 0.1                | 0.0                | 0.0         | 0.1           | 0.1                          | 0.1          | 0.1         |             |   |  |
| <b>a</b>                              | per millian          | Fluo-                                   |               | 0.0                | 0.0             | 0.1              | 0.0         | 0.0                | 0.0                | 0.1         | 0.0           | 0.0                          | 0.1          | 0.2         |             |   |  |
| MATTOLE RIVER MEAR PETROLLA (STA. 7a) |                      |                                         |               | 0.4<br>0.01        | 0.1             | 0.4              | 0.00        | 0.00               | 0.0                | 0.03        | 0.0           | 0.0                          | 0.00         | 0.0         |             |   |  |
| FTROLLA                               | porte pe             | Chio-                                   |               | 8.4                | 0.14            | 3.8<br>0.H       | 0.13        | 5.2<br>0.15        | 5.3<br>5.17        | 6.0         | 0.14          | 6.0                          | 0.70         | 4.8<br>0.14 |             |   |  |
| MEAR P                                | ë                    | Sul -<br>fate<br>(SO <sub>e</sub> )     |               | 0.25               | 0.23            | 8.6              | 8.6<br>0.18 | 86                 | 0.35               | 9.0<br>6.19 | 20.           | 23<br>0.48                   | 0.83         | 31.0        |             |   |  |
| LE RIVER REAR PETROLIA (STA.          | netituent            | Bicar-<br>banate<br>(HCO <sub>3</sub> ) |               | 1:02               | 86.             | 1.07             | <b>3</b>    | 1.39               | 104                | 1180        | 1.62          | 121                          | 2.13         | 130         |             |   |  |
| MATTON                                | Mineral canetituents | Carban<br>(CO <sub>3</sub> )            |               | 0.0                | 0.0             | 0.0              | 0.0         | 0.00               | 0.0                | 0.0         | 0.03          | 0.0                          | 0.0          | 0.0         |             |   |  |
|                                       | 2                    | Potae-<br>(K)                           |               | 0.0                | 0.03            | 0.0              | 0.4<br>0.01 | 0.03               | 0.03               | 0.03        | 0.04          | 0.05                         | 0.03         | 0.03        |             |   |  |
|                                       |                      | Sadium<br>(Na)                          |               | 5.4                | 5.6             | 5.4              | 0.23        | 8.3                | 0.34               | 0.38        | 0.30          | 9.5                          | 9.6          | 010         |             |   |  |
|                                       |                      | Magne-<br>sium<br>(Mg)                  |               | 3.6                | 3.8             | 3.6              | 3.6         | 9.0                | 5.4                | 0.34        | 5.8<br>0.48   | 6.2                          | 7.1<br>0.58  | 6.3         |             |   |  |
|                                       |                      | Calcium<br>(Ca)                         |               | 1.7<br>0.85        | 0.75            | 26<br>0.86       | 17<br>0.85  | 1.20               | 1.40               | 30          | 1.40          | 35                           | 2. <u>10</u> | 3 8         |             |   |  |
|                                       |                      | T A S                                   |               | 7.3                | 7.4             | 7.3 <sub>b</sub> | 7.3ª        | 8.0                | 7.3                | 8.2         | 8.0           | 7.8ª                         | 7.7a         | 8.18        |             |   |  |
|                                       | 9.000                | (micrambos<br>at 25°C)                  |               | 138                | 132             | 135              | 142         | 182                | धाउ                | 82          | 502           | 552                          | 280          | 912         |             |   |  |
|                                       |                      | yed<br>%Sat                             |               | 85                 | 8               | 8.               | 100         | 89                 | %                  | 136         | 911           | 717                          | 100          | 123         |             |   |  |
|                                       |                      | Dieealved<br>osygen<br>ppm %Saf         |               | 11.2               | 1.1             | 10.8             | 10.3        | 80<br>64           | 9.5                | n.5         | 10.0          | 6.6                          | 10.0         | 12.7        |             |   |  |
|                                       |                      | Te or                                   |               | 14                 | 84              | 55               | 28          | 89                 | 79                 | 92          | 2             | 13                           | 8            | 57          | pled        |   |  |
|                                       |                      | Oischarge<br>in cfe                     |               | 820                | 1,270           | 1,050            | 820         | 589                | 155                | 35          | 30            | 88                           | 84           | 54          | Not Sampled |   |  |
|                                       |                      | Date<br>and time<br>eampled<br>P S.T    | 1959          | 1/21               | 2/4             | 3/3              | 1230        | 5/7                | 6/2                | 7/14        | 8/4           | 9/9                          | 10/6         | 11/4        | 12/         |   |  |

Laboratory pH. a Field pH.

Sum of calcium and magnestum in epm.

Sum at colcum and magnessum in elpm.

Iron (Fe), olumnium (A1), arsenic (As), copper (Cu), Iead (Pb), manganese (Mn), zinc (Zn), and hexavelent chramium (G\*\*6), reported here at  $\frac{0.0}{0.00}$  except at shawn.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annual median end respectively. Calcidated from endyses of deplicate monthly samples mode by Caltifornia Department of Public Health, Durston at Lebonatories, or United States Public Health Survives.

Manual analyses mode by United States Cavilgrical States Goard (USCS); Land States Cavilgrical States and Public Response of Reclamation (USCR); Land Response and Cavilgrical States and Responses (UNC); as indicated.

Public Relatin (LDDPH); Terminal Feating Lebenarizes, Inc. (TLL) or Calcinate University Responses (UNC); as indicated. Gravimetric determination.

## ANALYSES OF SURFACE WATER

N. HETH COASTAL REGION (NO. 1)

|              | Analyze<br>by 1                                                                            | 3000          |                  |                   |                |      |                  |                      |             |        |                   |              |      |                  |   |
|--------------|--------------------------------------------------------------------------------------------|---------------|------------------|-------------------|----------------|------|------------------|----------------------|-------------|--------|-------------------|--------------|------|------------------|---|
| 1            | Mardnass Did - Colition Managade<br>on CoCO <sub>0</sub> 17 Man, out by 1<br>Total H C pom | Median<br>7.1 | Max 1 m m<br>620 | Mantana<br>00 005 |                |      |                  |                      |             |        |                   |              |      |                  |   |
| 1            | -                                                                                          |               |                  |                   | A              |      | (for             |                      |             |        | 0-                |              |      |                  |   |
|              | 0000                                                                                       |               | -                | 0                 | 0              |      | 7.               |                      | 9           | · C    | 0                 | -            | -5   |                  |   |
|              | Harda<br>ee Co<br>Petgi<br>ppm                                                             |               | lē               | 93                | ‡              | 8    | 8                | 107                  | 11.0        | 109    | a                 | 8            | 11.0 |                  |   |
| 3            | P 00                                                                                       |               | 8                | 19                | 19             | Æ    | 21,              | E                    | g           | Z.     | E.                | R            | 8    |                  |   |
| Total        | 00100<br>00100<br>00100<br>00100                                                           |               | 25               | 13                | 121            | Ĕ    | 861              | 151                  | 163         | 157    | 997               | 169          | 36   |                  |   |
|              | Other constituents                                                                         |               |                  |                   |                |      | PO 000 AL 0 03 A | 20 0 00 A1 0 01 0 05 |             |        | PO 0 00 20 0 00 M |              |      |                  |   |
|              | (\$10°E)                                                                                   |               | 11               | 19                | 2              | 17   | 17               | 12                   | 9           | 2      | 57                | 14           | 99   |                  |   |
| 1100         | 80100                                                                                      |               | 7                | 0.3               | 0.2            | 0    | 0.5              | 0.0                  | 0.0         | 2      | 0.7               | 7            | 0 0  |                  |   |
| per million  | Fluo-<br>ride<br>(F)                                                                       |               | 0.0              | 0.0               | 0.0            | 0.0  | 08               | 08                   | 0 0 0       | 100    | 0 0 0             | 0 1          | d 0  |                  |   |
|              | N:-<br>frote<br>(NO <sub>3</sub> )                                                         |               | 0.7              | 1800              | 9.0            | 000  | 0 0              | 0 8                  | 28          | -18    | -18               | 0 0 1        | -8   |                  |   |
| equivalents  | Chio-<br>rida<br>(C.)                                                                      |               | 0.00             | 8.5               | 0.23           | 7.5  | 86               | 30                   | 0 50        | 34     | E 18.             | 0 20         | 500  |                  |   |
| ē            | Sut -<br>fota<br>(\$0 <sub>4</sub> )                                                       |               | 0.3              | 11                | 7.7            | 9.8  | 15.0             | 100                  | 0 10        | - 10   | 610               | 200          | 10   |                  |   |
| constituents | Bicor-<br>bonate<br>(HCO <sub>3</sub> )                                                    |               | 105              | 102               | 8 2            | 103  | 2.16             | 101                  | 25          | 100    | 14 C              | 25 ev        | 212  |                  |   |
| Mineral cons | Carbon-<br>(CO <sub>3</sub> )                                                              |               | 0.0              | 0.00              | 0.00           | 0.0  | 0 8              | 08                   | 08          | 8      | 0 0               | 000          | 000  |                  |   |
| Mine         | Potas - C                                                                                  |               | 0.03             | 0.03              | 0.03           | 0.03 | 219              | 0.00                 | 0 0 0 0 0 0 | - 10   | 0 80              | 0.00         | 1 2  |                  | _ |
|              | (No)                                                                                       |               | 10               | 200               | 8.5            | 7.00 | 101              | 2                    | 116         | 410    | 140               | 14 0<br>14 0 | 59 0 | ±                |   |
|              | Mogne:<br>(Mg)                                                                             |               | 1.8              | 7.5               | 7.8            | 2.2  | 9                | 010                  | 100         | - E    | - P               | 28           | 110  | Broken to treest |   |
|              | Colc.um<br>(Ca)                                                                            |               | 200              | 125               | 910            | 1.08 | 133              | 200                  | E           | 23     | 8 3               | 2            | 2E   |                  |   |
|              | T.                                                                                         |               | ~                | -                 | 2.5            | Ci.  | m                | E -                  | 9 _         | A<br>F | 5                 | 6            | -    | m<br>h           |   |
| Specific     | (micrambos<br>at 25°C)                                                                     |               | 217              | 502               | 198            | 201  | 7                | 18                   | %<br>%      | Š      | 3                 | É            | 220  |                  |   |
|              | 9/0.50f                                                                                    |               | 8.               | 15                | 5              | 7    | 4                |                      | 8.          | 90     | 8                 | 1            |      | 2                |   |
|              | Dissolved<br>organ<br>ppm %50                                                              |               | 11 3             | -                 | 100            | 0    |                  |                      | T           | 1.6    | -                 | 1            | 0.7  | I                |   |
|              |                                                                                            | -             | 9                | 0                 | -              | 3    |                  |                      | E.          | E      | E                 | 4            | 3    | Ť                |   |
|              | Discharge Temp                                                                             |               | 240              | 282               | N <sub>D</sub> | Ī    | ı                |                      |             | 6      | -                 | 2            | •    | \$5              |   |
|              | Dore<br>nd Time<br>ompled                                                                  | 1 60          | 22/10            | 2/5               | 1/2            | 100  | 4                | 38                   | 100         | 1881   | -3                | 1 1          | 677  | 15               |   |

Sheet I have at appearing and Ph numbers to like and Neumalem channel CI to produce (CI to another as all and as where a bound of the control Such it is the fact of the second

e yeared to the Till Current

street see on the see of the masses.

Associated the properties of the second of t

### ANALYSES OF SURFACE WATER TABLE B-1

NOPTH COASTAL REGION (NO. 1)

|                                       |              | Anclyzed<br>by i                                          |                     | USGS |                |                  |                   |         |                                           |                                           |              |              |                                           |             |      |         |   |                   |   |
|---------------------------------------|--------------|-----------------------------------------------------------|---------------------|------|----------------|------------------|-------------------|---------|-------------------------------------------|-------------------------------------------|--------------|--------------|-------------------------------------------|-------------|------|---------|---|-------------------|---|
|                                       |              | Hordness bid Coliformh<br>os CaCO <sub>3</sub> ify MPN/ml |                     |      | Median<br>0 56 | Maxtmum<br>2.400 | Minimum<br><0 045 |         |                                           |                                           |              |              |                                           |             |      |         |   |                   |   |
|                                       |              | - P - C                                                   |                     |      |                |                  |                   |         | -                                         |                                           |              |              | -2                                        |             |      | 10      |   |                   |   |
|                                       |              | ness<br>aco <sub>3</sub>                                  | PPC                 |      | 0              | 0                | 0                 | 0       | 0                                         | 0                                         | 13           | 12           | 555                                       | TI.         | 0    | 0       |   |                   |   |
|                                       |              |                                                           | 1                   |      | 20             | 45               | c <sup>2</sup>    | 42      | 53                                        | 23                                        | 85           | 88           | 489                                       | 82          | 29   | 67      |   |                   |   |
|                                       |              | cent<br>sed                                               |                     |      | 25             | 8                | %                 | %       | 22                                        | 27                                        | 58           | 99           | 77                                        | 77          | 33   | %       |   |                   |   |
|                                       | Total        | solved<br>solids                                          | E dd ui             |      | 89             | 88               | 8 8               | 8       | *                                         | 100f                                      | 2 last       | 267          | 2.980.5                                   | 185         | 112  | 113     |   |                   |   |
|                                       |              | Other constituents                                        |                     |      |                |                  |                   |         | Fe 0 06 A1 0 01 d<br>PO <sub>4</sub> 0 05 | Fe 0 03 A1 0 02 d<br>PO <sub>1</sub> 0.00 |              |              | A1 0 29 PO <sub>6</sub> 0 00 <sup>d</sup> |             |      |         |   |                   |   |
|                                       |              | Silico                                                    | 2015                |      | 17             | 8                | 2                 | 13      | 19                                        | 17                                        | 18           | 18           | 13                                        | 8           | 18   |         |   |                   |   |
|                                       | 100          |                                                           | (B)                 |      | 7.0            | 0.0              | 0.0               | 0:      | 0.1                                       | 0.0                                       | 0            | 0            | 0.5                                       | 0.1         | 0.1  | 6.3     |   |                   |   |
| (e)                                   | r million    | Flue-                                                     |                     |      | 0.0            | 0.1              | 0.0               | 0.00    | 0.0                                       | 0.0                                       | 0.1<br>0 0I  | 0.01         | 0.0                                       | 0.0         | 0.0  |         |   |                   | _ |
| STA. 10                               |              |                                                           | (SON)               |      | 0.0            | 0.00             | 0.0               | 0.4     | 0.0                                       | 0.0                                       | 0.00         | 0.0          | 0.05                                      | 0.0         | 0.3  |         |   |                   |   |
| BRAGG (                               | ports ps     | Chio-                                                     | (i)                 |      | 8.5            | 8.8              | 6.5               | 5.5     | 0.22                                      | 0.25                                      | 92           | 2.79         | 1,760                                     | 1.35        | 0.31 | 0.83    |   |                   |   |
| IR FORT                               | ·            | Sul -                                                     | (80%)               |      | 5.2            | 0.10             | 5.8               | 3.8     | 5.8                                       | 5.4                                       | 0.87         | 0.31         | 0.35                                      | 0.29        | 5.0  | wio     |   |                   |   |
| MOYO RIVER MEAR FORT BRAGG (STA. 10c) | constituents | Bicar                                                     | (HCO <sub>3</sub> ) |      | 64             | 0.97             | 53                | 56      | 1.16                                      | 1.26                                      | 1.38         | 1.34         | 84<br>1.38                                | 98          | 85   | 38      |   |                   |   |
| NOYO R                                | rai com      |                                                           | (,00)               |      | 0.0            | 0.00             | 0.0               | 0.00    | 0.00                                      | 0.00                                      | 0.00         | 0.00         | 0.0                                       | 0.0         | 0.00 | 0.0     |   |                   |   |
|                                       | Minerai      | Potos- C                                                  |                     |      | 6.0            | 9.0              | 9.00              | 8.00    | 0.02                                      | 0.03                                      | 3.1          | 3.9          | 1.33                                      | 2.9<br>0.07 | 0.0  |         |   |                   |   |
|                                       |              | E                                                         | 0 0                 |      | 7.8            | 0.37             | 0.30              | 0.31    | 0.39                                      | 9.8                                       | 25.39        | 63           | 38.67                                     | 31          | 0.57 | 11 0.48 |   |                   |   |
|                                       |              | Megns-                                                    | (Mg)                |      | 6.40           | 3.8              | 5.6<br>0.46       | 6.20    | 4.4                                       | 4.7<br>0.39                               | 9.0          | 0.86         | 9.69                                      | 11 0.94     | 5.4  |         |   | lon.              |   |
|                                       |              | Coletum                                                   | (0)                 |      | 12             | 0.60             | 7.6               | 0.60    | 0.70                                      | 0.75                                      | 918          | 0.9          | 2.79                                      | 0.70        | 0.80 | 1.34    |   | evaluation        |   |
| ı                                     |              | E F                                                       |                     |      | 7.1            | r.               | 7:1               | 7.2     | -v                                        | 7.5                                       | 7.3          | , in         | <br>                                      | 7.3         | 7.50 | , d     |   |                   |   |
|                                       | of Mines     | (micramhos                                                |                     |      | 134            | 123              | 113               | 115     | 149                                       | 158                                       | Lako<br>Oran | 193          | 5,610                                     | 306         | 174  | 165     |   | t included in     |   |
|                                       | 0            | DE C                                                      | %Sot                |      | 84             | 8                | 76                | 16      | 16                                        | 66                                        | 00           | 8            | 100                                       | 86          | %    | 95      |   | , not             | - |
|                                       |              | Dissolved                                                 | % wdd               |      | 0.             | 11.3             | 10.9              | 4.      | 6.6                                       | 6.6                                       | 9.0          | 9.6          | 9.3                                       | 9.6         | 9.6  | 6,      | _ | sea water,        | - |
|                                       |              |                                                           | -                   |      | 11.            | 9                | - 12              | 54 10.  | 65                                        | -8                                        |              | 69           | 29                                        | 9           | 25   | 41 10.  |   | , A               | - |
|                                       |              | Discherge Tamp                                            |                     | -    | 75             | 124              | 142               | 2 la la | 84                                        | 18                                        | 9.9          | 3.8          | 6.9                                       | 8.4         | 6.5  | 6.3     |   | Sample influenced |   |
|                                       |              | Dots Dis                                                  | P.S.T               | 1959 | 1/22           | 2/5              | 3/3               | 9/5     | 5/4                                       | 6/1                                       | 1/13*        | 8/4°<br>0730 | 9/7•                                      | 10/5*       | 11/3 | 12/9    |   | * Sample in       |   |

b Laboratory pH. a Field pH.

Sum of calcium and magnessum in epm.

Jum of solicium amagesturum in spin. (C.<sup>1</sup>), reported (A.), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci<sup>1,6</sup>), reported here or 0.00 except as shown in the control of the control o Derived from conductivity vs TDS curves.

Annuel median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health, Service. Gravimetric determination.

Determined by addition of analyzed constituents.

Minned analyses mode by United Stores, Out for yill frame Branch (USGS), United Stores Department of the Internor, Boraco of Red-contine (USBR), United Stores Public Health Service (USPRS); Son Benoading County Fleed
County Distriction (SEDC), United a Scholar College of Stores (SEDC), United Stores (SEDC), Stores (SEDC

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE M.1

|                         | hoplyred<br>by l                                         |                         | 1990 |       | Ī     |            |             |               |       |                                                                                 |        |                  |        |       |                                         |  |
|-------------------------|----------------------------------------------------------|-------------------------|------|-------|-------|------------|-------------|---------------|-------|---------------------------------------------------------------------------------|--------|------------------|--------|-------|-----------------------------------------|--|
|                         | Hardness aid - Keilfarm Acaysed on CoCOs 177 MP4/ms by 1 |                         |      |       |       |            |             |               |       |                                                                                 |        |                  |        |       |                                         |  |
|                         | 100                                                      | 000                     |      |       |       |            |             |               |       |                                                                                 |        | rs.              | -      | -     | 4                                       |  |
|                         | 0000 e                                                   | Total N.C.<br>ppm ppm   |      | 2     |       | -          |             |               |       | 1-                                                                              |        |                  | Ξ      | 0.    | 3                                       |  |
|                         |                                                          |                         |      | 2     | 00    | 7          | e<br>F      |               | 8     | Α.                                                                              | e.     | Ą                | =      | =     | 1                                       |  |
|                         | 000                                                      | 6                       |      | 91    | 8.    | 2          | e-1         | 5             | 2     | 61                                                                              | 20     | )C               | Ø.     | 2     | *                                       |  |
| Total                   | 900                                                      | 600                     |      | 79    | 100   | 916        | 3           | 121           | 5     | 10                                                                              | 111    | 191              | 8<br>5 | 9,150 | 3.                                      |  |
|                         |                                                          | Other constituents      |      |       |       |            |             | P T 104 17 TV |       | Tot Ala . eg                                                                    |        | PO 0 00 A1 113 4 |        |       |                                         |  |
|                         | 9 711                                                    | \$10°E)                 |      | 01    | 9     |            | =           | 0             |       | 2                                                                               |        |                  |        |       |                                         |  |
| 100                     | oron S                                                   | (8) (8:0 <sup>8</sup> ) |      | 64    | 1]    | 0.0        | 0.3         | 0 1           | 01    | 1 2                                                                             | o.     | 0                |        | *     | CI CI                                   |  |
| million<br>ser mill     | F 100-                                                   | (F)                     |      | 10.0  | 0.01  | 0.00       | 0 80        | 100           | 100   | 100                                                                             |        | 000              |        |       |                                         |  |
| equivolents per million | ż                                                        | (NO <sub>3</sub> )      |      | 0.00  | 500   | 000        | 0 K         | 0.0           | E 6   | 500                                                                             |        | 28               |        |       |                                         |  |
| - Oning                 | Chio.                                                    | (C)                     |      | 0.12  | 8.0   | 58<br>0.16 | 6.0<br>0.1° | 000           | 215   | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 800    | S.E.             | 88     | 2/8   | ======================================= |  |
| ç                       |                                                          | (SO <sub>6</sub> )      |      | 6.7   | 3.8   | 12         | 0.0         | 6.7           | 7.7   | 110                                                                             |        | 61.0             |        |       |                                         |  |
| finentife.              | Bicor                                                    | (HCO)                   |      | 900   | 86    | 36 I       | 3           | 116           | 138   | 24 FE                                                                           | 316    | 1 2 2 2          | 35     | 9 110 | 80 2                                    |  |
| Mineral constituents    | - wod va                                                 | (00)                    |      | 0.0   | 0.0   | 0.0        | 0.0         | 0.0           | 0.00  | 0 0                                                                             | 000    | 18               | 0      | - 8   | 08                                      |  |
| 3                       | Potos-                                                   | (x)                     |      | 1.6   | 1.3   | 0.0        | 0.0         | 0.00          | 0.00  | 0 0                                                                             |        | 0 0              |        |       |                                         |  |
|                         | Sodium                                                   |                         |      | 90    | 2.6   | 0.30       | 0.0         | 110           | 24 O  | 57                                                                              | 17     | 100              | 16     | 100   | 98                                      |  |
|                         | Mogne                                                    | (p.M.c)                 |      | 0.35  | 2.0   | 0.9        | 0 13        | 24.0          | 6.0   | 100                                                                             |        | 2                |        |       |                                         |  |
|                         | Calcium                                                  | (00)                    |      | 0.65  | 0.24  | 0.65       | 200         | 1             | 8     | SE                                                                              | 6      | 22               | 12     | E     | R.                                      |  |
|                         | Ę                                                        |                         |      | 7.6   | 4.5   | 7.80       | 1.50        | 9.00          | 9.19  | a                                                                               | 10     | 0                | 9.7    | 7.9   |                                         |  |
| OBCORD                  | Conductance<br>(micrombos                                | 3                       |      | 135   | 50.8  | 137        | 173         | 27.6          | 32    | 8                                                                               | 90(    | Tex.             | 8      | 80    | Z                                       |  |
| _                       | 0.5                                                      | % 3 or                  |      | 101   |       |            |             | 9             | 8     | 3.                                                                              | 118    | 6                | P.     | 2     | 9                                       |  |
|                         | Dissolved                                                | % wed                   | -    | 10.8  | -     |            |             | 8.3           | 6 -   | F -                                                                             | 9.9    | 6.3              | 7.5    | 5.7   | 18.0                                    |  |
| _                       |                                                          | 0                       | -    | 55 10 |       | 2.5        | 38          | 9             | 99    | 8                                                                               | 8      | 8                | 5      | 3     | 2                                       |  |
|                         | Discharge Temp                                           |                         |      | 1,730 | 4,510 | ž          | 118         | 2             | 472   | 6.                                                                              | •      | ec .             | 1 9    | 9-8   | 2                                       |  |
|                         |                                                          | - so                    | 1959 | 1/7   | 1,290 | 3/5        | 1,300       | 5/16<br>1700  | 04/10 | 7/14                                                                            | 1 1955 | 9/15             | 10/7   | 18.5  | 12/9                                    |  |

& Laborationy p.H. Sum of

A loss of the state of the larger of the companies the second of the second between the second of the second between the second of the second

I Desem not by that I have seed to be come to · Derved from anducts by so Tall serves

1 General determine

A management of the control co

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE B-1

|                |              |                                                |               |                     |                 |       |        |                               |                                           |      |       |                    |      |            |       | <br> |
|----------------|--------------|------------------------------------------------|---------------|---------------------|-----------------|-------|--------|-------------------------------|-------------------------------------------|------|-------|--------------------|------|------------|-------|------|
|                |              | Analyzed<br>by i                               | UBGB          |                     |                 |       |        |                               |                                           |      |       |                    |      |            |       |      |
|                | 4            |                                                | Median<br>23. | Max1 mum<br>7,000.+ | Minimum<br>0.62 |       |        |                               |                                           |      |       |                    |      |            |       |      |
|                | 7            | - pid<br>At-                                   |               |                     |                 | 84    |        | 10                            | -1                                        |      |       | 15                 |      | 15         | 4     |      |
|                |              | Hordness<br>os CoCO <sub>S</sub><br>Totol N.C. |               | 9                   | -3              | 2     | 9      | 2                             | 2                                         | 60   | 9     | 0                  | 15   | 97         | 6     |      |
|                |              | Totol<br>PPm                                   |               | 34                  | 8               | 33    | 35     | #                             | 25                                        | 8    | 400   | 8                  | %    | 8          | 61    |      |
|                |              | 10 a c a c a c a c a c a c a c a c a c a       |               | 16                  | 18              | 17    | 13     | 6                             | 77                                        | 7,7  | 18    | 16                 | 18   | ĸ          | 8     |      |
|                | Total        | solids<br>in ppm                               |               | μ <sub>6</sub> φ    | 124             | 534   | I I II | 265                           | 73 <sup>£</sup>                           | J.98 | 78r   | 821                | 38   | °8.        | 98    |      |
|                |              | Other constituents                             |               |                     |                 |       |        | Pe 0.07 A1 0.06 d<br>POL 0.00 | 6.9 7e 0.05 At 0.01 d<br>POL 0.05 Ze 0.03 |      |       | Fe 0.07 POL 0.00 d |      |            |       |      |
|                |              | Slico<br>(SiOg)                                |               | 4                   | 8.1             | 21    | 6.4    | 9.7                           | 6.9                                       | 9    | 8.    | 1.8                | 9    |            |       |      |
|                | 40           | Baron<br>(B)                                   |               | 0.0                 | 0.0             | 0.0   | 0.0    | 0.0                           | 0.0                                       | 0.0  | 1.0   | 0.0                | 0.0  | 0.1        | 0.0   |      |
|                | par million  | Fiuo-<br>rida<br>(F)                           |               | 0.0                 | 0.1             | 0.0   | 0.0    | 0.0                           | 0.0                                       | 8.0  | 0.0   | 0.0                | 0.0  |            |       |      |
| A. 3b)         |              | Ni-<br>trota<br>(NO <sub>3</sub> )             |               | 00.0                | 0.0             | 0.5   | 0.0    | 0.0                           | 0.0                                       | 0.03 | 0.5   | 0.0                | 0.00 |            |       |      |
| AT ORICK (STA. | squivolents  | Chio-<br>ride<br>(CI)                          |               | 5.8                 | 5.4             | 4.5   | 0.12   | 5.8                           | 6.2                                       | 6.5  | 6.5   | 6.2                | 0.28 | 6.8        | 0.80  |      |
| SK AT OF       | <u>c</u>     | Sul -<br>fota<br>(SO <sub>e</sub> )            |               | 5.8                 | 2.9             | 0.10  | 0.10   | 1.9                           | 7.3                                       | 0.15 | 7.0   | 0.0                | 0.27 |            |       |      |
| REDWOOD CREEK  | constituents | Bicor-<br>bonata<br>(HCO <sub>3</sub> )        |               | 34,0                | 30<br>0.49      | 33    | 32     | 94.0                          | 57.0                                      | 1.05 | 9.9   | 1.30               | 1.08 | 54<br>0.89 | 64    |      |
| REDW           | Minsrol con  | Carbon-<br>ote<br>(CO <sub>S</sub> )           |               | 0.0                 | 0.00            | 0.00  | 0.00   | 0.0                           | 0.0                                       | 0.0  | 0.0   | 0.0                | 0.0  | 0.0        | 0.00  |      |
|                | Mini         | Potos-<br>(X)                                  |               | 00.0                | 0.00            | 0.0   | 0.0    | 0.0                           | 0.0                                       | 0.03 | 0.0   | 0.03               | 0.3  |            |       |      |
|                |              | Sodium<br>(No)                                 |               | 3.0                 | 3.1             | 2.6   | 2.3    | 0.09                          | 3.8                                       | P. 0 | 5.5   | 5.5                | 6.7  | 0.32       | 0.30  |      |
|                |              | Mogna-<br>sium<br>(Mg)                         |               | 0.13                | 0.13            | 1.7   | 1.7    | 0.13                          | 1.7                                       | 0.15 | 2.2   | 4.3                | 0.25 |            |       |      |
|                |              | Calcium<br>(Ca)                                |               | 0.55                | 8.8             | 0.50  | 0.50   | 0.75                          | 0.90                                      | 1.05 | 9.9   | 0.85               | 1.10 | 1.20       | 1.22  |      |
|                |              | Ĭ.                                             |               | 7.18                | 7.28            | 4.5.7 | 7.2 #  | 7.5b                          | 7.5g                                      | 7.0ª | F. C. | 7.0°               | 7.1ª | 6.9        | 7.28  |      |
|                | Spacific     | (micrambos<br>or 25°C)                         |               | 81.3                | 72.7            | 75.8  | 76.8   | 106                           | 121                                       | 139  | 131   | 131                | 132  | 151        | 144   |      |
|                |              | vad<br>% Sat                                   |               | 8                   | %               | 8     | %      | 87                            | 85                                        | 7    | 42    | 102                | 93   | %          | *     |      |
|                |              | Dissolved<br>osygen<br>ppm %Sol                |               | 11.3                | 11.5            | 11.11 | 9.6    | 4.8                           | 8.8                                       | 7.6  | 7.8   | 4.6                | 9.6  | 10.2       | 10.9  |      |
|                |              | Ta of                                          |               | 14                  | 1               | 9     | 28     | 8                             | 58                                        | 19   | 19    | 89                 | 95   | 57         | 22    |      |
|                |              | Discharge Temp                                 |               | 556                 | 1,550           | 1,000 | 1,100  | 350                           | 142                                       | 58   | 31    | 18                 | 53   | 58         | 39    |      |
|                |              | Dots<br>and tims<br>sampled<br>P.S.T.          | 1060          | 1/20                | 2/3             | 3/4   | 1500   | 5/6                           | 6/2                                       | 7/15 | 8/5   | 9/1                | 10/7 | 11/4       | 12/10 |      |

b Laboratory pH.

Sum of calcium and magnessum in epm.

Sum at calcium and magnestium in spin.
Iron (Fe), aluminum (A1), arsanic (A2), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>+6</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown.

Darived from canductivity vs TDS curves.

Annel medion and responses to consider the monthly samples most by California Department of Poblic Health, Division of Loborations, or United Stores Public Health Savies.

Miscola markets and by United Stores Goolgack Savery, Carlifornia Carlifornia (Market Stores Bardet of the Interior, Burson of Reclamation (USBR), Linked Stores Carlifornia (Market Stores Bardet of the Interior Burson of Reclamation (USBR), Linked Stores Carlifornia (Market Storesmann of Market and People). City of Las Angeles, Department of Public Relation (LADPH), City of Lang Beach, Department of Public Relation (LADPH), City of Linket Storescea (DRR), as indicated.

Determined by addition of analyzed constituents.

B-22

#### ANALYSES OF SURFACE WATER MORTH COATTAL REGION (NO. 1) TABLE B-1

|                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -       |          |      |       | -        | -    | -     |     | -                |      |        |        |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------|------|-------|----------|------|-------|-----|------------------|------|--------|--------|
|                         | A 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -     |         |          |      |       |          |      |       |     |                  |      |        |        |
|                         | Hordness and Celform Asseyred on CeCO <sub>3</sub> by Mostyma eg 3 CeCO <sub>3</sub> by Mostyma eg 3 CeCO <sub>3</sub> by CeCO <sub>3</sub> | 1,000 | Watter. | E)       |      |       |          |      |       |     |                  |      |        |        |
|                         | 9-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 2       | 0-       | 3    | -,    |          | d    |       | v   | C4               |      | a      |        |
|                         | 000 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | -       | 60       | 4    | d     |          |      |       |     | 7                | 7    |        |        |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 8       | <i>d</i> | 112  | <     |          | 5    | 2     | 8   | Pa.              | 9    | 9      | =      |
|                         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | m       |          | ×    |       | 3        | -    | -     | 0   | -                | 0.00 | 4      | z.     |
| Total                   | 619<br>80108<br>80108<br>80108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | ·       | 156      | 1610 | 17    |          | 1    | 3 v a | ž,  | -                | 0.   | 0.7    | On one |
|                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |         |          |      |       | N. M. C. |      |       |     | At 12 Property d |      |        |        |
|                         | Silico<br>(SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |         | -        |      |       | 10       |      |       |     | 4                |      |        |        |
| 00                      | Boron S<br>(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 3.0     | 2        | -1   | 0     | 4.0      | 4.0  | 4 0   | 4   | 4                | 7    | *      | 3      |
| equivolents per million | Fluo-<br>8 (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 01      |          |      | .01   | 0 8      |      | 01    |     | -100             |      | al.    | -1     |
| parte per million       | N.<br>1701e<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |          |      |       | 7.00     |      |       |     | 100              |      |        |        |
| 09100                   | Chio-<br>ride<br>(Ci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 8.8     | 8        | 7 .0 | 6.2   | 4.7.0    | 1    | - F   | ×10 | 2/2              | - 18 | 1100   | 10     |
| ē                       | Sul -<br>fate<br>(\$0 <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |         |          |      |       | 13       |      |       |     | 6                |      |        |        |
| e frituente             | Brear -<br>bonate<br>(MCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 8 8     | 812      | 2.16 | 18:   | 161      | F 18 | - P   | 3/2 | 3 04             | 20   | EE     | 10     |
| Mineral constituents    | Carbon-<br>ate<br>(CO <sub>9</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 90.0    | 300      | 0 8  | 0 8   | 18       | × K  | -3/8  | -18 | 98               | 08   | S<br>o | 18     |
| Mine                    | Pords.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |         |          |      |       | 00       |      |       |     | 100              |      |        |        |
|                         | Sodium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 9       | 0.00     | 116  | 012   | 1 P.     | 000  | 4 4   | 10  | 7 0              | - 10 |        | 400    |
|                         | Mogne-<br>sign<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |         |          |      |       | 12 12    |      |       |     | 50               |      |        |        |
|                         | Calcium<br>(Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 2.500   | 2 . 2 A  | 2 24 | 1 000 | -18      | 1    | B     | B.  | 8                | 19 6 | JE.    | ř.     |
|                         | T n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 4.3     | -        | -    | -     |          | ă.   | P     | 4   | 4 1              | =    | ÷.     | 4      |
| Specific                | onductors<br>hicrambos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 8       | 580      | 3    | 2     | ì        | 108  | ń     | 8   | ž                | £    | 239    | £      |
|                         | 00 Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | ~       | 5        | -    |       | 7        |      | 8     | 17  | S.               | 8    | 9      | 8      |
|                         | Dissolved<br>osgan<br>ppm %Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -     | 1 11    | £ 11     | 0.0  | ī     |          |      | ,     | 8   | 8 9              | 8 3  | 9 6    | î      |
|                         | 9 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 52      | <u>-</u> | -    |       |          | 7    |       | T   | £                | 9    | F      | 9      |
|                         | Oscolege Temp Dissolved conductores NA in cfs in 0F assour (micrombos 8)4 osgen (micrombos 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 1,130   | §        | 2 30 | E     | 6        | 1    | 1     | N   | î                | ĸ    | 2      | É      |
|                         | ond time<br>sampled<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1959  | 1/22    | 174      | 2    | 7     |          | 28   | 100   | N   | 54               | 18   | 38     | 11     |

For the control of the appeal of any post of the control of the co Sun al - and magnetic and - specific

a convert from a man I as I mand be not

street to be to be on the property of

se promotely species to

Annuel mai indirega inspection in sed to produce a language of the common of the commo

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

|                                     |              | Analyzed<br>by 1                                                    | 0308          |        |                 |       |      |                   |       |       |              |                   |             |            |      |      |
|-------------------------------------|--------------|---------------------------------------------------------------------|---------------|--------|-----------------|-------|------|-------------------|-------|-------|--------------|-------------------|-------------|------------|------|------|
|                                     |              | Hordness bid - Coliform os CoCO <sub>S</sub> II'y MPN/mJ fotol N.C. | Median<br>23. | 2,100. | Minimum<br>0.13 |       |      |                   |       |       |              |                   |             |            |      |      |
| - 1                                 | 1            | 2.4                                                                 |               | ,9     | ~               | &     | Я    | 26                | 91    | 9     | ۳            | 6                 | 60          | ۱C         | 6    |      |
|                                     |              | N C O B                                                             |               | 16     | -               | -     | 9    | 0                 | 0     | 0     | 0            | 0                 | 0           | 0          | 0    |      |
|                                     |              | 1                                                                   |               | 8      | 114             | ń     | 8    | 130               | 130   | 111   | 112          | 107               | 103         | 142        | 195  |      |
|                                     | Per          | e od<br>- Bod<br>- Eu                                               |               | 16     | 77              | 12    | 71   | 15                | 13    | 77    | 15           | 15                | 13          | 53         | 14   | <br> |
|                                     | Total        | solids<br>in part                                                   |               | 112    | 149             | 1#6°  | 1226 | 160 f             | 163   | 149   | 142          | 135 <sup>f</sup>  | 132         | °,40%      | 134⁰ |      |
|                                     |              | Other constituents                                                  |               |        |                 |       |      | Fe 0.02 A1 0.07 d |       |       |              | Fe 0.03 At 0.02 d |             |            |      |      |
|                                     |              | (SiOg)                                                              |               |        |                 |       |      | 닭                 |       |       |              | 뢰                 |             |            |      |      |
|                                     | million      | Beren<br>(B)                                                        |               | 0.5    | 90.0            | 6.3   | 0.5  | 6:5               | 0.5   | 4.0   | 9.0          | 0.1               | 4.0         | 7.0        | 0.5  |      |
| (6                                  | E            | Flue-<br>rida<br>(F)                                                |               |        |                 |       |      | 0.1               |       |       |              | 0.0               |             |            |      |      |
| (STA.                               | ě I          | frota<br>(NO <sub>B</sub> )                                         |               |        |                 |       |      | 0.05              |       |       |              | 0.0               |             |            |      |      |
| LDSBURG                             | ports p      | Chie-<br>ride<br>(CI)                                               |               | 0.21   | 5.5<br>0.16     | 5.8   | 5.5  | 0.20              | 0.20  | 0.14  | 0.13         | 0.12              | 6.0         | 14<br>0.39 | 5.2  |      |
| EAR HEA                             | Ē            | Sul -<br>fote<br>(SO <sub>e</sub> )                                 |               |        |                 |       |      | 8.6               |       |       |              | 0.15              |             |            |      | <br> |
| RUSSIAM RIVER NEAR HEALDSBURG (STA. | constituents | Bicar-<br>benete<br>(HCO <sub>3</sub> )                             |               | 1.23   | 2.13            | 2.13  | 110  | 2.61              | 2.59  | 2.39  | 2.31         | 2.23              | 128<br>2.10 | 2.93       | 2.10 |      |
| RUSSIAN                             | Mineral con  | Corbon-<br>ote<br>(CO <sub>\$</sub> )                               |               | 0.0    | 0.0             | 0.0   | 0.0  | 0.0               | 0.0   | 0.0   | 0.0          | 0.0               | 0.00        | 0.0        | 0.0  |      |
|                                     | Min          | Potos-<br>(X)                                                       |               |        |                 |       |      | 1.4               |       |       |              | 0.04              |             |            |      |      |
|                                     |              | Sodium<br>(Ne)                                                      |               | 6.9    | 8.2<br>0.36     | 0.31  | 0.31 | 8.4               | 8.8   | 8.8   | 8.7<br>0.38  | 8.5               | 0.31        | 19<br>0.83 | 0.33 |      |
|                                     |              | Magna-<br>sium<br>(Mg)                                              |               |        |                 |       |      | 1.35              |       |       |              | 0.99              |             |            |      |      |
|                                     |              | (Co)                                                                |               | 1.56°  | 2.28            | 2.28  | 1.9  | 1.25              | 2.60° | 2.340 | 2.240        | $\frac{23}{1.15}$ | 28.8        | 2.84       | 2.10 |      |
|                                     | Ľ            | Ψ.                                                                  |               | 7.3    | 7.5             | 7.5   | 7.5  | 7.9               | 7.7   | 7.7   | 7.9          | 7.7               | 7.5         | 7.5        | 7.9  |      |
|                                     | Specific     | (micrambes<br>of 25°C)                                              |               | 190    | 253             | 548   | 207  | 282               | 5176  | 253   | 241          | 234               | ₹<br>22     | 344        | 554  |      |
|                                     |              | %Sot                                                                |               | 8.     | 8               | 84    | 84   | 107               | 5     | 8.    | 102          | 83                | 83          | 48         | %    |      |
|                                     |              | Dissolved<br>osygan<br>ppm %Sof                                     |               | 10.1   | 10.1            | 9.5   | 9.1  | 0.6               | 8.5   | 8.5   | 6.5          | 7.6               | 8.0         | 8.3        | 9.01 |      |
|                                     |              |                                                                     |               | 2      | 51              | 28    | 19   | F                 | 72    | 5     | =            | 88                | 63          | 19         | 42   |      |
|                                     |              | Discherge Temp<br>in cfs in of                                      |               | 1,160  | 641             | 1,280 | 746  | 185               | 145   | 170   | 163          | 8                 | 313         | 313        | 337  |      |
|                                     |              | ond time<br>compled<br>P.S.T.                                       | 1959          | 1/7    | 2/6<br>0820     | 3/2   | 1330 | 5/11              | 6/11  | 1/1   | 8/12<br>1545 | 0690              | 10/15       | 11/4       | 12/3 |      |

b Labaratory pH.

Sum at colcum and magnessum in spin.
Iron (Fe), oluminum (Al), conserior (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr\*5), reported here as  $\frac{0.0}{0.00}$  except as shown. Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents.

Derived from conductivity vs TDS curves.

Armed median and nones, respectively. Calculated from analyses and about cases that a contract and a contract a contract and a g Grovimetric determination.

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE PLI

|                      | Ann pred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1    |                 |                         |           |      |                 |      |            |      |              |       |            |      |  | - |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|-------------------------|-----------|------|-----------------|------|------------|------|--------------|-------|------------|------|--|---|
|                      | Hardness Brid - Conform Anapted as CaCOs program by 1 Training By 1 Trai | 100  | Mattern<br>2 km | # 1<br>2<br>2<br>2<br>2 |           |      |                 |      |            |      |              |       |            |      |  |   |
| 3                    | - p. d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 7.              |                         |           |      |                 | 8    | 3          |      | -            |       |            |      |  |   |
|                      | 0000 NO 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 9               | -                       |           |      |                 |      |            |      |              |       |            |      |  |   |
|                      | Par Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                 | Ē.                      | 4         | Ġ.   | 17              | il.  | 2          | 1    | E            | 12    | ş          | 8    |  |   |
| 9                    | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 10              | Ī.                      | 0         |      |                 |      |            | 8    |              |       |            | 74   |  |   |
| Torel                | 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 102             | 11e                     | 112°      | ř    | -2              | 1    | e Z        | 1020 | Ē            | *     | * <u>B</u> | :    |  |   |
|                      | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                 |                         |           |      | Po CTR ALL LL d |      |            |      | AL TO SEE TO |       |            |      |  |   |
|                      | 30°S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                 |                         |           |      | 61              |      |            |      | 91           |       |            |      |  |   |
| milion               | 8arom Silico<br>(8) (5:0g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 2               | -                       | 0.3       | Cul  | 4               | 21   | .21        | 7    | a            | 01    | 7          | 1    |  |   |
| per mil              | Fluo-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                 |                         |           |      | 100             |      |            |      | 000          |       |            |      |  |   |
| parts per million    | trafe<br>(NO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                 |                         |           |      | 0 00            |      |            |      | 9 0          |       |            |      |  |   |
| equiratente          | Chio-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 000             | 6.5                     | 55<br>516 | 27.5 | 510             | 0 18 | 0 F        | 70   | 0 10         | 20    | 0 8        | 100  |  |   |
| e.                   | Sul -<br>fare<br>(50e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                 |                         |           |      | 9.8             |      |            |      | 2F           |       |            |      |  |   |
| Tituenit             | Bonete<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 1.28            | 8 2                     | 8 2       | 8    | 100             | 乱    | 8          | 82   | 8            | 82    | II.        | 110  |  |   |
| Mineral constituents | Carbon -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 0.0             | 0.0                     | 0.0       | 0.00 | 0.00            | 0 8  | 0.00       | 8    | 0 00         | 08    | 000        | 0 8  |  |   |
| Mine                 | Potos-<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                         |           |      | 40.0            |      |            |      | 1.7          |       |            |      |  |   |
|                      | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 7.6             | 8.7                     | 0.90      | 0.0  | 77.7            | 27.0 | 3K0        | 0.70 | F 00         | F     | 0 4 0      | 9 12 |  |   |
|                      | #0gh<br>#:5m<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                 |                         |           |      | 1.7             |      |            |      | 0 10         |       |            |      |  |   |
|                      | Calcium<br>(Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1.160           | 1.86                    | 1.688     | 189  | 8               | 18   | E          | 8    | 0.90         | 1/2   | 1.89       | 124  |  |   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 7.34            |                         | 7.14      | 7.28 | P-              | 46.7 | 450        | ,    | 40.          | 7 3.0 | P          | a    |  |   |
| Specific             | Dissaived conductoring PH asygen (micrombos PH as 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 173             | 197                     | 961       | 180  | 190             | 179  | 108        | 172  | 176          | 179   | 183        | 98   |  |   |
|                      | % Sot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 100             | 28                      | 8         | 8    | 5               | 11.3 | 2          | 20   | 104          | à     | 8          | 8    |  |   |
|                      | 00,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 9.6             | 10.2                    | 6.6       | 10.0 | 1.              | 0 77 | 50.0       | 7.6  | A 0          | 60    | #<br>10    | 10 % |  |   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 6               | 9                       | #         | 5.1  | 9               | 63   | 7.9        | 63   | Ę            | 69    | 70         | 53   |  |   |
|                      | Discharge Yems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 878             | 285                     | 6693      | 054  | 130             | 165  | 217        | 910  | 23           | 200   | 233        | 31.8 |  |   |
|                      | Date<br>and lime<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1959 | 1/7             | 2/6                     | 3/2       | 0,21 | \$ <b>\</b> %   | 6/1  | 7/2<br>13% | 0/13 | 9/3          | 10/10 | 11 0       | 12/3 |  |   |

a Lobarotory pH

c. Suit d'il un tout desprésaire. N'estre de le copie de rout pompa de sinc. Zo inchéseration l'homisme d'imprired en sis en ept le brown d'imprired en sis en ept le brown. c. Sum of I may and magnessium is opin.

<sup>·</sup> Tar sed from Landachility or TDS juries

<sup>1.</sup> Decembed by miles on of and yand print Superior

It knows and their suppressessions of the probability of the model by the probability of the suppression of

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE 3-1

|                                           | Anolyzed<br>by i                                                        |                       | USGS          |                |                  |       |      |                                            |                |                 |            |                                           |      |      |      |      |  |
|-------------------------------------------|-------------------------------------------------------------------------|-----------------------|---------------|----------------|------------------|-------|------|--------------------------------------------|----------------|-----------------|------------|-------------------------------------------|------|------|------|------|--|
|                                           | Hardness bid - Coliform Analyzed as CoCO <sub>3</sub> , 13y MPN/ml by 1 |                       | Median<br>6 2 | Maximum<br>620 | Minimum<br>0.045 |       |      |                                            |                |                 |            |                                           |      |      |      |      |  |
|                                           | - pid<br>- pid                                                          | E 00 E                |               | 52             | 12               | 70    | 9    | C4                                         | 8              | 0               | m          | Cu .                                      |      |      | m    |      |  |
|                                           | 2000<br>CO3                                                             | D E G                 |               | m              | ω                | 00    | н    | 0                                          | -2             | 0               | 0          | н.                                        |      |      | 0    |      |  |
|                                           | Hard<br>S C                                                             | Total N.C.<br>ppm ppm |               | 62             | 63               | 45    | 28   | 19                                         | 69             | 99              | 99         | 42                                        |      |      | お    | <br> |  |
|                                           | Per-                                                                    | ē                     |               | 91             | 15               | =     | 71   | 15                                         | 13             | 1,4             | 13         | 42                                        |      |      | 15   | <br> |  |
| - Loto                                    | solved                                                                  | mdd ui                |               | 89             | 83 <sub>e</sub>  | -89   | 81.  | J 16                                       | 166            | 85 <sub>e</sub> | 80%        | 911 <sub>f</sub>                          |      |      | 125  |      |  |
|                                           |                                                                         | Other constituents    |               |                |                  |       |      | Fe 0.01 A1 0.04 d<br>PO <sub>12</sub> 0.05 |                |                 |            | A1 0.01 Cu 0.02 d<br>PO <sub>4</sub> 0.00 |      |      |      |      |  |
|                                           | 5                                                                       | (SiO <sub>2</sub> )   |               |                |                  |       |      | 11                                         |                |                 |            | 7.2                                       |      |      |      |      |  |
|                                           | 1 5                                                                     | (8)                   |               | 0.3            | 0.3              | 0.1   | 0.3  | 0.3                                        | 0.2            | 0.2             | 0.3        | 6.3                                       |      |      | 0.7  |      |  |
| million                                   |                                                                         | F)                    |               |                |                  |       |      | 0.0                                        |                |                 |            | 0.0                                       |      |      |      |      |  |
| ports per million                         |                                                                         | (NO <sub>3</sub> )    |               |                |                  |       |      | 0.0                                        |                |                 |            | 0.0                                       |      |      |      |      |  |
| ports ps                                  | Chio-                                                                   | (CI)                  |               | 5.0            | 3.0              | 3.0   | 3.0  | 2.8                                        | 3.5            | 0.07            | 0.07       | 3.1                                       |      |      | 5.2  |      |  |
| Ē                                         | Sul -                                                                   | (SO <sub>4</sub> )    |               |                |                  |       |      | 6.3                                        |                |                 |            | 5.8                                       |      |      |      |      |  |
| tituents                                  | Bicar-                                                                  | (HCO <sub>3</sub> )   |               | 1.18           | 01.1             | 9.9   | 70   | 1.36                                       | 17.16          | 76              | 82<br>1.34 | 87                                        |      |      | 1.90 |      |  |
| Minarol constituents in ports par million | Corbon-                                                                 |                       |               | 0.00           | 0.0              | 0.0   | 0.0  | 0.0                                        | 0.00           | 0.00            | 0.00       | 0.0                                       |      |      | 0.00 |      |  |
| Mine                                      |                                                                         | ĒΞ                    |               |                |                  |       |      | 0.0                                        |                |                 |            | 1.1                                       |      |      |      |      |  |
|                                           | 6.00                                                                    | (NO)                  |               | 5.6            | 5.0              | 3.3   | 6.19 | 5.4                                        | 0.18           | 4.1<br>0.19     | 0.50       | 5.3                                       |      |      | 7.4  |      |  |
|                                           | Magne                                                                   | (Mg)                  |               | - 10           | - 10             | . 40  | - 10 | 4.7                                        |                |                 |            | 6.0                                       |      |      |      |      |  |
|                                           | - Constant                                                              | (00)                  |               | 1.24c          | 1.26°            | 1.08° | 1.16 | 0.95                                       | 1.24           | 1.30            | 1.32       | 0.95                                      |      |      | 1.88 |      |  |
|                                           | I                                                                       |                       |               | 2.5            | 7.10             | 7.3ª  | 4°.7 | 4.8                                        | d <sub>2</sub> | R4.7            | 7.5ª       | 4.                                        |      |      | 7.3ª |      |  |
|                                           | Spacific                                                                | ot 25°C)              |               | 116            | 138              | 114   | 135  | 155                                        | 981            | 137             | 148        | 160                                       |      |      | 208  |      |  |
|                                           | p s d                                                                   | %Sat                  |               | 89             | 16               | 76    | 8    | 88                                         | 82             | 88              | 83         | 68                                        |      |      | 8.   |      |  |
|                                           | Dissolvsd                                                               | Edd                   |               | 11.3           | 11.1             | 11.11 | 6.6  | 9.6                                        | 6.6            | 8.9             | 7.7        | 0.0                                       |      |      | 10.5 |      |  |
|                                           | Temp                                                                    |                       |               | 2              | 7                | 17    | 42   | 62                                         | 20             | 59              | 19         | 2                                         |      |      | 3    |      |  |
|                                           | Dischorge Temp                                                          |                       |               | 312            | 307              | 163   | 212  | 75                                         | 305            | 307             | 320        | 560                                       | Dry  | Dry  | 16   |      |  |
|                                           |                                                                         |                       | 1959          | 1/6            | 2/6              | 3/2   | 1100 | 5/13                                       | 6/11           | 1/1             | 8/13       | 9/3                                       | 10/4 | 11/4 | 12/3 |      |  |

o Freld pH.

Loborotory pH.

Sum of calcium and magnesium in spim.
Iron (Fe), alumnium (A1), arsanic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heravalent chromium (Cr<sup>+6</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. Sum of calcium and magnesium in epm.

Darived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Grovimetric determination.

Annel metins and tongs, respectively. Calculated from analyses of displicate monthly samples most by California Department of Poblic Health, Division of Laboroviers, or United States Deals Health Service.

Amena interpret mode by Direct States Geological Survey, Quality of Water Bance (1905), United States Department of the Interpret Service (1904). List Angeles Department of Manuer Observed (1904). Let Angeles Department of Manuer Observed (1904). Let Angeles Department of Manuer Observed Service (1904). Let Angeles Department of Manuer Observed Services (1904). Service (1904). Tonnel Testing Angeles Department of Manuer Observed Manuer (1904). Service (1904). Service (1904). Tonnel Testing Department of Manuer Observed Manuer (1904). Service (1904). Service (1904). Tonnel Testing Department of Manuer Observed Manuer (1904). Service (1904). Service (1904). Tonnel Testing Department of Manuer Observed Manuer (1904). Service (1904). Service (1904). Tonnel Testing Department of Manuer (1904). Service (1904). Service (1904). Tonnel Testing Department of Manuer (1904). Service (1904). Service (1904). Tonnel Testing Department of Manuer (1904). Service (1904). Service

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE 1-1

|                      | Anaryzod<br>ky l                            | 9090  |             |               |             |           |                 |                                        |      |       |                   |      |      |             |
|----------------------|---------------------------------------------|-------|-------------|---------------|-------------|-----------|-----------------|----------------------------------------|------|-------|-------------------|------|------|-------------|
|                      | Ref - Colliner R Ancigada<br>17y Me R/me Ry | 20.00 | 2,430       | Minima<br>6 o |             |           |                 |                                        |      |       |                   |      |      |             |
| 1                    | 1                                           |       |             |               | 4           |           | -               |                                        |      |       | 5                 |      | 00   |             |
|                      | 000 Ng                                      |       | 6           | -             | 4           | ~         | 3               | ч                                      | a    |       | er.               | por  | -1   |             |
|                      |                                             |       | 34          | 5             | à           | 55        | 3               | 8                                      | 61   | 5     | *,                | 8    | 63   |             |
|                      | 200                                         |       | 6           | -             | 6           | 60        |                 | 3:                                     | 120  | Z.    | 11                | 2    | 1    |             |
| Tetei                | die oblige                                  |       | 15          | **            | \$          | ,E        | 1               | 7.77                                   | E    | 109   | 8                 | 130  | 8    |             |
|                      | Other constituents                          |       |             |               |             |           | Fo 11 A1 0 12 d | 10000000000000000000000000000000000000 |      |       | Per 101 100 0 2 4 |      |      |             |
|                      | Silice<br>(5:02)                            |       | 57          | 15            | 57          | 9         | Co              | 23                                     | 50   | 61    | 9]                | 17   |      |             |
| 001                  | 8aron Silica<br>(B) (5:0 <sub>2</sub> )     |       | 0.0         | 0.0           | 0.0         | 0.0       | 0.0             | 0.                                     |      | 4     | 7                 | 0    | 1    |             |
| per million          | Fluo-<br>ride<br>(F)                        |       | 08          | 0 8           | 8           | 0.0       | 0 8             | 98                                     | 18   | - B   | -                 | F    |      |             |
|                      |                                             |       | 1.00        | 080           | 500         | 0.00      | 10:0            | 8.0                                    | 1.6  | - 5   | 45                | 0    |      |             |
| edunioning .         | Chia-<br>ride<br>(CI)                       |       | 2.5         | 2.7           | 0.0         | 2.7       | 80 0            | 2.0                                    | 3.2  | 6.5   |                   | F    | × F  |             |
| 5                    | 5ul -<br>1a1e<br>(\$0.0)                    |       | 80.0        | 0.08          | 6.7<br>0.14 | 0.00      | 9.6             | 0.00                                   | 0.15 | 0 4   | 110               | 1    |      |             |
| #1fumuli             | Brear -<br>bonete<br>(HCO <sub>3</sub> )    |       | 27.0        | 5 th<br>0. Hg | 200<br>E.G. | 8         | 36              | 2                                      | 90   | 8     | 24                | 12   | 12   |             |
| Mineral constituents | Carbon-<br>ors<br>(CO <sub>3</sub> )        |       | 0.00        | 0.00          | 0.0         | 0.0       | 0.10            | 0.0                                    | 0.0  | 35    | 0.16              | 0 10 | 0.0  |             |
| Mine                 | Potos. C                                    |       | 1.00        | 76<br>00      | E 00        | 1000      | 180             | 0.01                                   | 80.0 | 8 Kg. | 1.2               | 0 8  |      |             |
|                      | Sodium<br>(No)                              |       | 0.0<br>HO.0 | 11.7          | 0.08        | 2.1       | 1.6             | 100                                    | 200  | 012   | 0 -               | F    | 550  |             |
|                      | Magne<br>(pM)                               |       | 0.20        | 8.6           | 28          | 6.2       | 56              | 0.0                                    | 110  | 010   | F                 | 95   |      |             |
|                      | (Ca)                                        |       | 0.60        | 1.b           | 0.65        | 15<br>(A) | = 100           | 10                                     | 220  | 2 F   | 100 K             | 916  | E.   |             |
|                      | T G                                         |       | 1 3         | 15.           | 4.7         | 4.7       | -5              | D                                      | 0    | -     | -                 |      | -    |             |
| o pro en             | Conductoring PH C                           |       | 9.68        | 8             | 8           | 40        | 16.8            | 60.2                                   | 5    | ¥1.   | 2                 | -    | 9.   |             |
|                      | lvad co<br>gen (m                           |       | 8.          | 200           | 102         | - 90      | 8               | 11                                     | 8    | *     | 8-                | 0    | A    |             |
|                      | Dissolva d<br>osygen<br>ppm %5 Sat          |       | 12.9        | 13 1          | 5           |           | 0               | 1 6                                    | 9    | 4.    | 1                 |      | ā    |             |
| -                    |                                             |       | 39 12       | 17            | 4.h 122     | 1         | 51 11           | 9.                                     | 1    | -     | T                 | 1    | 2    | 8           |
|                      | Discharge Temp                              |       | 1.540       | 2,080         |             | 2 15      | 9 0             | 1,600                                  | 1 41 | £     | 10                | 354  | 176  | Sot Sampled |
|                      | and time<br>campied<br>P S T                | 1989  | 1/20        | 5/2           | 3/5         | 2 11      | 11              | 10 mg                                  | 250  | 15    | 15                | 200  | 11.0 | ē           |

Such that the second of the construction will be considered to the second of the secon Sum II a magnetic ap

. wind min try of The person

- sample later

A to make the contract of the

ANALYSES OF SURFACE WATER TABLE 3-1

NORTH COASTAL REGION (NO. 1)

|                      | 10                                       |      | _           |                        |                 |       |                                           |             |      |      |                   |       |      |      | <br> |
|----------------------|------------------------------------------|------|-------------|------------------------|-----------------|-------|-------------------------------------------|-------------|------|------|-------------------|-------|------|------|------|
|                      | Anolyzed<br>by i                         | UEGS |             |                        |                 |       |                                           |             |      |      |                   |       |      |      |      |
|                      | bid - Colitormh A                        |      | Median      | 6.2<br>Maximum<br>620. | Minimum<br>0.62 |       |                                           |             |      |      |                   |       |      |      |      |
| 1                    | - Add u                                  |      |             |                        | 18              |       | 30                                        |             |      |      | 10                |       |      |      |      |
|                      | P C                                      |      |             | 0                      | 0               | ev.   | 2                                         | -2          | 0    | 0    | 9                 | 80    | -2   | O.   |      |
|                      |                                          |      |             | 8                      | 87              | 59    | 82                                        | 88          | 136  | 134  | 155               | 147   | 143  | 142  |      |
| ä                    | - pos                                    |      |             | 9                      | -               | 9     | 5                                         | -           | -    | 7    | 6                 | -     | 7    | 60   |      |
| Totol                | solids<br>lin ppm                        |      |             | 100                    | 111             | 4     | 100                                       | 111         | 164  | 165  | 151               | 172   | 167  | 176  |      |
|                      | Other constituents                       |      |             |                        |                 |       | Pe 0.05 At 0.06 d<br>PO <sub>4</sub> 0.05 |             |      |      | At 0.03 POL 0.0 d |       |      |      |      |
|                      | Silico<br>(SiOg)                         |      |             | 18                     | 2               | 16    | 11                                        | 16          | 19   | 13   | 8                 | 17    | 8    | ส    |      |
| Lon                  | l 5                                      |      |             | 0.0                    | 0.0             | 0.0   | 0.0                                       | 0.0         | 0.0  | 0.0  | 0.1               | 0.1   | 0.0  | 0.0  |      |
| per million          | Fluo-<br>ride<br>(F)                     |      |             | 0.0                    | 0.1             | 0.0   | 0.0                                       | 0.0         | 0.0  | 0.1  | 0.0               | 0.1   | 0.1  | 0.00 |      |
| equivalents p        |                                          |      |             | 1.0                    | 0.02            | 0.4   | 0.02                                      | 0.02        | 2.2  | 0.3  | 0.7               | 0.02  | 0.02 | 1.6  |      |
| equivo               | Chlo-<br>ride<br>(CI)                    |      |             | 3.9                    | 0.06            | 1.5   | 3.0                                       | 0.07        | 3.8  | 0.0  | 5.8               | 6.0   | 3.5  | 9.0  |      |
| 5                    | Sul -<br>fate<br>(SO <sub>4</sub> )      |      |             | 9.9                    | 8.4             | 1.9   | 0.10                                      | 9.6         | 0.15 | 9.0  | 0.15              | 0.21  | 5.0  | 6.0  |      |
| etituents            | Bicar-<br>bonote<br>(HCO <sub>3</sub> )  |      |             | 1.56                   | 106             | 1.15  | 34                                        | 102         | 2.75 | 2.72 | 2.33              | 2.79  | 2.79 | 2.80 |      |
| Mineral constituents | Corbon-<br>ote<br>(CO <sub>\$</sub> )    |      |             | 0.00                   | 0.0             | 0,0   | 0.0                                       | 0.0         | 0.0  | 0.0  | 0.0               | 0.0   | 0.0  | 0.00 |      |
| Mine                 | Potos-<br>Riym<br>(K)                    |      |             | 0.00                   | 0.5             | 0.0   | 0.3                                       | 0.03        | 0.0  | 0.03 | 0.03              | 0.0   | 0.0  | 0.06 |      |
|                      | Sodium<br>(No)                           |      |             | 2.4                    | 6.13            | 1.8   | 0.09                                      | 3.0         | 9.30 | 9.4  | 5.4               | 5.4   | 5.2  | 0.80 |      |
|                      | Mogne-<br>sium<br>(Mg)                   |      |             | 0.89                   | 0.89            | 8.3   | 10<br>0.84                                | 0.91        | 1.27 | 1.13 | 13                | 17    | 17   | 1.34 |      |
|                      | Colcium<br>(Ca)                          |      |             | 15                     | 0.85            | 0.50  | 36                                        | 0.85        | 1.43 | 31   | 1.40              | 1.55  | 30   | 30   |      |
|                      | H                                        |      |             | 7.3                    | 7.5             | 7.3   | 4.5                                       | 4.7         | 7.6  | 0.0  | 8.1               | 8.0   | 7.9  | 7.5  |      |
| pacetic              | conductonos pH<br>(micrombos<br>of 25°C) |      |             | 163                    | 179             | 911   | 159                                       | 168         | 270  | 292  | 237               | 273   | 273  | 272  |      |
|                      | gen (n                                   | Т    |             | 8                      | 8               | 8.    | 76                                        | 8           | 93   | 115  | 115               | Ь     | 103  | 101  |      |
|                      | Dissolved<br>osygen<br>ppm %Sof          |      |             | 12.2                   | 10.8            | 10.0  | 7.6                                       | 9.1         | 8.8  | 10.7 | 10.5              | 9.6   | 12.3 | 12.5 |      |
|                      |                                          |      | per         | 3                      | 9               | 25    | 82                                        | 19          | 29   | 89   | 69                | 19    | 9    | 37   |      |
|                      | Discharge Temp<br>in cfs in 9F           |      | Not Sampled | 645                    | 962             | 1,260 | 582                                       | 512         | 92   | 4.5  | 58                | 53    | 28   | 92   |      |
|                      | Dote<br>ond time<br>sompled<br>P.S.T.    | 1959 | 7/          | 2/4                    | 3/3             | 1600  | 1300                                      | 6/4<br>1230 | 7/15 | 8/11 | 9/8               | 10/13 | 1230 | 12/8 |      |

b Loborotory pH.

Sum or conclaim and inspiration for inspiration (A1), is and (Pb), mangeness (Mn), zinc (Zn), and has a related throwing (Gr<sup>+6</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. c Sum of calcium and magnessum in apm.

<sup>·</sup> Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents. Gravimetric determination.

Amond melan and respe, respectively. Calculosed from and year old solicities monthly samples most by California Department of Poblic Health. Division of Licitoralisms, or United Stores Poblic Health Service.

Mannel analyses made by United Stores Carligical Service (USS), there Boards (USS), there are Service (USPRS), solicities where Carling Service (USPRS), Son Bearendino County Flood
Carnel District for Mannel Facilities (WIP), Les A Angoles Department of the Internot Service (USPR), Carling College (USPR), Son Bearendino County Flood
Carnel District for the World Service (USPRS), Son Bearendino County Flood
Public Health (LADPH), Terminal Facility Bearing (USPR), Son Bearendino County Flood
Public Health (LADPH), Terminal Facility Bearing (USPR), Son Bearch, Department of the Service (USPR), Son Bearing (USPR),

ANALYSES OF SURFACE WATER TABLE B-1

NORTH COASTAL REGION (NO !!

|                     | Herdenss bid Colferm Analyzed of CoCo property of CoCo property of Coco M.C. Analyzed of Potol M.C. Analyzed | 1    |         |            |        |       |                      |             |        |       |                |        |      |      |
|---------------------|--------------------------------------------------------------------------------------------------------------|------|---------|------------|--------|-------|----------------------|-------------|--------|-------|----------------|--------|------|------|
| -                   | 11 Der m<br>18 N/mi                                                                                          |      |         | 20.124     | Marina | -     |                      |             |        |       |                |        |      |      |
| 3                   | 0.2                                                                                                          |      |         | 1          | 1      |       | 8                    |             |        |       |                |        |      |      |
| _                   | 100 H                                                                                                        |      |         |            |        |       |                      |             |        |       |                |        |      |      |
|                     | Meréness<br>se CeCOs<br>Torol N.C<br>ppm ppm                                                                 |      |         | 8          | 2      | 7.    |                      | g<br>0<br>0 | e<br>R | R.    | ź              | 3      | 4    | 3    |
| 2                   | 90                                                                                                           |      |         | 2          | 200    | X.    | ě.                   | 8           | -      | ۶.    | 2              | 1.     |      | e    |
| Tolei               | 2010a<br>8010a<br>8010a                                                                                      |      |         |            | 39     | E     | 2                    | à           |        | ,     | Š              | E      | 26   | 7    |
|                     | 9 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                      |      |         | 81         |        | 1 1   | h2 d                 | 4           | 1      | 7     | PO 704         | 1      |      |      |
|                     | constituents                                                                                                 |      |         | Via<br>Via |        | A13 2 | T A                  | 411         | ALA    | Alt M | 2              | Alla E |      |      |
|                     | 01her                                                                                                        |      |         | Tot A      |        | Tor A | Tot Alk<br>PO 5 7 70 | Tot A       | 1      | Tot A | 24<br>24<br>24 | Y .    |      |      |
|                     | (2005)                                                                                                       |      |         | 4          | 5      | 51    | 3                    | 0           | 4      | 3     | s/             | 31     | c.   | 1    |
| 100                 | Boron S                                                                                                      |      |         | 2          | 4      | 1     | *                    | 2           | 1      | 1 0   | 4              | -      | 2    | 11   |
| voisnte per million | Fluo-<br>rids<br>(F)                                                                                         |      |         | 200        | 100    | FO    | 2 0 0                | 0 0         | 1      | Co P  | -8             | 1 0 0  | 1    | 7 10 |
| ante pe             | N F<br>trote<br>(NO <sub>5</sub> )                                                                           |      |         | 100        | 1000   | 2 8   | 15                   | - F         | F      | 1     | 3 6            | 18     | -15  | -16  |
| equivolante         | Chio-<br>ride<br>(Ci)                                                                                        |      |         | 200        | 14.0   | 80    | 800                  | 25          | 2      | 8 2   | 2 19           | X P    | 100  | 8    |
| 6.                  | Sul -<br>fote<br>(SO <sub>6</sub> )                                                                          |      |         | 100        | 9 10   | 45    | 1100                 | . 16.       | 25     | 18    | 000            | 11 K   | 100  | Si k |
| constituents        | Bonote<br>(MCO <sub>9</sub> )                                                                                |      |         | 200        | 98 3   | 10    | 0 1                  | 35          | 2F     | &F    | N.F            | - 5    | 35   | 22   |
| 101 000             | 010<br>010<br>(CO <sub>B</sub> )                                                                             |      |         | 0.27       | 18     | 44    | 9                    | E V         | · E    | Fo    | js<br>le       | F      | o K  | 18   |
| Mineral             | Potas- Corbon-<br>sum (CUs)                                                                                  |      |         | 3          | :0     | -     | £                    | 2           | ÷      | 1E    | 10             |        | -5   | 1    |
|                     | Sodium<br>(No)                                                                                               |      |         | S          | B      | E     | 3/2                  | 36          | 100    | ,E    | E              | 3/2    | sE.  | s.E. |
|                     | Mogne<br>such<br>(Mg)                                                                                        |      |         | 1          | 2 52   | 2/2   | £                    | 25          | = ==   | =E    | 1              | 92     | 2    | E    |
|                     | Colcium sour<br>(Co) sour                                                                                    |      |         | 8E         | 12     | = 100 | 2/2                  | ~ [         | 9/2    |       | - 12           | 1      | n/C  | 1    |
| -                   | X                                                                                                            |      |         | 3          |        |       | 4                    | ~           |        | ă.    |                |        | Ž.   | -    |
| Spacific            | Conductors and<br>(micrombos<br>of 25°C)                                                                     |      |         | 3          | 1      | 9.84  | 60                   | 2           | A.     | 1     | 1              | 8      | 3    | 3    |
|                     | 9,050                                                                                                        |      |         | 4          | 1 1    | 901   | 8                    | 1           | ş      | ď     | 8              | 3      | 8.   | F    |
|                     | Descived<br>caygen<br>ppm %Sof                                                                               |      |         | 1          | 3      | 8.77  |                      |             | -      | E.    | 9              | 8      | = =  | -    |
|                     | 60<br>E0<br>E                                                                                                |      | taple 1 | 1          | 5      | 3     | 3                    | 1           | 2      | ž     | 1              | ·      | ā    | 1/2  |
|                     | Discharge Temp                                                                                               |      | Rot '   | 2          | 5,41   | 124   | 157                  | 3           | E      | 9     | 4              | T      | è    | 3    |
|                     | Dote<br>ond tens<br>ongled<br>P. S.T                                                                         | 1069 | 1/      | 2/4        | 3/3    | 1/4   | 5/6                  | 4000        | 10     | 94    | 50             | 16     | 1000 | 98   |

and at a part of the symptotic of the same terms of the same terms

<sup>-----</sup>

ANALYSES OF SURFACE WATER TABLE 3-1

NORTH COASTAL REGION (NO. 1)

|                                      |              | _                                                |                       | _    | _               |                 | _               | _            |                               | _    |       |                  |                                          |       |       |             |   |   |   |
|--------------------------------------|--------------|--------------------------------------------------|-----------------------|------|-----------------|-----------------|-----------------|--------------|-------------------------------|------|-------|------------------|------------------------------------------|-------|-------|-------------|---|---|---|
|                                      |              | Analyzed<br>by 1                                 |                       | 0908 |                 |                 |                 |              |                               |      |       |                  |                                          |       |       |             |   |   |   |
|                                      |              | Hardness bid - Coliform Pos CaCOs in the MPM/mil |                       |      | Median<br>2.3   | Maximum<br>230. | Minimum<br>0.06 |              |                               |      |       |                  |                                          |       |       |             |   |   |   |
|                                      | 127          | - A                                              |                       |      | 8               | 0               | 15              | 15           | 30                            | -    | -     | æ                | 9                                        | C4    | O4    | 10          |   |   |   |
|                                      |              | 100g                                             | Total N.C.<br>ppm ppm |      | m               | -               | m               | 00           | m                             | 10   | 0     | -12              | ۳                                        | 0     | 00    | я           |   |   |   |
|                                      |              |                                                  |                       |      | 12              | 38              | 39              | 42           | 39                            | 22   | 79    | %                | 92                                       | 8     | 8     | 73          |   |   |   |
|                                      |              | Pog -                                            | 5                     |      | 97              | 12              | 7               | 9            | 15                            | «O   | -     | 00               | 00                                       | 60    | 00    | 6           |   |   |   |
|                                      | Total        | eolved<br>eolids                                 | m ppm                 |      | 55 <sub>9</sub> | 50°             | 25 <sub>6</sub> | \$6¶         | 64°f                          | 64°  | 462   | 83               | A.                                       | 85    | 8°    | 83.         |   |   |   |
|                                      |              | П                                                | Other constituents    |      |                 |                 |                 |              | Pe 0.02 At 0.05 d<br>POL 0.00 |      |       |                  | 76 0.01 PO <sub>1</sub> 0.0 d<br>A1 0.02 |       |       |             |   |   |   |
|                                      |              | Slice                                            | (SrO <sub>E</sub> )   |      |                 |                 |                 |              | 13                            |      |       |                  | 17                                       |       |       |             |   |   |   |
|                                      | ion          | ١ ۶                                              | (8)                   |      | 0.0             | 0.0             | 0.0             | 0.0          | 0                             | 0.1  | 8     | 0.1              | 1.0                                      | 0.0   | 0.0   | 0:          |   |   |   |
| (%)                                  | per million  | -on-                                             | (F)                   | -    |                 |                 |                 |              | 0.0                           |      |       |                  | 0.0                                      |       |       |             |   |   |   |
|                                      |              |                                                  | (NO <sub>3</sub> )    |      |                 |                 |                 |              | 0.0                           |      |       |                  | 0.5                                      |       | -     |             |   |   |   |
| SMITH RIVER NEAR CRESCENT CITY (STA. | equivolente  | Chlo-                                            | (C)                   |      | 3.2             | 0.10            | 3.0             | 0.07         | 0.00                          | 0.07 | 3.5   | 3.0              | 3.5                                      | 3.4   | 3.6   | 4.8<br>0.14 |   |   |   |
| CRESCE                               | Ē            | Sul                                              | (50%)                 |      |                 |                 |                 |              | 0.10                          |      |       |                  | 5.0                                      |       |       |             |   |   |   |
| ER NEAR                              | constituents | Bicor                                            | (HCO <sub>3</sub> )   |      | 148<br>0.79     | 145<br>0.74     | 4.2<br>0.72     | 41<br>0.67   | 52<br>0.85                    | 1.00 | 1.23  | 1.28             | 1.46                                     | 1.28  | 17.1  | 1.25        | _ |   |   |
| CTR RIV                              |              | _                                                | (CO <sub>3</sub> )    |      | 0.0             | 0.0             | 0.00            | 0.00         | 0.00                          | 0.00 | 0.00  | 0.00             | 0.00                                     | 0.00  | 0.00  | 0.0         |   |   |   |
| 100                                  | Mineral      | Potoe-                                           | (×)                   |      |                 |                 |                 |              | 0.0                           |      |       |                  | 0.0                                      |       |       |             |   |   |   |
|                                      |              | Sodium                                           |                       |      | 0.09            | 0.10            | 0.10            | 0.05         | 3.1                           | 0.10 | 0.10  | 0.12             | 3.2                                      | 0.12  | 0.11  | 3.5         |   | - |   |
|                                      |              |                                                  | (Mg)                  |      |                 |                 |                 |              | 8.0                           |      |       |                  | 13                                       |       |       |             |   |   |   |
|                                      |              | Calcium                                          | (Ca)                  |      | 0.840           | 0.76            | 0.78            | 0.84<br>0.84 | 200                           | 1.10 | 1.28° | 1.36             | 9.6                                      | 1.330 | 1.320 | 1.46        |   |   |   |
|                                      |              | ř                                                |                       |      | <br>            | 7.2ª            | 7.3ª            | 7.3ª         | 7.8 <sup>b</sup>              | 7.3ª | 4.5°  | 7.3 <sub>a</sub> | 7.30                                     | 7.8ª  | 7.2ª  | 7.3a        |   |   |   |
|                                      | Specifie     | Conductonce                                      | 0 -62 10              |      | 87.3            | 80.3            | 82.9            | 77.7         | 91.8                          | 103  | 186   | 133              | 141                                      | 136   | 137   | 133         |   |   |   |
| -                                    |              | D                                                | %Sot                  |      | 103             | 102             | 101             | 8:           | 8                             | 100  | 83    | 86               | 83                                       | *     | 8:    | 8%          |   |   | 1 |
|                                      |              | Dissolved                                        | mdd<br>o              |      | 12.5            | 12.2            | 15.5            | 11.0         | 9.7                           | 10.1 | 8.7   | 6.5              | 0.6                                      | 10.2  | 11.3  | 11.8        |   |   |   |
| -                                    |              |                                                  | -                     |      | 4               | 9               | 145             | 52 1         | 25                            | 59   | 89    | 10               | 63                                       | 25 1  | 164   | 171         |   |   |   |
|                                      |              | Orechange Temp<br>in ofs in oF                   |                       |      | 3,080           | 1,000           | 3,800           | 3,710        | 1,460                         | 48   | 336   | 88               | 502                                      | 520   | 385   | 346         |   |   |   |
|                                      |              | ond time                                         | P.S.T.                | 1959 | 1/21            | 2/4             | 3/4             | 1730         | 5/5                           | 6/2  | 7/15  | 8/5              | 9/2                                      | 10/7  | 11/5  | 12/10       |   |   |   |

b Laboratory pH.

Sum of calcium and magnessum in epm.

Sum of colicum and magnetistic man specific (20), lead (Pb), manganese (Mn), zinc (Zn), and havaralent chromium (Gr\*6), reported have as  $\frac{0.0}{0.00}$  except as shown. Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Among media may respectively. Calculated from analyses of deplicate mentity samples made by California Department of Public Health, Division of Leboratories, or United States Public Health Survice.

Mineral publisses mode by United States General Carter, Carding of March Carding States Board (USCS) (which of States and Person of Reclamation (USRS), United States and Person of Reclamation (USRS), United States and States and States and Person of Reclamation of States and Person of Reclamation of States and States and Person of States and States

### ANALYSES OF SURFACE WATER TABLE 8-1

NORTH COASTAL NEGICE (NO. 1)

|                                      |                      | A cotyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1    |             |                  |             |              |            |        |               |       |                                         |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|------------------|-------------|--------------|------------|--------|---------------|-------|-----------------------------------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                      | Mordhase and - Ceiform Accepted of Colo. Trong No. of Special Colo. Of the Colo. Of |      |             |                  |             |              |            |        |               |       |                                         |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |             |                  |             |              |            |        |               |       |                                         |        |          | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      |                      | Hordness<br>se CeCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |             |                  |             |              |            |        |               |       |                                         |        | -        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      |                      | HOTO<br>OFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |             | 4                | ¢.          | er.          | 5          | 31.    | 1             | 10    | 5                                       | 1      | B        | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      |                      | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 8           | 1                | g           | -            |            | Co.    | 13            | 1     |                                         | 8      |          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      | Toto                 | polog e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 7.87        | *                | 8           | 6.0          | 8          | 3      | 8             | ï     | 1302                                    | u_     | 3        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      |                      | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |             |                  |             |              | Po, oth of | 7e     |               |       | P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                      | (\$,0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | -F          | 16               | 00          | 2            | v          | ĸ      | -             | 1     | 러                                       | 2      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | 100                  | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 0.0         | 81               |             | 18           | 0          | 90 0   | 3             | 1     | 31                                      | 3      | 3i       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 199                                  | million<br>or mill   | F100-<br>8 0-14<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 0.0         | 8 8              | 18          | 0.0          | 0.0        | 18     | 10            | - N   | 100                                     | 3F     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | parte per million    | N:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 0.00        | 00.0             | 78          | 0 0          | 2 80       | - K    | 68            | 400   | 5/8                                     | Sk.    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RANCH                                | parts per million    | Chia-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 570         | 0.10<br>FE.0     | 25.5        | 0.04         | 500        | 0.04   | 120           | 2 12  | 110                                     | ST NE  | 010      | The state of the s |
| FURAIT                               | 5                    | 5ul = (50°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 3.8<br>5.08 | 876              | 8.4<br>01 K | 5.8          | 3,3        | 1 00 V | E             | 100   | 0.27                                    | 25     | -IK      | AK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TER NEAS                             | fuent.               | Bicor-<br>bonate<br>(MCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 1.07        | 12.2             | 8 1         | 200          | 26 K       | 50     | E             | 3 5   | 110                                     | *E     | SE.      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TRIMITY RIVER WEAR BURNT RANCH (STA. | Mineral constituents | Carbon - Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 0.00        | 0.0              | 0 00        | 0.00         | 0.00       | 0.00   | 1 S. K        | 8     | - 100                                   | - N    | 000      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE .                                | Minero               | Potos - Cor<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -    | 0.0         | 10.0             | 8.00        | 0.00         | 20.0       | 0.00   | 0.00          | 0.04  | 0 00                                    | 0.03   | - ONC    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                      | Sodium Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 6.1         | 3.1              | ok<br>The   | 0.08         | 0 0 0      | 000    | E ST K        | 100   | 0 61 0                                  | 0.52   | 100      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                      | Mogne: 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    | 0.50        | 7.1<br>0.58<br>0 | 4.00        | 6.1          | 200        | 0/3    | 0 12          | 8 K   | 0 00                                    | 12 0 1 | ∉ lo     | ek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      |                      | Colcium Wo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 0.58        | 7 0.70           | 11<br>82.0  | 0.0          | H S        | 400    | 10            | 0 00  | 8 8                                     | 8 8    | K        | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                      | _                    | e He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 7.3         | 7.5              | 4           | 4 3          | 4.         | 4.     | 0             | Ø,    | 4.                                      | -      | p-<br>p- | F-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      | 9                    | So Clark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 121 7       | 130 7            | 115 7       | 100 7        | 100        | 8 9    | 138 7         | 178 7 | 210 7                                   | 203    | 210 7    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      | 9                    | Conductore<br>(micromyon<br>of 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |             |                  |             |              |            |        | _             |       |                                         |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                      | Distalved<br>exygen<br>ppm %Sat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 100         | ŝ                | §.          | 100          | 100        | 1      | 8             | E     | 5                                       | 3      | 6        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 12.5        | 15.1             | 11.8        | 11.4         | 5000       | ž.     | 7.7           | 7.5   | 9.3                                     | 10.    | п_<br>п_ | a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                      |                      | To a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 2           | 3                | 200         | 8            | 8          | 9      | E.            | f.    | E                                       | 35     | 5        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      |                      | Otacharge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 3,660       | 3,140            | 3,630       | 9,960        | 2,040      | 1,700  | 615           | 9     | ŝ                                       | 0,     | 8        | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                      |                      | Date<br>and Time<br>sempled<br>P.S.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1959 | 1/19        | 2/2              | 3/5         | 1600<br>1600 | 5/6        | 6/3    | 7/16<br>04.70 | 1200  | 9,10                                    | 1910   | 11/6     | 12/10<br>18/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Mg P. e. 7 o

b Laboratory pH c Sum of magnetican opin

d Jean To commune At travers At pages To lead PN, managemental Net (In and hasterolen's chromium) C reported Ners on 0 ear opt as thrown . Day sed from Landout rify on TDS curves

g. Grevanett i determination

Despended by addition of over 11 and (on all tuenta

depend on the second consequence of the seco Annual marilion and range of equipment respectively. Considerably from marilions of days one mentity camp as made by Colifornia Department of Public Hope in the same and discuss Public Hope in Service

#### ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1) TABLE R.

|                                   |                                              |                                                          |                     |               |                   |                 |        |        |                                          |       |              |                  |                   |      |                  |       | <br> |
|-----------------------------------|----------------------------------------------|----------------------------------------------------------|---------------------|---------------|-------------------|-----------------|--------|--------|------------------------------------------|-------|--------------|------------------|-------------------|------|------------------|-------|------|
|                                   |                                              | Analyzed<br>by i                                         |                     | USQS          |                   |                 |        |        |                                          |       |              |                  |                   |      |                  |       |      |
|                                   |                                              | Hordness bid Coliform<br>os CoCO <sub>3</sub> ity MPN/mi |                     | Median<br>1.3 | Maximum<br>7,000. | Markwin<br>0.06 |        |        |                                          |       |              |                  |                   |      |                  |       |      |
|                                   | ,                                            | - A                                                      |                     |               | 52                | -3              | 35     | 2      | 15                                       | 13    |              | 15               | g                 | o.   | 5                | 15    |      |
|                                   |                                              | 200°s                                                    | N C.                |               | -#                | 5               | 4      | 15     | 9                                        | -     | -2           | 9                | 00                | 9    | 6                | 17    |      |
|                                   |                                              |                                                          |                     |               | %                 | 88              | 69     | 8      | 8                                        | 20    | 8            | %                | 106               | 102  | 103              | 13    |      |
|                                   |                                              | cent<br>eod                                              |                     |               | 6                 | 7               | -      | -      | -                                        | 7     | 97           | 10               | #                 | 13   | 13               | 13    |      |
|                                   | Toto                                         | solids<br>solids                                         | mod u               |               | 92                | 816             | 16e    | .99    | 784                                      | 640   | 101          | 123 <sup>e</sup> | 135               | 135  | 139 <sup>e</sup> | 148   |      |
|                                   |                                              | Other constituents                                       |                     |               |                   |                 |        |        | Fe 0.03 A1 0.03 d<br>PO <sub>4</sub> 0.0 |       | Tot. Alk. 23 |                  | Fe 0.02 At 0.02 d |      |                  |       |      |
|                                   |                                              | Silico                                                   | (SiO <sub>2</sub> ) |               |                   |                 |        |        | 15                                       |       |              |                  | 71                |      |                  |       |      |
|                                   | ioi                                          | 5                                                        | (8)                 |               | 0.1               | 9:              | 0.0    | 0.0    | 0.0                                      | 0.0   | 0:0          | 0.2              | 0.1               | 7    | 0.0              | 1     |      |
|                                   | million<br>Ser mill                          | Fluo-                                                    |                     |               |                   |                 |        |        | 0.0                                      |       |              |                  | 0.1               |      |                  |       |      |
| (STA. 4                           | porte per million<br>equivolents per million | - i 2                                                    | (NO <sub>3</sub> )  |               |                   |                 |        |        | 0.5                                      |       |              |                  | 0.0               |      |                  |       |      |
| HOOPA                             | Anne                                         | Chlo-                                                    | (10)                |               | 3.2               | 3.0             | 0.07   | 0.00   | 3.2                                      | 0.00  | 0.14         | 4.8              | 0.22              | 8.8  | 8.8              | 0.34  |      |
| TRINITY RIVER MEAR MOOPA (STA. 4) | ë                                            | - ius                                                    |                     |               |                   |                 |        |        | 4.8                                      |       |              |                  | 0.23              |      |                  |       |      |
| VITY RIV                          | constituents                                 | Brear                                                    | (HCO3)              |               | 75                | 1.26            | 74     | 98     | 1.08                                     | 96.0  | 1.46         | 1.80             | 1.9               | 1.72 | 115              | 2.07  |      |
| TRI                               | Mineral cor                                  | Corban                                                   | (CO3)               |               | 0.00              | 0.00            | 0.0    | 0.0    | 0.0                                      | 0.0   | 0.07         | 0.0              | 0.0               | 0.0  | 0.00             | 0.0   |      |
|                                   | Min                                          | Potos                                                    | EX.                 |               |                   |                 |        |        | 0.00                                     |       |              |                  | 0.03              |      |                  |       |      |
|                                   |                                              | Sodium                                                   |                     |               | 2.9               | 2.6             | 0.10   | 0.00   | 2.1                                      | 0.12  | 0.18         | 0.21             | 6.1               | 6.8  | 0.31             | 8.4   |      |
|                                   |                                              | Mogne-                                                   | (Mg)                |               |                   |                 |        |        | 7.3                                      |       |              |                  | 1.22              |      |                  |       |      |
|                                   |                                              | Calcium                                                  | (00)                |               | 1.32              | 1.36            | 1.30   | 1.20   | 12                                       | 1.00  | 1.60         | 1.90             | 0.90              | 2.03 | 2.07             | 2.40  |      |
|                                   |                                              | eo_x                                                     |                     |               | 7.                | 7.6             | 4.F    | 7.5    | 7.5                                      | 7.4   | 8.1          | 4.8              | 7.6               | 7.9  | 7.9              | 7.9   |      |
|                                   |                                              | conductance<br>(micromhos                                | 3                   |               | 139               | 137             | 125    | 108    | 117                                      | 105   | 165          | 202              | 222               | 82   | 556              | 243   |      |
|                                   |                                              | D S                                                      | %Sot                |               | 16                | 103             | 5      | 8      | 86                                       | 80    | 105          | 8:               | 88                | 8    | 104              | 8:    | <br> |
|                                   |                                              | Dissolvad                                                | 6 wdd               |               | 15.1              | 12.6            | 11.5   | 10.8   | 9.01                                     | 9.3   | 6.8          | 9.6              | 9                 | 9.6  | 11.2             | 11.8  |      |
|                                   |                                              |                                                          |                     |               | £,                | 44              | 17.7   | - 20   | 75                                       | 89    | 92           | 73               | 7.7               | 65   | 54               | 9     |      |
|                                   |                                              | Dischorgs Tamp                                           |                     |               | 6,760             | 7,300           | 13,600 | 10,700 | 4,790                                    | 4,030 | 766          | 528              | †2†               | 562  | 545              | 517   |      |
|                                   |                                              | ond time                                                 | P.S.T               | 1959          | 1/20              | 2/3<br>0815     | 3/5    | 1000   | 5/6                                      | 6/3   | 1/15         | 9/6              | 9/10              | 10/8 | 11/5             | 12/10 |      |

Loborotory p.H.

Sum of calcium and magnesium in epm.

Sum or colculum stru magnessium in spin.

Iron (Fe), oluminum (Al), proport (Cu), leod (Pb), manganese (Mn), sinc (Zn), and hexarolent chramium (Gr<sup>+5</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Mineral analyses made by United States Ceological Survey, Quality of Notes Boach (USCS); United States Department of Headmonton (USCS); United States Department of States Controlled States Publish Health Servers (USCPS); States Controlled (USCS); State Amusal madian and range, respectively. Calcul ated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Series.

### ANALYSES OF SURFACE WATER TABLE B.1

ROPER COASTAL REGION (NO. 1)

ā 1 .6. CONSTITUENTS Po TA AL ON Por 5 Al Li ,00 11 OTher Fluo Boron Since rids (8) (5.02) (F) equivalents per million 000 ports per million 0 PRINITY RIVER AT LEMISTON (STA. 54) trois (NO.) 100 9.0 C PA 0 - 0 (C) 6 TH 111 5ul -fors (50<sub>e</sub>) Mingrol constituents Bonofe (HCO<sub>2</sub>) Carbon-Brum (x.) 4.00 1 1 Sodium (No) Cotcium Magne. (Ca) (Mu) 62 0 52 5 NA. 0 68.0 88 3.990 1000 S NO 25 190 H Discharge Yemp Dissalved Conductorce (micromobel or 25°C) ppm 96.3df at 25°C) 9.8 9 100 ń 36 99 Dete and time eampled P S T 9 1 9/6 100 7 16 1000 61/1 1315

one and a size of a size shown

b Loboratory pH

Sum of an and magnetium in spin

d non Fill alymount A water the appeal of the Phil a Day and from jumber? 1 ty as I I lureas

Amening the mode by and first and a first first from the first from the first first from the fir Among made made compared and the first the first the first the first that the first that the first that is a first that as

### ANALYSES OF SURFACE WATER TABLE 3-1

NORTH COASTAL REGION (NO. 1)

|                                  |              | Andlysed<br>by i                        | 0308           |                |                   |               |              |                    |              |              |               |                              |      |             |      |  |  |
|----------------------------------|--------------|-----------------------------------------|----------------|----------------|-------------------|---------------|--------------|--------------------|--------------|--------------|---------------|------------------------------|------|-------------|------|--|--|
|                                  |              | bid - Caliform'i<br>ity MPN/mi<br>n ppm | Median<br>0.23 | Maximum<br>62. | Minimum<br>c0.0k5 |               |              |                    |              |              |               |                              |      |             |      |  |  |
|                                  | 1            | - pid<br>- liy<br>w bbm                 |                |                |                   |               |              | 15                 |              | н            |               | 10                           |      | 3           | 10   |  |  |
|                                  |              | SON COS                                 |                | 6              | 0                 | Cu .          | æ            | a                  | 5            | -4           | 1-            | 1-                           | 160  | 0           | 16   |  |  |
|                                  |              |                                         |                | 51             | 58                | 94            | 28           | 10                 | 86           | 104          | 170           | 118                          | 128  | 101         | 152  |  |  |
|                                  |              | e ad -                                  |                | 13             | ಸ                 | п             | п            | 00                 | 01           | 13           | 13            | 14                           | п    | 11          | 41   |  |  |
|                                  | Total        | dis-<br>solved<br>solids<br>in ppm      |                | <sup>F</sup> E | h <sub>7</sub>    | $6 h^{\rm f}$ | 45           | 89°                | 107          | 138°         | 172           | 159£                         | 164° | 148         | 198° |  |  |
|                                  |              | Other constituents                      |                |                |                   |               |              | A1 0.03 PO, 0.00 d | Tot. Alk. 98 |              | Tot. Alk. 162 | Fe 0.01 A1 0.06 d<br>POL 0.0 |      |             |      |  |  |
|                                  |              | Slice<br>Slice                          |                | 01             | 01                | 01            | 9.8          | 27                 | 7.6          |              | 5.5           | 4.1                          | 9    |             |      |  |  |
|                                  | ign          | Baran<br>(B)                            |                | 15             | 0.2               | 0.0           | 0.0          | 0.1                | 0.0          | %            | 히             | 0.5                          | 0.1  | 0:0         | 0:0  |  |  |
| 5a)                              | per mil      | Flua-<br>ride<br>(F)                    |                | 0.0            | 0.0               | 0.00          | 0.0          | 0.0                | 0.0          |              | 0.0           | 0.0                          | 0.0  |             |      |  |  |
| (STA. 9                          |              | -                                       |                | 0.03           | 0.00              | 0.00          | 1.5          | 0.00               | 0.0          |              | 0.0           | 0.7                          | 0.00 |             |      |  |  |
| VAN DUZEN NEAR BRIDGEVILLE (STA. | aquivatents  | Chia-<br>rida<br>(CJ)                   |                | 3.5            | 0.07              | 0.05          | 2.5          | 3.0                | 3.5          | 0.12         | 0.0           | 5.8                          | 0.1  | 4.4         | 8.0  |  |  |
| AR BRID                          | ē            | Sul -<br>fate<br>(SO <sub>4</sub> )     |                | 9.6            | 1.9               | 5.8           | 5.8          | 5.8                | 0.23         |              | 0.35          | 23                           | 35   |             |      |  |  |
| UZEN NE                          | constituents | Bicar-<br>banata<br>(HCO <sub>3</sub> ) |                | 51.0           | 37.0              | 54            | 1.08         | 1.33               | 37.54        | 2.00         | 2.46          | 2.21                         | 2.07 | 126<br>2.07 | 2.72 |  |  |
| VAN D                            | Winerol con  | Carban-<br>ate<br>(CO <sub>3</sub> )    |                | 0.0            | 0.0               | 0.0           | 0.0          | 0.0                | 0.07         | 0.0          | 0.20          | 0.0                          | 0.0  | 0.0         | 0.0  |  |  |
|                                  | Min          | Patas-<br>sium<br>(K)                   |                | 0.3            | 0.02              | 0.5           | 4.0          | 9.00               | 0.03         |              | 0.05          | 0.05                         | 1.5  |             |      |  |  |
|                                  |              | Sodium<br>(No)                          |                | 3.5            | 3.5               | 2.8           | 3.3          | 2.9                | 0.20         | 0.30         | 10            | 9.0                          | 0.33 | 9.7         | 0.48 |  |  |
|                                  |              | Magns-<br>s:um<br>(Mg)                  |                | 5.1            | 0.12              | 3.3           | 3.8          | 5.5                | 6.1          |              | 10<br>0.85    | 7.4                          | 0.86 |             |      |  |  |
|                                  |              | Calcium<br>(Ca)                         |                | 0.60           | 8.8               | 0.6           | 0.85         | 0.98               | 1.20         | 2.08         | 33            | 35                           | 34   | 2.0I        | 3.04 |  |  |
|                                  |              |                                         | ,              | 7.6            | e4.               | 7.8           | 7.9          | .09.<br>-          | 9.4          | 8.1          | 4.1           | 7.9                          | 7.9  | 7.9         | 7.9  |  |  |
|                                  | Spacific     | conductance<br>(micrombos<br>at 25°C)   |                | 104            | 71.5              | 0.86          | 125          | 150                | 181          | 233          | 596           | 257                          | 242  | 239         | 319  |  |  |
|                                  |              | gen<br>9/2Sot                           |                | 108            |                   |               |              | 84                 | 112          | 46           | 84            | 84                           | 100  | 80          | ま    |  |  |
|                                  |              | Dissolved<br>oxygen<br>ppm %Sot         |                | 10.6           |                   |               |              | 9.5                | 5.4          | 6.8          | 8.3           | 4.8                          | 10.2 | 10.9        | 11.2 |  |  |
|                                  |              |                                         |                | 62             | 143               | 83            | 23           | 8                  | #<br>        | 59           | 2             | 89                           | 59 1 | 53          | 94   |  |  |
|                                  |              | Discharge Temp<br>in c1s in ap          |                | 3,930          | 9,700             | 876           | 512          | 224                | 88           | 19           | 3.0           | 7                            | 177  | 08          | 6.5  |  |  |
|                                  |              | ond tims<br>sompled<br>P.S.T            | 1959           | 1/7            | 2/18              | 3/6           | 4/10<br>0830 | 5/7                | 6/9          | 7/15<br>0830 | 8/h<br>1530   | 9/8                          | 10/7 | 11/4        | 12/9 |  |  |

b Labaratary pH. o Field pH.

Sum of calcium and magnessum in epm.

Jum of colcum and magnesium in epin.

Iron (Fe), oluminum (A1), research (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (G<sup>+\*\*</sup>), reparted here as \$\frac{0.0}{0.00}\$ except as shawn. Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annual modian and range, respectively. Calculated from analyses of Auplicate manthly samples made by California Department of Public Mealth, Division of Laboratories, or United Stores Public Mealth, Service Gravimetric determination

Mineral contyses node by United States Cealingt of West Boardh (USCS), United States Department of the Interior, Burear of Realisman in USBN), United States Cealington States Contyses and States Contyses an

ANALYSES OF SURFACE WATER TABLE B-2

SAN FRANCISC BAY REGINM (NO. 21 ALANGDA CHEEK NEAR MILE (STA. 11

|                                              | haciyzed<br>by I                                                                                        | 1    | ī             |         |      |     |       |     |   |    |   |        |     |     |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------|------|---------------|---------|------|-----|-------|-----|---|----|---|--------|-----|-----|--|--|
|                                              | Hordness Bid - Co form Analyzed by CaCO <sub>3</sub> IV MPN/ms By I                                     |      | The Land      | Max i m |      |     |       |     |   |    |   |        |     |     |  |  |
| - 17                                         | - 20                                                                                                    |      |               |         |      |     |       |     |   |    |   |        |     |     |  |  |
|                                              | 000 Med                                                                                                 |      |               |         |      |     |       |     |   |    |   |        |     | D   |  |  |
|                                              | Mardhess<br>se CaCO <sub>3</sub><br>Tata N C<br>ppm ppm                                                 |      | 7             | 2       |      |     | 2     |     |   |    |   |        | 7   |     |  |  |
| -                                            | 1 pod                                                                                                   |      | t             | 3       |      |     |       |     |   |    |   | 71     | 3   |     |  |  |
| 10+01                                        | 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                  |      | 1             | 4.      | 2,   | *   | 8     | Υ   |   |    |   | 7      | 2   | à   |  |  |
|                                              | Other canatituents                                                                                      |      |               |         |      |     | 7e A3 |     |   |    |   |        |     |     |  |  |
|                                              | 000                                                                                                     |      |               |         |      |     |       |     |   |    |   |        |     |     |  |  |
| ION                                          | Baron Silica<br>(B) (S:O <sub>2</sub> )                                                                 |      | 1             | 5       | 7    | ÷   |       | ì   |   |    |   | 1      |     | Ť.  |  |  |
| mulion<br>lim teq                            | frots ride (F)                                                                                          |      |               |         |      |     | 00    |     |   |    |   |        |     |     |  |  |
| parte per millian<br>equivalente per millian | frata<br>(NO.5)                                                                                         |      |               |         |      |     | 18    |     |   |    |   |        |     |     |  |  |
| 0 000                                        |                                                                                                         |      | 3 <u>E</u>    | 1 72    | 34   | sE. | E   X | E.  |   |    |   | ď.     | Æ   | 1   |  |  |
| ç                                            | Sul -<br>fore<br>(SO <sub>4</sub> )                                                                     |      |               |         |      |     | 2 01  |     |   |    |   |        |     |     |  |  |
| atituente                                    | Brcor- Sul-<br>banate fate<br>(HCO <sub>3</sub> ) (SC <sub>4</sub> )                                    |      | 25.55<br>2.55 | 13      | 261  | - 1 | 3 8   | 61  |   |    |   | it.    | 1E  | F   |  |  |
| Mineral canstifuents in                      | arbon-<br>ate<br>(CO <sub>3</sub> )                                                                     |      | 0.00          | 000     | 00.0 | ./: | 10    |     |   |    |   |        | 1   |     |  |  |
| 2                                            | Patas-<br>sium<br>(K)                                                                                   |      |               |         |      |     | 3     |     |   |    |   |        |     |     |  |  |
|                                              | Sadium Patas- (Na) (K)                                                                                  |      | 2.77          | z 2     | 3.E  | kF) | - [   | 2   |   |    |   | 户      | 1   |     |  |  |
|                                              | Magne.<br>stom<br>(Mg)                                                                                  |      |               |         |      |     | 13    |     |   |    |   |        |     |     |  |  |
|                                              | Calcium Magne.<br>(Ca) stum                                                                             |      | 100           | 4       | 200  | 5   | E     | 1   |   |    |   | Ja. d. |     | 100 |  |  |
|                                              | H.                                                                                                      |      | 9             | 1       | 4    | 4   | 4     | *   |   |    |   | e.     | 1   |     |  |  |
| Society                                      | anductance<br>at 25°C)                                                                                  |      | ,             | 2       | 2    | 1   | i     | 7.5 |   |    |   |        |     |     |  |  |
|                                              | o Sat                                                                                                   |      | 98            |         | 4    | 1   | 8     | 9   |   |    |   | r      | 7   | 1   |  |  |
|                                              | Dissolved<br>daygen<br>ppm %Sof                                                                         |      | 1             | 100     | 4    |     |       | į.  |   |    |   |        |     | 1   |  |  |
|                                              | Teng<br>n of                                                                                            |      | 4             |         | 2    | 1   | i i   | ě.  |   |    |   |        |     | :   |  |  |
|                                              | Discharge Temp Dissalved conductord pH in cfe in F asygen (micromba) conductord pH gpm 96.5ct at 25°C). |      | 7             |         |      |     |       |     | £ | ž  | j | ŧ.     |     |     |  |  |
|                                              | Date<br>and time<br>sampled<br>P S T                                                                    | 1959 | 1/8           | 4ê      | 53   | 58  | 100   | 1   |   | 16 | 3 |        | 100 | 31  |  |  |

and the second s

ANALYSES OF SURFACE WATER TABLE B-2

SAN FRANCISCO BAY REGION (NO. 2)

|                                                           |                                              | Anolyzed<br>by 1                                                          | USGS |             |      |            |               |                                            |                                          |               |             |     |       |      |      |  |      |  |
|-----------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|------|-------------|------|------------|---------------|--------------------------------------------|------------------------------------------|---------------|-------------|-----|-------|------|------|--|------|--|
|                                                           |                                              | Hordness bud-Coliformh os CaCO <sub>3</sub> 117 MPN/mi Tatol N C. Dpm Dpm |      |             |      |            |               |                                            |                                          |               |             |     |       |      |      |  |      |  |
|                                                           | ,                                            | Pid -                                                                     |      |             |      |            |               | 0.5                                        |                                          |               |             |     |       |      |      |  |      |  |
|                                                           |                                              | Hordness<br>os CaCO <sub>3</sub><br>Tatol N.C.                            |      |             | 89   | 59         | 3             | 2                                          | 34                                       | 38            | 77          |     |       |      |      |  |      |  |
|                                                           |                                              |                                                                           |      |             | 312  | 210        | 242           | 560                                        | 325                                      | 350           | 3%          |     |       |      |      |  |      |  |
|                                                           | -                                            | Sod -                                                                     |      |             | 23   | 17         | 8             | 39                                         | 33                                       | %             | 5           |     |       |      |      |  |      |  |
|                                                           | Total                                        | solved<br>solved<br>solids<br>in ppm                                      |      |             | 1432 | 988        | 342           | 864                                        | 246                                      | 628           | 820         |     |       |      |      |  |      |  |
|                                                           |                                              | Other constituents                                                        |      |             |      |            | Tot. Alk. 253 | Zn 0.01 Al 0.11 d<br>PO <sub>l, 0.00</sub> | Al 0.16 Zn 0.01 d<br>Cu 0.01 Tot.Alk.351 | Tot. Alk. 380 |             |     |       |      |      |  |      |  |
| (11)                                                      |                                              | Silica<br>(SiO <sub>2</sub> )                                             |      |             | 2    | 7.         | 77            | 17                                         | 27                                       | 88            | 35          |     |       |      |      |  | <br> |  |
|                                                           | Į.s                                          | 5                                                                         |      |             | 0.5  | 0.3        | 0.3           | 0.7                                        | 0.36                                     | 1.4           | 2.7         |     |       | _    |      |  |      |  |
| PITAL (S                                                  | ports per million<br>equivalents per million | Fiuo-<br>ride<br>(F)                                                      |      |             | 0.2  | 0.0        | 0.0           | 0.1                                        | 0.2                                      | 0.0           | 0.02        |     |       |      |      |  |      |  |
| NOI HOE                                                   | ports per million<br>valents per mil         | hrote<br>(NO <sub>3</sub> )                                               |      |             | 0.0  | 0.04       | 0.0           | 0.1                                        | 0.0                                      | 0.0           | 3.5         |     |       |      |      |  |      |  |
| NISTRAT                                                   | Paguiya                                      | Chlo-<br>ride<br>(CI)                                                     |      |             | 1.02 | 15         | 24            | 1.30                                       | 1.86                                     | 87            | 159         |     |       |      |      |  |      |  |
| INS ADMI                                                  | 61 8                                         | Sul -<br>fots<br>(SO <sub>4</sub> )                                       |      |             | 2.25 | 1.15       | 17.1          | 2.19                                       | 2.35                                     | 2.35          | 2.70        |     |       |      |      |  |      |  |
| r VETERA                                                  | stifuent                                     | Bicar-<br>bonate<br>(HCO <sub>3</sub> )                                   |      |             | 298  | 3.62       | 17.11         | 313                                        | 335                                      | 368           | 429<br>7.03 |     |       |      |      |  |      |  |
| RROYO DEL VALLE AT VETERANS ADMINISTRATION HOSPITAL (STA. | Mineral constituents in                      | Corbon-<br>ote<br>(CO <sub>3</sub> )                                      |      |             | 0.0  | 0.00       | 0.03          | 0.0                                        | 8                                        | 0.20          | 0.0         |     |       |      |      |  |      |  |
| DYO DEL                                                   | Min                                          | Potos-<br>sium<br>(K)                                                     |      |             | 1.7  | 0.09       | 1.8           | 2.4                                        | 3.2                                      | 0.11          | 8.6         |     |       |      |      |  |      |  |
| ARR                                                       |                                              | Sodium<br>(No)                                                            |      |             | 1.83 | 20<br>0.87 | 28            | 3.39                                       | 3.31                                     | 3.8           | 142         |     |       |      |      |  |      |  |
|                                                           |                                              | Magne-<br>sium<br>(Mg)                                                    |      |             | 64   | 1.80       | 29            | 1.96                                       | 37.01                                    | 35            | 3.78        |     |       |      |      |  |      |  |
|                                                           |                                              | Calcium<br>(Ca)                                                           |      |             | 20   | 87.50      | 2.54          | 3.24                                       | 3.49                                     | 82<br>4.09    | 4.14        |     |       |      |      |  |      |  |
|                                                           |                                              | F.                                                                        |      |             | 9.1  | 4.9        | 7.9           | 4.9                                        | 4.9                                      | J.,6          | 4.          |     |       |      |      |  |      |  |
|                                                           | Specific                                     | conductonce<br>(micromhos<br>at 25°C)                                     |      |             | 121  | 924        | 696           | 191                                        | 918                                      | 1,030         | 1,320       |     |       |      |      |  |      |  |
|                                                           |                                              | gen<br>%Sot                                                               |      |             | %    | 84         | 102           | 88                                         | 16                                       | 19            | 9           |     |       |      |      |  |      |  |
|                                                           |                                              | Disso<br>dwy<br>ppm                                                       |      |             | 10.9 | 10.2       | 9.6           | 8.3                                        | 8.9                                      | 6.5           | 2.5         |     |       |      |      |  |      |  |
|                                                           |                                              | Tamp<br>III OF                                                            |      | paldu       | 55   | 25         | 99            | 99                                         | 89                                       | 63            | 99          |     |       |      |      |  |      |  |
|                                                           |                                              | Discharge Temp                                                            |      | Not Sampled | 5.5  | 21         | 7.5           | 9.0                                        | 0                                        | 0.8           | 0           | Dry | Dry   | Dry  | Dry  |  |      |  |
|                                                           |                                              | ond time<br>sompled<br>P.S.T.                                             | 1959 | 1/8         | 2/10 | 3/4        | 1/2           | 5/13                                       | 6/9<br>1400                              | 7/3           | 8/3         | 8/6 | 10/16 | 11/5 | 12/9 |  |      |  |

b Laboratory pH. e Field pH.

c Sum of calcium and magnessum in epm.

some recucling and angustic many strategies (Su), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>+6</sup>), reparted here as  $\frac{0.0}{0.00}$  except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

It housed made ones, respectively. Colorated from enable specification enother yearlines and the year and between all feet between the State Shall hands Series (and the States). It has been and the specification and the

#### ANALYSES OF SURFACE WATER SAM PRANCISCO NAT REGION (NO. 7-1 TABLE 8-2

CARQUING? STRAITS AT MARTINE? (STA, 29%)

|                                          | _                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |       |      |       |    |    |      |      |      |   |
|------------------------------------------|------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|-------|------|-------|----|----|------|------|------|---|
|                                          |                        |                         | solved sod, as CoCo in the PM/mm by in open in open Tale in CoCo in the PM/mm by in open in open Tale in CoCo in the PM/mm by in open in open Tale in CoCo in the CoCo in the PM/mm by in open Tale in Open CoCo in open Tale in CoCo in open Tale in CoCo in open Tale in the CoCo in | A 35 |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        |                         | 0 M/ 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          | -                      | 100                     | - 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        |                         | 1000 Ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        |                         | Tata<br>Ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          | -                      | d d                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | h,    | ų.    |       | -    |       |    |    |      |      |      |   |
|                                          | _                      | Tota                    | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 2     | - 1   | 1     | 1    |       | 1  | 1  | 1    | -    |      |   |
|                                          |                        |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        |                         | (\$10°E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        | lion                    | Boron Silca<br>(B) (5:0 <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |       |       |      |       |    |    |      |      |      |   |
| 9                                        | 91110                  | E 180                   | Flug-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |       |       |      |       |    |    |      |      |      |   |
| SEA, PE                                  | parts per million      | equivolents par million | N F<br>trata<br>(NO <sub>S</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |       |       |      |       |    |    |      |      |      |   |
| LIBER (S                                 | bd                     | 0 1000                  | Chlo-<br>rids<br>(Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |       |       |      |       |    |    |      |      |      |   |
| AT MA                                    | 9                      |                         | Sul -<br>fote<br>(SO <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |       |       |      |       |    |    |      |      |      |   |
| STRALES                                  | T. f. in a C. f.       |                         | Bicor-<br>bonate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |       |       |      |       |    |    |      |      |      |   |
| CANGOLARY STRALTS AT MORTINEY (STA. 274) | Mostol constituents to |                         | Colcum Magne Sadyum Patra. Carbon Brear Sui (Ca) (Mg) (Ra) (Rb) (C $\Omega_{\phi}$ ) (HC $\Omega_{\phi}$ ) (SQ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |       |      |       |    |    |      |      |      |   |
| 5                                        | Mo                     |                         | Patos.<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        |                         | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        |                         | Magne<br>Brom<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        |                         | (Calcium<br>(Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        | _                       | ž<br>Ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        | pecific                 | ingramha<br>1 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 4,698 | b,111 | A,076 |      | 1 1 1 | 1  | 3  | 462° | 2 -1 | en.  | 1 |
|                                          |                        | Discontinue             | In cfe in of a system conditions on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        | Tenno                   | 30 KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 3     | 9     | 2     |      | ć     | U  |    | Ť    | C    | Ξ    | 3 |
|                                          |                        | 0.000000                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |       |       |      |       |    |    |      |      |      |   |
|                                          |                        | Dor.                    | and lime<br>sompled<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1959 | 1/16  | 2 11  | 0.0   | 2/1p | 7     | 14 | 17 | 25   | 71   | 0000 | 1 |

ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2) TABLE B-2

|                                     |           |               | Anglyzed<br>by i                                                                      | USGS |               |                 |                 |      |                                       |            |            |      |                    |       |       |       |  |
|-------------------------------------|-----------|---------------|---------------------------------------------------------------------------------------|------|---------------|-----------------|-----------------|------|---------------------------------------|------------|------------|------|--------------------|-------|-------|-------|--|
|                                     |           |               | Hordness bid - Coliform Analyzed os CaCO <sub>3</sub> ity MPN/ml by i Total N. O. ppm |      | Median<br>23. | Maxtmum<br>620. | Minimum<br>0.23 |      |                                       |            |            |      |                    |       |       |       |  |
|                                     |           | Tur           | - pid<br>bbg                                                                          |      | -             | 10              | 35              | 15   | m                                     | 8          | 2          | Cu   | п                  | 6     | 97    | 8     |  |
| Ì                                   |           |               | N COS                                                                                 |      | 13            | 13              | 30              | 18   | 15                                    | 13         | 10         | 11   | 10                 | 8     | 11    | 10    |  |
|                                     |           |               | Hord<br>os Ca<br>Total                                                                |      | 139           | 138             | 151             | 138  | 347                                   | 1,40       | 137        | 141  | 143                | 156   | 152   | 191   |  |
|                                     |           | Per-          | - pod -                                                                               |      | 18            | 16              | 379             | 11   | 18                                    | 18         | 19         | 8    | 18                 | 17    | 18    | 19    |  |
|                                     |           | Total         | solved<br>solved<br>in ppd ni                                                         |      | 190e          | 189             | 83,             | 187° | 186 <sup>f</sup>                      | 189        | 189e       | 191° | 195f               | 197°  | 203   | 211°  |  |
|                                     |           |               | Other constituents                                                                    |      |               |                 |                 |      | A1 0.08 Zn 0.01 d<br>Cu 0.01 Pol 0.00 |            |            |      | POL 0.00 A1 0.07 d |       |       |       |  |
|                                     |           |               | (Silica<br>(SiO <sub>2</sub> )                                                        |      |               |                 |                 |      | 5.8                                   |            |            |      | 듸                  |       |       |       |  |
|                                     |           | lion          | Baron<br>(B)                                                                          |      | 0.0           | 0.2             | 0.1             | 0.1  | 0.0                                   | 0.1        | 0.1        | 0.1  | 0.1                | 0.2   | 0.1   | 0.1   |  |
|                                     | million   | par million   | Fluo-<br>ride<br>(F)                                                                  |      |               |                 |                 |      | 0.00                                  |            |            |      | 0.0                |       |       |       |  |
| STA, 82                             | porte per | squivalents   | Ni-<br>trote<br>(NO <sub>3</sub> )                                                    |      |               |                 |                 |      | 0.0                                   |            |            |      | 0.02               |       |       |       |  |
| COYOTE CREEK NEAR MADRONE (STA. 82) | ۵         | squiv         | Chlo-<br>ride<br>(CI)                                                                 |      | 0.31          | 0.28            | 0.31            | 9.0  | 0.28                                  | 0.31       | 9.2        | 0.23 | 9.8                | 0.42  | 0.34  | 0.70  |  |
| NEAR M                              |           | -             | Sul -<br>fote<br>(SO <sub>4</sub> )                                                   |      |               |                 |                 |      | 32                                    |            |            |      | 95.0               |       |       |       |  |
| E CREEK                             |           | COMBILITURNIS | Bicar-<br>bonote<br>(HCO <sub>3</sub> )                                               |      | 2.52          | 2.52            | 2.41            | 2.39 | 2.51                                  | 2.54       | 2.54       | 2.61 | 162                | 2.72  | 2.82  | 3.02  |  |
| COYOT                               | 1         |               | Corban-<br>ote<br>(CO <sub>3</sub> )                                                  |      | 0.0           | 0.0             | 0.00            | 0.0  | 0.0                                   | 0.0        | 0.0        | 0.0  | 0.00               | 0.0   | 0.0   | 0.0   |  |
|                                     | 1         | W             | Potas-<br>SIUM<br>(K)                                                                 |      |               |                 |                 |      | 0.03                                  |            |            |      | 2.6                |       |       |       |  |
|                                     |           |               | Sodium<br>(Na)                                                                        |      | 114           | 0.52            | 0.57            | 13   | 14<br>0.61                            | 14<br>0.61 | 15<br>0.65 | 0.70 | 0.65               | 0.65  | 0.65  | 1.7   |  |
|                                     |           |               | Mogne-<br>anum<br>(Mg)                                                                |      |               |                 |                 |      | 1.20                                  |            |            |      | 1.16               |       |       |       |  |
|                                     |           |               | Coleium<br>(Co)                                                                       |      | 2.7Bc         | 2.76            | 3.02            | 2.76 | 32                                    | 2.80       | 2.74       | 2.85 | 34                 | 3.120 | 3.040 | 3.220 |  |
|                                     |           | e             | Ĭ.                                                                                    |      | 7.9           | 7.7             | 7.9             | 7.7  | 7.7                                   | 7.7        | 7.7        | 7.5  | 7.6                | 7.7   | 7.7   | 8.1   |  |
|                                     |           | Specific      | onductance<br>(micromhos<br>at 25°C)                                                  |      | 355           | 353             | 347             | 351  | 355                                   | 354        | 353        | 327  | 325                | 338   | 347   | 361   |  |
|                                     |           |               |                                                                                       |      | 105           | 88              | 102             | 106  | 6                                     | 100        | 100        | 8.   | 76                 | 8.    | 8     | 8;    |  |
|                                     |           |               | Disacived<br>caygen<br>ppm %Sc                                                        |      | 11.4          | 6.6             | 10.8            | 10.9 | 10.6                                  | 10,6       | 10.5       | 9.6  | 9.7                | 10.0  | 6.6   | 10.3  |  |
|                                     | Г         |               | Temp<br>in oF                                                                         |      | 54            | 15              | 26              | 58   | 53                                    | 26         | 95         | 53   | 28                 | 95    | 58    | 25    |  |
|                                     |           |               | Dischorge Temp                                                                        |      | 55            | 14              | 9.1             | 36   | 8                                     | 107        | 121        | 83   | 93                 | 42    | 112   | 104   |  |
|                                     |           |               | and time<br>sampled<br>P.S.T                                                          | 1959 | 1/8           | 2/10            | 3/5             | 1620 | 5/12                                  | 6/9        | 7/2        | 8/4  | 9/9                | 10/15 | 11/5  | 12/9  |  |

Laboratary pH.

c Sum of calcium and magnessum in opm.

Sum of colicium and anagoriscum in spin.

Then (Rs), and have one continue (Rs), respect (Cu), lead (Pb), manganese (Mn), 2 inc. (Zn), and haxavalent chromium ( $G^{**}$ ), reparted here as  $\frac{0.0}{0.00}$  except as shown.

Derived from canductivity vs TDS curves.

Associated and transported. Conclude the consequence another personal and the Conclude and Gravimetric determination.

Determined by addition of analyzed constituents.

B-38

ANALYSES OF SURFACE WATER TABLE R.

LIFE DATOR CREEK AT LOT GATOR (STA. 74) SAN PRANCISCO BAY REGION (NO. 2)

Hordress 94 Conform Analysed 1- es Colly 12 Many/ma 811 Max or d \_ Gis. Cent colved con-colds Other constituents Fluo- Baron Silica ride (B) (SiO<sub>2</sub>) equivalents per militan parte per million Frote (NOs) Chide ride (Ci) 200 12 18 5ul -fate (50<sub>a</sub>) . 5 Mineral canetifuents in Bicar bonate (HCO<sub>4</sub>) 9 世 18 arbon-are (CO<sub>3</sub>) J Patas. (K) 4 al. 4 Magne-e-um (Ma) 1,55 2 17K b in cfs in of sayer (micromose PM in cfs in of sayer (micromose PM in cfs in of pp of sayer (micromose PM in cfs in of pp of sayer) 0 ٠ Oate and time sampled p S T

. ...

ANALYSES OF SURFACE WATER TABLE B-2

SAN FRANCISCO BAY REGION (NO. 2)

|                  |                   | Hordness bid Coliform Analyzed os CoCO <sub>3</sub> 15 MPN/ml by 1 |                       | SDSO |               |                  |                 |             |                                                   |      |             |               |     |            |       |            |       |    |
|------------------|-------------------|--------------------------------------------------------------------|-----------------------|------|---------------|------------------|-----------------|-------------|---------------------------------------------------|------|-------------|---------------|-----|------------|-------|------------|-------|----|
|                  |                   | Coliform <sup>h</sup><br>MPN/ml                                    |                       |      | Median<br>230 | Max1mum<br>7,000 | Minimum<br>0 62 |             |                                                   |      |             |               |     |            |       |            |       |    |
|                  |                   | - 20                                                               |                       |      | S             | 0                | Çu              | 10          | 20                                                | 15   | 8           | 5             |     | ÇU .       | Q.    | .#         |       |    |
|                  |                   | CO3                                                                | P C.                  |      | 8             | 0                | 0               | 0           | 0                                                 | 0    | 0           | 0             |     | 0          | 0     | 13         |       |    |
|                  |                   | Hord<br>os Co                                                      | Total N.C.<br>ppm ppm |      | %             | 72               | 20              | 98          | 110                                               | 138  | 143         | 116           |     | 153        | 153   | 158        |       |    |
|                  |                   | - t- p                                                             | 5                     |      | 38            | %                | 33              | 37          | 30                                                | 25   | 22          | 33            |     | 23         | 83    | 62         |       |    |
|                  | Total             | Salvad<br>Solids                                                   | mdd ui                |      | 176°          | 145              | 145             | 1716        | 212                                               | 234  | 230e        | 220°          |     | 252        | 25 Le | 363°       |       |    |
|                  |                   |                                                                    | - 1                   |      |               |                  |                 |             | Pe 0 09 Al 0 24 d<br>Zn 0.01 PO <sub>b</sub> 0.55 |      |             |               |     |            |       |            |       |    |
|                  |                   | 0 01                                                               | (2°0'S)               |      |               |                  |                 |             | 92                                                |      |             | -             |     |            |       |            | <br>_ |    |
|                  | 100               | 5                                                                  | (B)                   |      | 9:0           | 7.0              | 7.0             | 5:0         | 9.0                                               | 0.5  | 4.0         | 4.0           |     | 5:0        | 4.0   | 9.0        |       | -  |
| ( <              | ports per million | Fluo-                                                              | (F)                   |      |               |                  |                 |             | 0.03                                              |      |             |               |     |            |       |            | <br>  |    |
| (STA. 72         | ports per million | ž                                                                  | (NO <sub>5</sub> )    |      |               |                  |                 |             | 0.03                                              |      |             |               |     |            |       |            |       |    |
| HELENA (STA. 72) | painoe            | Chlo-                                                              | (CI)                  |      | 0.70          | 18               | 0.34            | 17          | 0.56                                              | 3.45 | 0.37        | 0.31          |     | 28<br>0.79 | 16    | 34.0       |       |    |
| ST.              | Ē                 |                                                                    | (SO <sub>4</sub> )    |      |               |                  |                 |             | 0.35                                              |      |             |               |     |            |       |            |       |    |
| MAPA RIVER NEAR  | constituents      | Bicar                                                              | (HCO <sub>3</sub> )   |      | 1.31          | 8                | 1.43            | 102         | 2.33                                              | 2.79 | 2.97        | 3.00          |     | 3.06       | 3.21  | 2.90       |       |    |
| NAPA             | Mineral con       | Corban-                                                            | (CO <sub>3</sub> )    |      | 0.0           | 0.0              | 0.0             | 0.07        | 0.0                                               | 0.0  | 0.0         | 0.0           |     | 0.0        | 0.0   | 0.0        |       |    |
|                  | Min               | Potas-                                                             | (K)                   |      |               |                  |                 |             | 3.4                                               |      |             |               |     |            |       |            |       |    |
|                  |                   | ,                                                                  | (0 N)                 |      | 1.04          | 8.0              | 0.70            | 1.00        | 1.00                                              | 0.87 | 1.8<br>0.78 | 1.13          |     | 0.91       | 0.91  | 25<br>0.96 |       |    |
|                  |                   | Mogne-                                                             | (Mg)                  |      |               |                  |                 |             | 0.90                                              |      |             |               |     |            |       |            |       |    |
|                  |                   | Calcium                                                            | (Co)                  |      | 1.72          | 2.44             | 1.40            | 1.72        | 1.30                                              | 2.76 | 2.86        | 2.32          |     | 3.06       | 3.06  | 3.16       |       |    |
|                  |                   | H                                                                  |                       |      | 7.2           | 7.8              | 7.3             | 7.3         | 7.3                                               | 7.1  | 7.9         | 7.7           |     | 7.5        | 7.7   | 7.3        |       |    |
|                  |                   | conductonce<br>(micromhos                                          | 000                   |      | 564           | 218              | 218             | 526         | 319                                               | 352  | 346         | 331           |     | 379        | 381   | 395        |       |    |
|                  |                   | P = 6                                                              | %Sot                  |      | 88            | 113              | 8               | 8           | 85                                                | 88   | 162         | 69            |     | 100        | 66    | %          |       |    |
|                  |                   | Dissolved                                                          | mdd                   | _    | 10.0          | 11.9             | 9.3             | 8.8         | 8.1                                               | 7.8  | 13.2        | 6.2           |     | 9.6        | 6.6   | 10.8       |       |    |
|                  |                   | dw u                                                               | Н                     |      | 20            | 295              | 119             | 89          | 42                                                | 72   | 8           | 2             |     | 19         | 99    | 51 1       | <br>  |    |
|                  |                   | Discharge Temp                                                     |                       |      | 31            | 21               | 777             | 770         | 5.7                                               | 1.1  | 0.4         | 0.3<br>(est.) | Dry | 0.8        | 0.16  | 1.0        |       | 7- |
|                  |                   | Dote Do                                                            | P.S.T                 | 1959 | 1/7           | 2/6              | 3/9             | 4/1<br>1130 | 5/11                                              | 6/11 | 1/1         | 8/12          | 4/6 | 10/15      | 11/4  | 12/3       |       |    |

c Sum of calcium and magnesium in epm. b Laboratary pH

Jan D. Carken and magnetic representations of the control of the c

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Gravimetric determination.

Among median and empa, respectively, Calculated from analyses of deplicate monthly samples mode by California Department of Poblic Health, Division of Laboratoures, or United Stores Public Health Service (USPHS); Son Bernedian Control Management of the Internor, Burson of Reclamation (USSR); United Stores (USPHS); Son Bernedian County Flaod Common Operation (SERVI); United Stores (USPHS); Son Bernedian County Flaod Common Operation (SERVI); Son Bernedian County Flaod Common Operation (SERVI); Son Bernedian County Flaod Common Operation (SERVI); Son Bernedian County Flaod County Plaod County (SERVI); Control (TILL) of California Department of Water and Power (ADPR); Control (TILL) of California Department of Water (SERVI); Control (S

TABLE B-3
ANALYSES OF SURFACE WATER

CENTRAL OACTAL REGION (N . . .

|                                  |                         | hanyzed<br>by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı |      | -        |      |     |             |    |    |   |     |     |     |  |  |
|----------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|----------|------|-----|-------------|----|----|---|-----|-----|-----|--|--|
|                                  |                         | Mordons Bid - Co form Assisted on Color of the Color of t |   | ļ -  | Hau      | -    |     |             |    |    |   |     |     |     |  |  |
| 1                                | 3                       | 9-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |      |          |      |     |             |    |    |   |     |     |     |  |  |
|                                  | -                       | 000 md0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |      |          |      |     |             |    |    |   |     |     |     |  |  |
|                                  |                         | Mordness<br>os CoCOs<br>Yoto N.C<br>opm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |      | 1,       | 8    | 1   |             |    |    |   |     |     |     |  |  |
|                                  | à d                     | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |      |          | 7    | 7   | 0.7         |    |    |   |     |     |     |  |  |
|                                  | Totol                   | adies ead ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 4.   |          | 1    | 177 |             |    | ì  |   |     |     |     |  |  |
|                                  |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |      |          |      |     | SHEET SHEET |    |    |   |     |     |     |  |  |
| 1                                |                         | SO.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |      |          |      |     | 73          |    |    |   |     |     |     |  |  |
|                                  | 60                      | Boron Silica<br>(B) (SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 1    | 1        |      | 1   |             |    | 37 |   |     |     |     |  |  |
| 3                                | equivolents per million | 100-<br>100-<br>100-<br>100-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |      |          |      |     |             |    |    |   |     |     |     |  |  |
|                                  | porte per million       | N<br>Irata<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |      |          |      |     |             |    |    |   |     |     |     |  |  |
| DET B                            | DAINDS                  | Chlo<br>ride<br>(Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 0    | 1        |      | J   | Œ           | 18 | E  |   |     |     |     |  |  |
| RORLE                            | 6                       | Sut - fate<br>(50 <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |      |          |      |     | #Ê          |    |    |   |     |     |     |  |  |
| IVER A                           | 11-fuente               | Bicar -<br>bonate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 110  | 200      | Œ    | 8   | a.F.        |    | -  |   |     |     |     |  |  |
| ANGEL BIVER A RORLS DET R . A. 3 | Mineral constituents in | (No) Polas Corbon Bicar bondle (No) (K) (KCOs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 1    | t        | 115  |     | F           |    | 15 |   |     |     |     |  |  |
|                                  | N. O.                   | Potas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |      |          |      |     | 1           |    |    |   |     |     |     |  |  |
|                                  |                         | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 1    | 1        |      | 1E  | £           |    | -  |   |     |     |     |  |  |
|                                  |                         | Magne<br>Brom<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |      |          |      |     | -8          |    |    |   |     |     |     |  |  |
|                                  |                         | Colcum Magne S<br>(Co) sum<br>(Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | þ    | E        | 1.97 |     | 7           | B  | B  |   |     |     |     |  |  |
|                                  |                         | H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 7    | -        |      |     |             |    |    |   |     |     |     |  |  |
|                                  | Spacific                | onductance<br>on 28°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 21.6 | -d<br>-3 | ï    | 3   | ۲           |    | ž. |   |     |     |     |  |  |
|                                  |                         | \$6.50t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 8    | 2 11     |      |     | 3           |    |    |   |     |     |     |  |  |
|                                  |                         | Dissoived<br>osygen<br>ppm %550t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |      | 8        | 1    |     | ī           |    |    |   |     |     |     |  |  |
|                                  | -                       | Temp<br>In OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | -    | Ĭ.       |      |     |             |    | 7  |   |     |     |     |  |  |
|                                  |                         | Discourse Temp Dissolved conductores pH in Cft in Cft in OF 01ygen (micromings pH in 250 C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |      | ī        |      |     |             |    | 2  | i | i i | 6 8 | ŝ   |  |  |
|                                  |                         | Dote<br>ond time<br>sompled<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 13   |          |      |     |             | £3 | 28 |   | ľ   | 1   | 670 |  |  |

ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

|                                        |                                           | Anolyzed<br>by i                                                           | nsos |                |                  |                 |       |                                                              |               |               |               |                                                               |       |             |                   |
|----------------------------------------|-------------------------------------------|----------------------------------------------------------------------------|------|----------------|------------------|-----------------|-------|--------------------------------------------------------------|---------------|---------------|---------------|---------------------------------------------------------------|-------|-------------|-------------------|
|                                        | 4                                         | Hardness bid - Coliform" A<br>os CaCO <sub>3</sub> ity MPN/mi<br>folai N C | -    | Median<br>36.5 | Meximum<br>9,400 | Minimum<br>0 62 |       |                                                              |               |               |               |                                                               |       |             |                   |
|                                        | 1                                         | - Pha<br>bba                                                               |      | e m            | 20               | 50              | 32    |                                                              | 2             | 8             | 01            | 51                                                            | 32    | m           |                   |
|                                        | -                                         | N CO3                                                                      |      | 340            | 316              | 65              | 124   | 192                                                          | 156           | 125           | 24            | 0                                                             | 145   | 137         | 25.4              |
|                                        |                                           | Pard<br>os Ca<br>PPm                                                       |      | 629            | 669              | 521             | 397   | 989                                                          | 236           | 530           | 757           | 004                                                           | 204   | 1980        | 9228              |
|                                        | , i                                       | sod -                                                                      |      | 22             | 16               | ď.              | 99    | 32                                                           | 32            | 38            | 3             | 29                                                            | 59    | 36          | 8                 |
|                                        | Tatol                                     | solved<br>solved<br>in ppm                                                 |      | 858            | 871°             | 1,00°           | 733   | 126                                                          | 897°          | 935°          | 834           | 870                                                           | 789   | 853         | 860 €             |
|                                        |                                           | Other canstituents                                                         |      |                |                  |                 |       | Pe 0.01 A1 0.22 <sup>d</sup><br>2n 0.01 PO <sub>4</sub> 0.20 | Tot. Alk. 464 | Tot. Alk. 495 | Tot. Alk. 524 | Pe 0.19 At 0.40 d<br>Mn 6.5 Zn 0.05<br>Cu 0.01 P0 <u>1.19</u> |       |             | Pe 0.02 Al 0.27 d |
|                                        |                                           | (SiO <sub>2</sub> )                                                        |      |                |                  |                 |       | 2                                                            |               |               |               | 35                                                            |       |             | 53                |
|                                        | million                                   | Boron<br>(B)                                                               |      | 0.4            | 0.5              | 0.3             | 7.0   | 0.7                                                          | 9.0           | 0.7           | 0.7           | 0.7                                                           | 0.5   | 0.7         | 0.5               |
|                                        | per mil                                   | Fluo-<br>ride<br>(F)                                                       |      |                |                  |                 |       | 0.2                                                          |               |               |               | 0.0                                                           |       |             | 0.0               |
| PAJARO RIVER NEAR CHITTENDEN (STA. 77) | parts per millian<br>equivalents per mill | ni-<br>trate<br>(NO <sub>3</sub> )                                         |      |                |                  | -               | _     | 15.0                                                         |               |               |               | 0.0                                                           |       |             | 0.00              |
| ) изика                                | aguive                                    | Chia-<br>ride<br>(Ci)                                                      |      | 2.23           | 2.62             | 37              | 1.95  | 99 2.79                                                      | 3.33          | 3.52          | 3.16          | 152                                                           | 2.79  | 3.52        | 2.38              |
| R CHIT                                 | <u>e</u>                                  | Sul -<br>fate<br>(SO <sub>4</sub> )                                        |      |                |                  |                 |       | 288                                                          |               |               |               | 1.39                                                          |       |             | 6.20              |
| IVER NE                                | stifuents                                 | Brcar-<br>banate<br>(HCO <sub>3</sub> )                                    |      | 348            | 334              | 3.39            | 333   | λ20<br>6.88                                                  | 456           | 7.69          | 8.26          | 10.16                                                         | 7.54  | 118<br>6.85 | 5.08              |
| PAJARO R                               | Mineral constituents                      | Carbon-<br>ote<br>(CO <sub>3</sub> )                                       |      | 0.0            | 0.00             | 0.00            | 0.0   | 0.0                                                          | 0.13          | 13            | 0.33          | 0.0                                                           | 0.00  | 0.00        | 0.00              |
|                                        | *                                         | Potas-<br>sium<br>(K)                                                      |      |                |                  |                 |       | 3.0                                                          |               |               |               | 0.31                                                          |       |             | 5.5               |
|                                        |                                           | Sodium<br>(No)                                                             |      | 3.26           | 100              | 36              | 3.35  | 5.18                                                         | 5.70          | 151           | 139           | 77.70                                                         | 4.09  | 126<br>5.48 | 3.70              |
|                                        |                                           | Magne-<br>sium<br>(Mg)                                                     |      |                |                  |                 |       | 73<br>5.98                                                   |               |               |               | 58<br>4.76                                                    |       |             | 6.17              |
|                                        |                                           | Calcium<br>(Ca)                                                            |      | 12.50          | 11.80            | 5.02            | 7.94  | 28                                                           | 10.72         | 10.60         | 9.08          | 3.24                                                          | 10.14 | 9.60        | 100               |
|                                        | d                                         | 5                                                                          |      | 7.7            | 7.7              | 7.5             | 7.7   | 8                                                            | 7.9           | 0.            | 8.1           | 8.1                                                           | 8.0   | 7.7         | E.                |
|                                        | Specific                                  | (micromhos<br>of 25°C)                                                     |      | 1,360          | 1,380            | 634             | 1,160 | 1,390                                                        | 1,420         | 1,480         | 1,320         | 1,430                                                         | 1,250 | 1,350       | 1,270             |
|                                        |                                           | ye d<br>gen<br>%Sat                                                        |      | 5              | 76               | 78              | 68    | 8                                                            | 102           | 7             | 895           | 88                                                            | 88    | 81          | 8                 |
|                                        |                                           | Oxygen<br>ppm %Sat                                                         |      | 6.6            | 9.5              | 4.0             | 8.1   | 7.7                                                          | 8.7           | 6.8           | 4.8           | 0.8                                                           | 8.1   | 8.3         | 7.6               |
|                                        |                                           |                                                                            |      | 22             | 20               | 9               | 69    | 79                                                           | 92            | 72            | 69            | 69                                                            | 19    | 85          | 02                |
|                                        |                                           | Dischorge Tamp<br>in cfs in 0F                                             |      | 35             | 12               | 200             | 37    | 13                                                           | 1.8           | 6.3           | 9.5           | 6.2                                                           | 1.8   | 122         | 13                |
|                                        | 100                                       | and time<br>sampled<br>P.S.T                                               | 1959 | 1/8            | 2/10<br>0740     | 3/5             | 1,71  | 5/12                                                         | 6/9           | 1/2           | 8/4<br>0815   | 9/9                                                           | 10/7  | 11/4        | 1630              |

o Field pH

b Loboratory pH.

d Iron (Fe), aluminum (A1), areatic (As), capper (Cu), lead (Pb), manganese (Mn), z.n.c (Zn), and hexavalent chromisum (Cr<sup>+5</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. c Sum of calcium and magnessum in epm.

e Derived from conductivity vs TDS curves.

Gravimetric determination.

Determined by addition of analyzed constituents.

Annual median and rospe, respectively. Calculated from and year of deplicate monthly samples made by Calcium Department of Public Health, Durston of Laboratories, or United States Deals to Act of the Service.

Miles and workyses made by United States Geological Swarper Geological Swarper (BASS), United States Department of the Institute Swarper (BASS), Construction (SWA), Laboratories (SWA), Construction (SWA), Constructio

# TABLE B. . ANALYSES OF SURFACE WATER

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Per-<br>cert Mordiness Biol - Co form B Analysed<br>sod - of CoCOs P Ty Methylmal By 3<br>Total M C Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ī   |    |     |        |       |         |      |     |    |   |       |     | _        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|--------|-------|---------|------|-----|----|---|-------|-----|----------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -   |    |     | -      |       |         |      |     |    |   |       |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Mon'es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 1  | 1   | n<br>2 |       |         |      |     |    |   |       |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |     | X.     |       |         |      |     |    |   |       |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | M C 0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | ā  |     |        | 4     | Jul.    |      |     | Ψ. |   |       |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Hord<br>00 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 8  |     | 2      | Đ     |         | Į.   | ы   | 7  |   | ž.    | h   |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |     | 0      | 7     |         | =    | -   | 2  |   | ź     | -   | 1        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                   | 900 cg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 1  | 1   | 8      |       |         | ¥    | 1   |    |   | •     | ħ   | ķ.       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |     |        | Alk m | 515 517 |      |     |    |   |       |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |     |        |       | Al.     |      |     |    |   |       |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10h                     | Boron Sinco<br>(B) (5:0 <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    | 1   |        |       | 1       | 7    | 4   | 1  |   |       |     | 1        |  |
| 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 0 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |     |        |       | T       |      |     |    |   |       |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | equivalents per million | N.<br>frate<br>(NO <sub>9</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |     |        |       | 1       |      |     |    |   |       |     |          |  |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00 000                  | Chio<br>ride<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 18 | -   | .f     | F     | 4       | -    | 1   | 盂  |   | 11 15 | 1   | 10       |  |
| REAR 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ĉ                       | 5 ol -<br>101e<br>(50 <sub>0</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |     |        |       |         |      |     |    |   |       |     |          |  |
| A. 1 - KZN - KZN - 1 - KZN - KZN - 1 - KZN | afrautite               | Bicor<br>banate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 35 | +   | 2 C    | -/-   |         | - 12 | pĒ. |    |   | -6    | 1   | IĒ.      |  |
| -MLHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mineral constituente    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1  | 18  | 48     | 1     | 18      | 2    | J   | Ü  |   | H     | 3   | 40       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.o.                    | Potos-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |     |        |       | B       |      |     |    |   |       |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Sadium Potas- Carban-<br>(No) (K) (COs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 1  |     | Æ      |       | 10      | -    | 7   | N. |   | P     | 6   | 9        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Mogne<br>8:47<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |     |        |       | IE.     |      |     |    |   |       | Ag. |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Caleium<br>(Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |    | 6   | 10     | 5     | 3       | t    | k   | Į_ |   | E.    | T   | ¥.       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |     |        |       |         |      |     |    |   | 2     |     | 7        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Discharge Temp Dissalved Conditional of the conditi |     |    |     |        |       |         | 91   | 1   |    |   | l     |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 5 50 to 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 9  |     | Ŧ      |       |         |      | 4   | ,  |   | **    |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Dissolved<br>asygen<br>opm %Sat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |     |        |       |         |      |     |    |   | 2     |     | -        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                       | G 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |     |        |       |         |      |     | -  | 1 | ī     |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 9 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |     |        |       |         | ī    |     |    | 5 |       |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Diacha<br>in cf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |     |        |       |         |      |     |    | ø |       |     |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Dore<br>sampled<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 |    | -15 |        |       | 1       | 71   | 1   |    |   | ij    |     | <u>1</u> |  |

## ANALYSES OF SURFACE WATER

CENTRAL COASTAL REGION (NO. 3)

Analyzed by i Hordness bud Colform Ar. os CoCO3 IIIy MPN/ml k. ppm ppm ppm Max1stus 230. Minimum 0.23 Median 4.2 -125 572 280 286 Solved sod -9 12 52 45 34 17 9 1,390 1.140f 756f 1.2186 .159 Fe 0.01 F04 0 00 d 3 A1 0.21 Zn 0.01 Tot. Alk. L92 Other constituents 517 545 296 Alk. A. 13 7 16 RENITO RIVER MEAR REAR VALLEY FIRE STATION (STA. 778) Boran (B) 1.3 0] 1.5 1:0 5.3 1.6 6.1 equivalents per million ports per million Fluo-rids (F) 50.3 0.0 0.0 frote (NOs) 0.0 0.0 0.00 0.7 Chid-ride (CI) 1.80 108 139 5.50 148 1,00 Sul-fats (SO<sub>a</sub>) 8/2 282 379 9.68 Mineral constituents Bicor-bonats (HCO<sub>3</sub>) 503 417 127 163 512 504 Corban-ate (CO<sub>3</sub>) 19 29 0.50 21 Potas-KX) 8.8 7.2 6.0 292 5.31 114 149 216 9.40 602 Magna-Sium (Mg) 96 9.40 98 103 108 Calerum 11.92 67 2.59 2.4 30 8 8 Ha Specific canductance (micromhos at 25°C) 1,730 1,880 1.790 1.220 Dissolved ppm %Sat 76 8 126 11.2 8,3 Dischorge Temp 25 85 95 8 140 (eet.) 15 (est.) 30 (eet.) 12 (est.) 2.5 (est.) 1.5 (est.) 2.5 (est.) Date and time sampled P.S.T 1/8 6/8 8/3 2/9 5/12 2/2

Field off.

Laboratory pH

Sum of calcium and magnesium in apm.

John Victorian with an articles of the copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexarelent chromium (Cr<sup>+5</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Alienal analyses made by bland States Geological Survey, Quality of Ware Bronch (1955), Unived States Department of the Interior, Bureau of Reclamation (1958), Unived States Department of States (1959), San Benaudino, Campy Flood Caren Of States (1959), Unived States (1959), San Benaudino, Campy Flood Caren Of States (1959), San Benaudino, Campy Flood Caren Of States (1959), San Benaudino, Caren Of States Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Labaratories, or United States Public Health Service.

### TABLE B-3 ANALYSES OF SURFACE WATER

CENTRAL DATTAL REGION N

|                                   | _                       |                                                                    |      |    |     |      |     |       |     |     |     |     |      |     |     |  |
|-----------------------------------|-------------------------|--------------------------------------------------------------------|------|----|-----|------|-----|-------|-----|-----|-----|-----|------|-----|-----|--|
|                                   |                         | Mordhess bd Co form? Analysed os CoCO <sub>3</sub> is MPN, ma by i | 1    |    |     |      |     |       |     |     |     |     |      |     |     |  |
|                                   |                         | MPN/mm                                                             |      | 1  |     | 1    |     |       |     |     |     |     |      |     |     |  |
|                                   |                         | 0-4                                                                |      |    |     |      |     |       |     |     |     |     |      |     |     |  |
|                                   |                         | 100                                                                |      |    |     |      | 0   |       |     |     |     |     |      | 8   |     |  |
|                                   |                         | Mordness<br>os CoCOs<br>Toto M                                     |      |    |     | I    | 3   |       |     |     | 1   | 3   |      |     |     |  |
|                                   |                         | 1005                                                               |      |    |     |      | 100 |       |     |     |     | 8   |      | î   |     |  |
|                                   | Toroi                   | and                            |      | 1  | 1   | 1    | 9   | 1     |     | 1   |     | ò   |      | 1   | 1   |  |
|                                   |                         | Other constituents                                                 |      |    |     |      |     | 10 mm |     |     |     |     |      |     |     |  |
|                                   |                         | (2015<br>2016                                                      | -    |    |     |      |     |       |     |     |     |     |      |     |     |  |
|                                   | 0.0                     | Baron Silica<br>(B) (SiO <sub>2</sub> )                            |      | 31 | -1  |      | 9   | 3     |     |     |     |     |      | 3   |     |  |
|                                   | million<br>ser milli    | 100<br>F (F)                                                       |      |    |     |      |     | 1     |     |     |     |     |      |     |     |  |
| 12.                               | equivalents per militan | N I                                                                |      |    |     |      |     | 18    |     |     |     | -   |      |     |     |  |
| AM LINEW LINES - BIG AT NO PET 18 | d Annbe                 | Chia-<br>ride<br>(C.)                                              |      | 1  | 2/2 |      | . P | 12    |     | d.  | F   | ď.  | - 10 | 1   | 2   |  |
| 110 11                            | U1 9                    | Sul<br>fore<br>(SC <sub>4</sub> )                                  |      |    |     |      |     | JF    |     |     |     | ď.  |      |     |     |  |
| S N.O.                            | nelifuen                | Bicar<br>bonate<br>(HCO <sub>3</sub> )                             |      | E  | 51  |      | 8   | 3     | 18  | - 6 | ik. | 30  | 2    | = 2 | 3   |  |
| SE CLASS                          | Mineral constituents    | Carban<br>010<br>(CU <sub>3</sub> )                                |      | 10 | -)" | 1    | Ī   | 3     | 3   | :1  | 1   | 3   | T.   | İ   | 1   |  |
| AN UI                             | 24                      | Potes<br>evulli<br>(K)                                             |      |    |     |      |     | 3     |     |     |     | 1   |      |     |     |  |
|                                   |                         | Sadium<br>(No)                                                     |      | -F | -   | 17   | -   | J.    | 1/2 | el. | 1   | £   | D    | £   | 1   |  |
|                                   |                         | Magne<br>Brum<br>(Mg)                                              |      |    |     |      |     |       |     |     |     |     |      |     |     |  |
|                                   |                         | Calcium Magne<br>(Ca) sium<br>(Mg)                                 |      | 1  | E c | 1.00 | 100 | 90    | 2   | E   | - 1 | ŧĈ. | F    | E   | I.  |  |
|                                   |                         | H                                                                  |      |    | -7  | 4    | 1   |       |     | 3   |     | 7   |      |     |     |  |
|                                   | Spacific                | (m.crambos) pH (careamos) pH (careambos)                           |      |    | 2   | 1    | 7   |       | H   | E.  |     |     |      |     | 8   |  |
|                                   |                         | % Sot                                                              |      | 1  |     | 1    |     |       | 7   | 3,  |     |     | 3    | 3   |     |  |
|                                   |                         | Diesolved<br>oaygen<br>ppm %Sot                                    |      |    | ř   | T    |     |       | F   | ï   | 1   |     |      | 3   |     |  |
|                                   |                         | 90 0                                                               |      | T  | 3   | 4    | Ť   |       |     |     | 1   | Ŧ.  |      | 33  |     |  |
|                                   |                         | Discharge Temp Dissalved in aff asygen ppm 9,6501                  |      |    |     | 1    | 7   | •     | 1   | 0   |     |     | i.   | 1   |     |  |
|                                   |                         | ond time<br>compled<br>P S T                                       | 1961 | ġ. | 15  | 1    | ă.  |       | 18  | _ ; | 1   | 13  | şļ.  |     | 20. |  |

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

ANALYSES OF SURFACE WATER TABLE R-2

CENTRAL COASTAL REGION (NO. 3)

|                                  |                      | Analyzed<br>by i                                          | SDSA |              |                  |                |               |                                       |               |              |               |                                            |      |              |             |   |
|----------------------------------|----------------------|-----------------------------------------------------------|------|--------------|------------------|----------------|---------------|---------------------------------------|---------------|--------------|---------------|--------------------------------------------|------|--------------|-------------|---|
|                                  |                      | Hardnese bid - Caliform's as CaCO <sub>3</sub> Ify MPN/ml |      | Median<br>23 | Maximum<br>2.400 | Minimum<br>1.3 |               |                                       |               |              |               |                                            |      |              |             |   |
|                                  | į                    | - A-                                                      |      | ~            | el               | 4              | cv.           | 0.7                                   | м             | н            | -2            | m                                          | 0    | ~            | 60          |   |
| ı                                |                      | NO S                                                      |      | 11.8         | 88               | 77             | 39            | 92                                    | 7             | 43           | 52            | 69                                         | 102  | <del>d</del> | 69          |   |
|                                  |                      | na CaCOs<br>Tatal N.C.                                    |      | 892          | 270              | 5252           | 21.5          | 475                                   | 516           | 281          | 252           | 270                                        | 309  | 566          | 303         |   |
| ŀ                                | į                    | - P - E                                                   |      | 8            | 28               | 22             | 2             | 52                                    | 27            | 8            | 12            | 98                                         | 65   | 53           | 8           |   |
|                                  | Total                | solved as solids in ppm                                   |      | 1,444        | 435°             | 3506           | 1403          | 1445                                  | 150°          | h55°         | 439           | 3442 f                                     | 507  | 5116         | 511°        |   |
|                                  |                      | Other constituents                                        |      |              |                  |                | Tot. Alk. 215 | Fe 0.02 Al 0.11 d<br>Zn 0.01 POh 0.30 | Tot. Alk. 246 | Tot Alk. 248 | Tot. Alk. 244 | Pol <sub>1</sub> 0.35 A1 0.09 <sup>d</sup> |      |              |             |   |
|                                  |                      | Silico<br>(SiO <sub>2</sub> )                             |      |              |                  |                |               | 2                                     |               |              |               | 33                                         |      |              |             |   |
|                                  | 6                    | Baran S<br>(B) (S                                         |      | 0.0          | c c              | 110            | 0.1           | 7]                                    | 0.0           | 0.1          | 0.0           | []                                         | 0.2  | 0.5          | 0.1         |   |
|                                  | per million          | Flua- B<br>ride<br>(F)                                    |      |              |                  |                |               | 0.2                                   |               |              |               | 4.0                                        |      |              |             | _ |
| 16)                              |                      | rote<br>(NO <sub>3</sub> )                                |      |              |                  |                |               | 0.0                                   | -             |              |               | 0.7                                        |      |              |             |   |
| SOQUEL CREEK AT SOQUEL (STA. 76) | equivolents          | Chio-<br>ride<br>(CI)                                     |      | 52           | 1.30             | 07.70          | 36            | 27                                    | 65            | 54           | 61.72         | 63                                         | 2.59 | 76           | 2.26        |   |
| AT SOQUI                         | c c                  | Sul -<br>fore<br>(SO <sub>4</sub> )                       |      |              |                  |                |               | 2.17                                  |               |              |               | 75                                         |      |              |             |   |
| L CREEK                          | stifuents            | Bicar-<br>banats<br>(HCO <sub>3</sub> )                   |      | 3.00         | 3.64             | 2.95           | 3.33          | 3.95                                  | 3.64          | 3.93         | 3.80          | 246<br>4.03                                | 252  | 262          | 261<br>4.28 |   |
| SOQUE                            | Mineral constituents | Corbon-<br>ote<br>(CO <sub>S</sub> )                      |      | 0.0          | 0.0              | 0.00           | 0.50          | 0.0                                   | 12            | 0.13         | 90.0          | 0.00                                       | 0.00 | 0.0          | 0.00        |   |
|                                  | Min                  | Patas-<br>s:um<br>(x)                                     |      |              |                  |                |               | 3.9                                   |               |              |               | 5.3                                        |      |              |             |   |
|                                  |                      | Sodium<br>(No)                                            |      | 11.78        | 2.09             | 1.17           | 36            | 1.83                                  | 2.04          | 2.18         | 1.91          | 1.91                                       | 5.52 | 2.4          | 67<br>2.91  |   |
|                                  |                      | Magns-<br>e:um<br>(Mg)                                    |      |              |                  |                |               | 1.78                                  |               |              |               | 20                                         |      |              |             |   |
|                                  |                      | Calcium<br>(Ca)                                           |      | 5.36         | \$ .40           | 4.50           | 4.30          | 3.69                                  | 5.52          | 5.62         | 5.04          | 3.79                                       | 6.18 | 5.98         | 909         |   |
|                                  |                      | PH                                                        |      | 7.5          | 8.1              | 7.7            | 7.9           | 7.9                                   | 7.9           | 7.9          | 7.9           | 7.9                                        | 7.9  | 7.5          | 7.7         |   |
|                                  | Coacidio             | (micromhos pH                                             |      | 703          | 069              | 455            | 638           | 708                                   | 713           | 121          | 969           | 669                                        | 803  | 810          | 810         |   |
|                                  |                      | gan (                                                     |      | 36           | 66               | 87             | 100           | 78                                    | 79            | 113          | 118           | 101                                        | 101  | 28           | 68          |   |
|                                  |                      | Discolved<br>oxygan<br>ppm %Sat                           |      | 10.4         | 11.5             | 9.5            | 10.01         | 9.6                                   | 9.3           | 9.01         | 10.9          | 9.6                                        | 6.6  | 9.5          | 10.8        |   |
|                                  | -                    |                                                           |      | 52           | 9                | 23             | 99            | 65                                    | 49            | 99           | 89            | 59                                         | 62   | 25           | 45          | _ |
|                                  |                      | Dischorge Temp                                            |      | 52           | 6.9              | 95             | 19            | T.7                                   | 4.3           | 4.3          | 2.5           | 2.5                                        | 6.1  | 5.2          | 4.1         |   |
|                                  |                      | Dote<br>and time<br>sampled<br>P.S.T.                     | 1050 | 1/7          | 2/9              | 3/4            | 1100          | 5/13                                  | 6/8           | 7/2          | 8/3           | 9/9                                        | 10/7 | 11/4         | 12/9        |   |

b Laboratory pH. o Field pH

c Sum of calcium and magnesium in apm.

Annel majon and resp, respectively. Calculated from majors of aboliscent mouthly samples mode by Calciumia Department of Public Health, Duvision of Laboratories, or United States Public Health Services.

Manual majors mode by United States Canlagical State And Applications and Carlos States (Services (1994)); Six Benerating Compt Flood
Carnol Durich (SECO), Memoritation from United States and Person of Reference (MADPP). City of Los August (MADPP); Six Benerating Compt Flood
Pajor Leadin (LADPP); Terminal Tening Laboratories, Inc. (TLL), so Calcium a Statement of Male States (MADPP); City of Los August (MADPP);

Sum of colcum and magnesium in opin.
Iran (Fe), oluminum (A1, arranger (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heavavalent chromium (Cl<sup>+6</sup>), reported here as 0.0 except as shown.

Determined by addition of analyzed constituents. Darived from canductivity vs TDS curves. Gravimetric determination.

ANALYSES OF SURFACE WATER TABLE B-3

CENTRAL TOATTAL REGION (NO. 1)

|                                      | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _   |     |       | _               |            |               |         |       |      |     |    |    |      |  |
|--------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|-----------------|------------|---------------|---------|-------|------|-----|----|----|------|--|
|                                      |                         | A copra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   |     |       |                 |            |               |         |       |      |     |    |    |      |  |
|                                      |                         | Hordness Bid Celiform Accepted os CeCO <sub>3</sub> II MPN/mid By I Cop open II MPN/mid By I MPN/m |     | 7   | Maxim | Z = 1 = 2       |            |               |         |       |      |     |    |    |      |  |
|                                      | -                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     | 3     | h               |            | 7             |         |       | 2    |     |    |    | -    |  |
|                                      |                         | 000 CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |       |                 |            |               |         |       |      |     |    | 2  |      |  |
|                                      |                         | Mordness<br>os CeCOs<br>70101 N.C<br>9Pm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 0   |       |                 | 1          | I             |         | -     | Ŧ    | 1   | 7  | E  |      |  |
|                                      |                         | 0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 0   |       |                 |            |               |         |       |      |     |    |    |      |  |
|                                      | T0101                   | spired con 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | - 1 | 1     | · a             | 3          | 2             | -       | 16 10 | ٠    | 2   | •  | 4  | •    |  |
|                                      |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |       |                 | 1 * Aik 13 | Fe 2.1 Al 2.3 | - Alk k |       |      | A   |    |    |      |  |
|                                      |                         | (SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |       |                 |            | 4             |         |       |      |     |    |    |      |  |
| U                                    | uoij                    | 80.00 (Sinco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 10  | 73    | 3               | 1          | 2             |         | 1     |      |     |    |    |      |  |
| (9)                                  | mellion<br>10 /01       | Fluor<br>rids<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |       |                 |            | 1             |         |       |      | 19  |    |    |      |  |
| DVA. REEK NYAR HYRGAN HTLL ("TA. 95) | equivolents per militon | frose<br>(NOs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |       |                 |            | _             |         |       |      | 10  |    |    |      |  |
| UN HILL                              | 0 200                   | Chio-<br>ride<br>(Ci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | - 3 | nE.   | T.              | 17         | 36            | è       | Œ     |      | 0 0 | +  | Ţ  | Œ.   |  |
| UR MORIG                             | e                       | Sul<br>fore<br>(50 <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |       |                 |            | . (           |         |       |      | E   |    |    |      |  |
| REEK NY.                             | et ricenta              | Bicor-<br>bongte<br>(MCOs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 7   | 1 .   | THE I           | 8          |               |         | 10    | 2    | 10  | 38 | 卖  | E.L. |  |
| UVA                                  | Mineral constituents    | Corbon-<br>(CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 1   | -18   |                 | LD.        | J             | Ī       | B     |      | IX  | :B | -3 |      |  |
|                                      | Min                     | Potos-<br>fix)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |       |                 |            | 38            |         |       |      | +15 |    |    |      |  |
|                                      |                         | Sadium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 35  | .5    | 1               |            | 2 1           | :5      | St.   | - Vi | 25  | ±E | -5 | 100  |  |
|                                      |                         | Magne-<br>sucm<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |     |       |                 |            | 1             |         |       |      |     |    |    |      |  |
|                                      |                         | Olc.um<br>(Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | -7  | B     | 1               | b          | 12            | 1       | E     | Ė    | L   | E  |    |      |  |
|                                      |                         | I a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |       |                 |            |               |         |       |      |     |    |    |      |  |
|                                      | Spacific                | Conductorem BH to Conductorem            |     | £   | 8     | 100             |            |               | 2       | T     |      |     |    | 7  |      |  |
|                                      |                         | Oresolved onygen (Congress of Congress of            |     | 9   | 1     |                 | 4          |               |         |       |      | 1   | 3  | Ξ  |      |  |
|                                      |                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 000 |       |                 |            |               |         |       |      |     |    |    |      |  |
|                                      |                         | E 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 3   |       |                 |            |               |         |       | E    | -   |    |    | 1    |  |
|                                      |                         | Discharge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 13  | 13    | N<br>Availar se | į          | - 7           | d       | į, į  |      | 1   | ij | -  | 4    |  |
|                                      |                         | 0000 1:00<br>0000104<br>PST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 191 | 1   | 11    |                 | şi         | 9             |         |       | : )  |     |    | d  |      |  |



# TABLE B-4 ANALYSES OF SURFACE WATER

| Г                |                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     | _  | -    |   | - |
|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----|------|---|---|
|                  |                         | Anolys<br>by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |    |      |   |   |
|                  | •                       | N/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |    |      |   |   |
| -                | -                       | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |    |      |   |   |
| ŀ                | 7.                      | 8 0 U E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |    |      |   |   |
|                  |                         | Do Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |    |      |   |   |
|                  | 200                     | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 3  | â   | Ĭ. |      |   |   |
|                  | Total                   | out can't Moddess bid - Co form Accipted sold and or CoCo in MPM/min 8911 and 9891 ppm 1501 MC ppm 1500 MC ppm 150 |      |     |    |      |   |   |
|                  |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |    |      |   |   |
| 1                |                         | Olher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |    |      |   |   |
|                  |                         | Sires<br>(5:0 <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |    |      |   |   |
|                  | Ilian                   | Baron<br>(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |    |      |   |   |
| milion           | E Jed                   | Flua- Baron Silica<br>ride (B) (SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |    |      |   |   |
| north one milion | equivalents per millian | N<br>trate<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3    | *   |    |      |   |   |
| 000              | equival                 | Chia:<br>ride<br>(Ci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =1   |     | 3  |      | Š |   |
|                  | - 1                     | Sul =<br>fare<br>(50 <sub>0</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 4   | d  | 1    | ä |   |
|                  | grants                  | HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ī    | -   |    |      |   |   |
|                  | Mineral constituents in | Calcium Magne Sadium Potas. Carbon Bicar are follow $(Ca)$ $(Mag)$ $(Mag)$ $(Ca)$ $(Ca)$ $(Mag)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -    |     |    |      |   |   |
|                  | Miner                   | totos-<br>trum<br>(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3    | .)  | N  | = ]\ |   |   |
|                  |                         | (Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3    | -,1 | 3  |      |   |   |
|                  |                         | Magne. S<br>e.um<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |    |      |   |   |
|                  |                         | (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |    |      |   |   |
|                  | -                       | x a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -    |     |    |      | 4 |   |
|                  | Specific                | ar 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |    |      |   |   |
|                  |                         | Unernarge emp Unealized conductors H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |    |      |   |   |
|                  |                         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |    |      |   |   |
|                  |                         | Discharge<br>in ofe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |    |      |   |   |
|                  | 0000                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 17 |     |    |      |   |   |

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5)

|                                         |                      |                            |                     |      |                 |                   |                 |                  |                   |       |                  |         |                         |                    |      |       | <br> |  |
|-----------------------------------------|----------------------|----------------------------|---------------------|------|-----------------|-------------------|-----------------|------------------|-------------------|-------|------------------|---------|-------------------------|--------------------|------|-------|------|--|
|                                         |                      | Anolyzed<br>by 1           |                     | USOS |                 |                   |                 |                  |                   |       |                  |         |                         |                    |      |       |      |  |
|                                         |                      | bid - Coliform             |                     |      | Median<br>112.  | Maximum<br>2,400. | Minimum<br>0.23 |                  |                   |       |                  |         |                         |                    |      |       |      |  |
|                                         |                      | - pig                      |                     |      |                 |                   |                 |                  | -                 |       |                  |         | п                       |                    |      | -     |      |  |
|                                         |                      | 000                        | D E                 |      | 4               | 4                 | m               | ~                | 0                 | 11    | С                | С       | -                       | 0                  | m    | 60    |      |  |
|                                         |                      | Hard<br>98 C               | Tatal               |      | 31              | 66                | %               | 5                | 96                | 4     | 8                | 19      | 33                      | 66                 | 92   | 33    |      |  |
| ĺ                                       |                      | Sod -                      |                     |      | 379             | 2                 | 15              | 16               | 18                | 18    | 11               | %       | 16                      | 18                 | 17   | 15    |      |  |
|                                         | Total                | solved<br>solids           | mdd ui              |      | 50 t            | 181               | 1971            | 45 f             | 183°              | 169   | 454              | F5 - 64 | 10°                     | 94                 | 194  | 20    |      |  |
|                                         |                      | Other constituents         |                     |      |                 |                   |                 |                  | Fe 0.02 Al 0 02 d |       |                  |         | PO <sub>1, 0.05</sub> d |                    |      |       |      |  |
|                                         |                      | Silico                     | (2015)              |      | 10              | 01                | =               | 5                | 01                | 9.6   | 60               | 15      | 0]                      | 9.6                | 8.5  |       |      |  |
|                                         | ion                  | 1 5                        | (B)                 |      | 0.0             | 0.1               | 0.0             | 0.0              | 0.0               | 0.0   | 0.0              | 0.0     | 0.0                     | 0.0                | 0.0  | 0.0   |      |  |
| 2a)                                     | r million            | Fluo-                      |                     |      | 0.0             | 0.0               | 0.0             | 0.0              | 0.0               | 0.0   | 0.0              | 0.0     | 0.0                     | 0.0                | 0.1  |       |      |  |
| AMERICAN RIVER AT NIMBUS DAM (STA. 22a) |                      |                            |                     |      | 0.00            | 0.0               | 0.0             | 0.00             | 0.0               | 00.0  | 0.0              | 0.00    | 0.0                     | 0.00               | 4.0  |       |      |  |
| BUS DAM                                 | ports pr             | Chio-                      | (CI)                |      | 6.2             | 0.5               | 0.14            | 3.6              | 3.0               | 320   | 0.0              | 0.00    | 0.07                    | 0.13               | 0.14 | 0.50  | _    |  |
| AT NIN                                  | 5                    | Sul -                      |                     |      | 3.8             | 0.03              | 0.0             | 3.5              | 3.8               | 5.8   | 0.0              | 3.0     | 0.05                    | 0.0                | 0.0  |       |      |  |
| AN RIVE                                 | stituenti            | Bicor-                     | (HCO <sub>3</sub> ) |      | 33              | 30                | 30              | 05<br>EH: C      | 29<br>0.48        | 99.0  | 25               | 0.38    | 27.0                    | 35                 | 33   | 35    |      |  |
| AMERIC                                  | Mineral constituents | Carbon-                    | (CO)                |      | 0.0             | 0.00              | 0.00            | 0.00             | 0.00              | 0.00  | 0.0              | 0.0     | 0.0                     | 0.0                | 0.00 | 0.0   |      |  |
|                                         | Min                  | Potos-                     |                     |      | 0.0             | 0.0               | 0.0             | 0.0              | 0.3               | 0.03  | 0.03             | 0.0     | 0.03                    | 0.5                | 0.0  |       |      |  |
|                                         |                      | Sodium                     | (% o)               |      | 0.12            | 3.5               | 0.10            | 0.10             | 0.12              | 2.0   | 0.00             | 0.11    | 0.09                    | $\frac{3.1}{0.13}$ | 0.13 | 3.1   |      |  |
|                                         |                      | Magne-                     | (Mg)                |      | 0.18            | 2.3               | 0.19            | 0.17             | 0.14              | 0.23  | 0.0              | 0.7     | 0.13                    | 0.18               | 4.6  |       |      |  |
|                                         |                      | Calcium                    | (00)                |      | 8.7             | 0.38              | 0.36            | 0.33             | 7.6               | 0.65  | 6.4              | 6.4     | 6.4                     | 0.80               | 8.0  | 0.74  |      |  |
|                                         |                      | Ĭ.                         |                     |      | 7.3             | 7.3               | 7.34            | 7.1 <sup>8</sup> | 7.1               | e 4   | 7.1 <sup>8</sup> | 6.8     | 7.1                     | 7.3 <sub>p</sub>   | 7.3ª | 7.3ª  |      |  |
|                                         |                      | Conductance<br>(micromhos) |                     |      | 80,0            | 74.8              | 67.6            | 63.7             | 63.7              | 110   | 9.05             | 1,8.2   | 58.8                    | 91.2               | 76.2 | 88.7  |      |  |
|                                         |                      |                            | %Sat                |      | 150             | 107               | 106             | 8:               | 5                 | 108   | 106              | 98      | 98                      | 85                 | 102  | 101   |      |  |
|                                         |                      | Dissolved<br>dxygan        | шаа                 |      | 12.5            | 12.0              | 12.0            | 10.7             | 10.2              | 10.2  | 9.01             | 9.8     | 7.6                     | 4.6                | 10.1 | 10.4  |      |  |
|                                         |                      | Temp<br>In oF              |                     |      | 57              | 51                | 92              | 42               | 95                | 69    | 8                | 61      | Ţ                       | Ľ                  | 69   | 58    |      |  |
|                                         |                      | Dischorgs Temp             |                     |      | 1,100<br>(est.) | 1,350             | 3,240           | 1,400            | 1,020             | 1,570 | 3,360            | 1,100   | 1,250                   | 269                | 829  | 2%    |      |  |
|                                         |                      |                            | P.S.T               | 1959 | 1/15            | 2/5               | 3/11            | 1545             | 5/12              | 6/10  | 7/3              | 8/6     | 9/7<br>5490             | 10/12              | 11/9 | 1/2/1 |      |  |

b Loboratory pH. a Field pH.

c Sum of calcium and magnessum in apm.

Jun of clicium and magnesium in Agm.

Let (A), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>(4</sup>)), reported here as  $\frac{0.0}{0.00}$  except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents. Gravimetric determination.

Annel median and range, respectively. Calculated from analyses of depictors monthly samples mode by Calcunia Department of Poblic Health, Duvation of Laboratories, or United States Public Health Survice.

Minnel totalyses mode by United States Cascological Survey, Quality of Wheter Bornesh (1957), United States Department of the Internant of Recommission (1958). United States Public Health Survice (1957b), San Benearian County Flood
Cannel Danier, (1967b), United States of States of States of Public Health Survice (1957b), San Benearian County Flood
Public Health Report of States of States of States of States of Department of National Resources (1967b), City of Los Angeles, Department of Public Health Cascological States of States of States of Department of States of Resources (1967b), Control Calculator Department Health Resources (1967b), Control Cascological States of St

TABLE P.4
ANALYSES OF SURFACE WATER CENTRAL VALLET PROION (NO. 5)

| -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | -       |              |                                         |         |                |      |     |        |        |      |       |      |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|--------------|-----------------------------------------|---------|----------------|------|-----|--------|--------|------|-------|------|
|                                       | Anolyred<br>by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000 |         |              |                                         |         |                |      |     |        |        |      |       |      |
|                                       | 104 OSCIOLO 11 MPN/ms 8:10 CO DOM ARBITECT CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | Median. | Maria.       | # C C C C C C C C C C C C C C C C C C C |         |                |      |     |        |        |      |       |      |
| 3                                     | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | ~       | -            |                                         | 8.      |                |      | 0   |        |        |      |       |      |
|                                       | 80 U G B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 0       | er.          |                                         |         |                |      |     |        |        |      |       |      |
|                                       | Hord<br>Dom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 7       | К            | 90                                      | ¥.      | į.             | ï    | j.  | 4      | -      | 2    | 2     | 1    |
| 0.                                    | 5 9 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | ¥.      | 97           | 31                                      | 5       | ÷              | 2    | 0   | ĕ      | 1      | 1    |       |      |
| Total                                 | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 5       | B-1-70       | 5                                       | 1.0     | 12             | 5    | 'n  | 1      | -60    | 2    |       |      |
|                                       | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |         |              |                                         |         | Pag 19 19 00 4 |      |     |        | 20 × 2 |      |       |      |
|                                       | (\$10.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |         |              |                                         |         |                |      |     |        | -1     |      |       |      |
| 100                                   | Boron Silico<br>(8) (5:0 <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 1       | 7            | 30                                      | 21      | 0              | 9)   |     | 20     |        | 1    |       |      |
| per milion                            | Fluo-<br>ride<br>(F.I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |         |              |                                         |         | 0.0            |      |     |        | Ť      |      |       |      |
| ports per million<br>votents per mill | N. 17.010<br>(NO.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |         |              |                                         |         | = K            |      |     |        | 9 0 0  |      |       |      |
| equivalents                           | Chio<br>ride<br>(Cr) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 816     | 3.8          | 0.4                                     | 5.5     | 0.08           | 3.0  | 4.0 | 3 5    | 3.2    | 5.8  | v = 0 | +    |
| 8                                     | Sul = 108<br>108<br>(50 <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |         |              |                                         |         | 000            |      |     |        | 0.1    |      |       |      |
| frents                                | Bicor<br>bonote<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 15      | 20           | 28                                      | 10      |                | 430  | 200 | 20     | 200    | 200  | 100   | at a |
| Mineral constituents                  | Carbon B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -    | - 18    | c.l.s.       | 0.0                                     | 000     | -  S           |      | 000 | 98     | · F    | 18   | - 18  | 4    |
| Minero                                | Potos Co<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |         |              |                                         |         | 16.            |      |     |        | 750    |      |       |      |
|                                       | Sodium Po<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 9.6     | 4 5          | 0.00                                    | 0.00    | 0.00           | 415  | II. | 1 60   | 15     | F    | F     | 29   |
|                                       | S auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | GIC.    | - (-)        | WIC                                     | WIC     | 0.10           |      |     |        | 110    |      |       |      |
|                                       | Colcium Mogne<br>(Co) sium<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 25.0    | 284          | 160 ×                                   | - 909°9 | JE.            | ls   | 100 | ř      | 4      | 100  | 162.0 | E    |
|                                       | T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | A       | 4            | 4.                                      | f       | 4              | 4 10 | 8   | 1      | 2.     | g.,  | # ,   | à    |
| pecific                               | cromhos 250 CJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 1 19    | . 0          | 111                                     | 9       | 1 1            | · v  | 370 | 9      | 18.4   |      | -     | 6.   |
| en                                    | Sot (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | Ä       |              | 7                                       | 1.01    | *              | 4    |     | 7      | 2      | 5    | 8     | 0    |
|                                       | Dissolved<br>oaygen<br>oom %Sat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | - V W   | The state of | 11.7                                    | * 100   |                | •    |     | -<br>E |        | ,    | - 1   | 1    |
|                                       | GE .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 2       | -            | -                                       | 2       | 1              | ï    | T   | 3      | E      |      | 8     | 4    |
|                                       | Dischorge Temp Dissolved Conditioners PH condi |      | ,       |              |                                         |         | 1              |      |     |        | 1      |      | 8     | į.   |
|                                       | ond time<br>sompted<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1989 | 1.19    | 20           | 35                                      | 52      | 91             | 38   | H   | 27     | 5 2    | 1111 | 85    | 31   |

|                               |                              |                         | Anolyzed<br>by i                                     | us de |               |                 |                 |              |                                           |       |      |             |                                                   |       |       |      |  |
|-------------------------------|------------------------------|-------------------------|------------------------------------------------------|-------|---------------|-----------------|-----------------|--------------|-------------------------------------------|-------|------|-------------|---------------------------------------------------|-------|-------|------|--|
|                               |                              | -                       | bid - Caliform's ity MPN/mi                          |       | Median<br>2.3 | Maximum<br>230. | Minimum<br>0.06 |              |                                           |       |      |             |                                                   |       |       | 553  |  |
|                               |                              | į,                      | - bid<br>- ly<br>mpg u                               |       |               |                 |                 |              | -                                         |       | -    | -           | 0.5                                               |       | н     | 0.   |  |
|                               |                              |                         | N CO                                                 |       | -             | m               | С               | c            | С                                         | 0     | -7   | -2          | 4                                                 | 9     | t-    | -    |  |
|                               |                              |                         |                                                      |       | 14            | 98              | 14              | 16           | 10                                        | 91    | К    | 24          | 346                                               | 36    | 34    | 37   |  |
|                               |                              | 9                       | sod -                                                |       | 54            | 16              | 70              | 18           | К                                         | 3     | 7    | 17          | 19                                                | 17    | 19    | 19   |  |
|                               | l                            | Total                   | solved<br>solids<br>in ppm                           |       | 304           | 504             | 314             | 304          | 25.5                                      | 361   | •9   | 909         | 601                                               | 889   | 425   | 45   |  |
|                               |                              |                         | Other constituents                                   |       |               |                 |                 |              | Pe 0.01 A1 0.04 d<br>PO <sub>1 0.00</sub> |       |      |             | Pe 0.01 PO <sub>2</sub> 0.00 d<br>Cu 0.02 Al 0.04 |       |       |      |  |
|                               |                              |                         | Silico<br>(SiO <sub>2</sub> )                        |       | 9.1           | 14              | =               | 9            | 8.8                                       | 되     |      |             | 17                                                |       |       |      |  |
|                               | 55P)                         | lion                    | Boron<br>(8)                                         |       | 0.0           | 0.0             | 0.0             | 0.0          | 0.0                                       | 0.0   | 0.0  | 5           | 0.0                                               | 0.0   | 0:0   | 0.1  |  |
|                               |                              | million<br>ser mi       | Fluo-<br>ride<br>(F)                                 |       | 0.0           | 0.0             | 0.0             | 0.0          | 0.0                                       | 0.0   |      |             | 0.0                                               |       |       |      |  |
|                               | WEAR AUBURN (STA.            | equivalents per million | rrate<br>(NO <sub>3</sub> )                          |       | 0.3           | 0.0             | 0.0             | 0.0          | 0.0                                       | 0.00  |      |             | 0.00                                              |       |       |      |  |
|                               | MEAR                         | equivo                  | Chio-<br>ride<br>(CI)                                |       | 0.07          | 3.8             | 0.03            | 0.03         | 1.5                                       | 3.0   | 0.11 | 0.11        | 5.8                                               | 6.2   | 5.5   | 0.15 |  |
| UPET SEN                      | LE FORK,                     | ē                       | Sul -<br>fate<br>(SO <sub>4</sub> )                  |       | 0.06          | 0.10            | 0.09            | 0.06         | 0.03                                      | 0.06  |      |             | 5.0                                               |       |       |      |  |
| CENTRAL VALLET REGION (NO. 5) | R, MIDD                      | stituents               | Bicor-<br>bonate<br>(HCO <sub>3</sub> )              |       | 16<br>0.26    | 30              | 0.30            | 80.33        | 14<br>0.23                                | 80.33 | 0.43 | 34          | 36                                                | 36    | 36    | 37.0 |  |
| 22                            | AMERICAN RIVER, MIDDLE FORK, | Mineral constituents    | Carbon-<br>ata<br>(CO <sub>S</sub> )                 |       | 0.0           | 0.0             | 0.0             | 0.0          | 0.0                                       | 0.0   | 0.0  | 0.0         | 0.0                                               | 0.0   | 0.00  | 0 0  |  |
|                               | AMERI                        | Min                     | Potas- Carbon-<br>Sium ata<br>(K) (CO <sub>S</sub> ) |       | 0.0           | 0.01            | 0.00            | 0.0          | 0.3                                       | 0.0   |      |             | 0.0                                               |       |       |      |  |
|                               |                              |                         | Sodium<br>(No)                                       |       | 0.09          | 0.11            | 0.09            | 0.07         | 1.6                                       | 0.10  | 3.0  | 3.1         | 3.6                                               | 3.4   | 3.8   | 3.9  |  |
|                               |                              |                         | Mogns-<br>sium<br>(Mg)                               |       | 0.0           | 0.17            | 0.0             | 0.17         | 0.0                                       | 0.09  |      |             | 0.19                                              |       |       |      |  |
|                               |                              |                         | (Ca)                                                 |       | 4.8           | 0.38            | 0.23            | 3.0          | 3.8                                       | 0.23  | 05.0 | 0.64        | 9.8                                               | 0.72  | 0.74  | 0.74 |  |
|                               |                              | -                       | ī                                                    |       | 7.0           | 7.2             | 7.2             | 7.2          | 7.3                                       | 7.3   | 7.3  | 7.1         | 4.7                                               | 7.5   | 4. F  | 7.1  |  |
|                               |                              | Specific                | (micromhos<br>ot 25°C)                               |       | 38.8          | 68.5            | 37.0            | 28.8         | 30.4                                      | 42.6  | 60.2 | 79.2        | 90.8                                              | 89.1  | 0.4   | 7.46 |  |
|                               |                              |                         |                                                      |       | 119           | 102             | %               | %            | 8                                         | 76    | 6    | 85          | %                                                 | 98    | 46    | %    |  |
|                               |                              |                         | Dissolved<br>axygen<br>ppm %So                       |       | 12.9          | 13.2            | 11.5            | 10.7         | 10.2                                      | 0.6   | 8.3  | 8.0         | 4.0                                               | 8.1   | 10.1  | 11.8 |  |
|                               |                              |                         | E E                                                  |       | 53            | 9               | 3               | 23           | 98                                        | 79    | 75   | 92          | 13                                                | 59    | 54    | 3    |  |
|                               |                              |                         | Dischorge<br>in cfs                                  |       | 976           | 634             | 1,240           | 2,250        | 1,750                                     | 535   | 127  | 55          | S.                                                | 69    | 53    | 25   |  |
|                               |                              |                         | and time<br>sampled<br>P.S.T                         | 1959  | 1/15          | 2/12            | 3/10            | 4/13<br>0800 | 5/14                                      | 6/11  | 0060 | 8/7<br>0845 | 9/4                                               | 10/14 | 11/12 | 12/3 |  |

b Lobaratory pH.

Sum of colcium and magnesium in epm.

Sum or conclour and ungersamming of the specific of the specif Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination

Annual mentan entrant, respectively. Calculation and the state of the

#### ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE B-1

|                                                   |                   | by 1<br>by 1                         |                     | »Ghai |              |      |      |                |                  |       |       |          |             |         |       |                                          |
|---------------------------------------------------|-------------------|--------------------------------------|---------------------|-------|--------------|------|------|----------------|------------------|-------|-------|----------|-------------|---------|-------|------------------------------------------|
|                                                   |                   | cent Mordness bid - Contorm Analyzed |                     |       | Median<br>23 |      | 10   |                |                  |       |       |          |             |         |       |                                          |
|                                                   |                   | 200                                  |                     |       |              |      |      |                | ,                |       |       |          |             |         |       |                                          |
|                                                   |                   | 0000                                 | ₩ 0 M               |       |              | A    |      |                | 11               |       |       |          |             | 0       |       |                                          |
|                                                   |                   | Hord<br>00 C                         | Toto                |       |              | 2    | A    | 4              |                  | æ     | 5     | 8        | 8           | k       | 8     | 5                                        |
|                                                   |                   | Per Cent                             |                     |       | 4            | 16   | 8    | 01             | ą.               | 2     | g     | 1        |             |         | 8     | 2                                        |
|                                                   | Total             | 80 . og                              | E 60 C              |       | b. (5)       | 377  | 100  | 285            | 28.9             | B     | *     | 3        | 7           | 5       | 3     | 5                                        |
|                                                   |                   | On has connected and a               |                     |       |              |      |      |                | A1 0.11 PO _ m d |       |       |          | 10 mm m m m |         |       |                                          |
|                                                   |                   | Silico                               | (S:Og)              |       | C            | 16   | 13   | 8.6            | œ                | a.    |       |          | =           |         |       |                                          |
| (v                                                | figh              | Baron Silica                         | œ                   |       | 0.0          | 5.1  | 51   | 51             | 0:0              | 7     | 21    | -        | []          | 51      | 3     | 2                                        |
| TA. 22                                            | multion<br>and    | 0 0                                  | (F)                 |       | 0.00         | 00.0 | 0.0  | 0.0            | 0.01             | 0.00  |       |          | 0.0         |         |       |                                          |
| e) enuo                                           | ports per million | N.                                   | (NO <sub>B</sub> )  |       | 000          | 0.02 | 0 0  | 0.0            | 20.0             | 0.00  |       |          | 0.0         |         |       |                                          |
| . NOZAR I                                         | 000               | Chio                                 | (C)                 |       | 3.6          | 0 13 | 0.0  | 2.5            | 9.0              | 81.6  | 0.4   | 0.4      | 1           | 200     | 074   | - 1                                      |
| TOW PORK                                          | 5                 | Sol                                  | (\$0\$)             |       | 0.0          | 0.10 | 0.02 | 0.0            | 0.0              | 0.0   |       |          | 0.70        |         |       |                                          |
| MER, SOU                                          | constituente      | - VO - V                             | (HCD <sub>y</sub> ) |       | 0.30         | 35.0 | 86   | 800            | 0.23             | 86    | 800   | 200      | 20          | 21 0    | 8 6   | 20                                       |
| NACRICAN SIVER, SOUTH FORK, NEAR LOTUS (STA. 220) | Mineral can       | Corbon-                              | (CO)                |       | 0.0          | 0.0  | 0.0  | 0.0            | 0.0              | 0.0   | 0.0   | 0.0      | 0.00        | 0.00    | 16    | 000                                      |
| ANDER                                             | Min               | Potos                                | (x)                 |       | 4.0.0        | 0.0  | 4.00 | 0.3            | 0.5              | 0.7   |       |          | 0.0         |         |       |                                          |
|                                                   |                   | Sodicin                              | (N 0)               |       | 0.70         | 3.0  | 2.6  | 0.07           | 0.08             | 2.8   | 3.6   | 3.5      | 41.0        | 9.8     | 0.18  | *F:                                      |
|                                                   |                   | Mogne                                | (Mg)                |       | 0.09         | 0.30 | 0.03 | 0.10           | 0.0              | 0.12  |       |          | 21.0        |         |       |                                          |
|                                                   |                   | Calcium                              | (00)                |       | 6.2          | 0.30 | 0.2  | 3.6            | 31.2             | 8.6   | 0.569 | 0.0      | 916         | 25      | 179   | . 38                                     |
|                                                   |                   | T B                                  |                     |       | 7.0          | 7.2  | 7    | 7.3            | 7.2              | 7.5   | 7.1   | - 3      | 4.7         | 7.3     | 7 3   | £                                        |
|                                                   |                   | Conductonce<br>(micrombog            | 0 0 0               |       | 4.           | 90.0 | 39.8 | 8.3            | 1C<br>ec         | 2     | 0.99  | 53.6     | 48.7        | 57.7    | 9.04  | 2                                        |
|                                                   |                   | 9 5                                  | % Sot               |       | 101          | 8    | ь    | 8              | 3                | 81    | 100   | 5        | 9           | 93      | 2     | 4                                        |
|                                                   |                   | Distolved                            | Ead                 |       | 12.6         | 12.7 | 21.8 | 10.2           | 9.7              | 8.8   | 9.6   | (C)      | 6           | 10      | 6.0   | 1 61                                     |
|                                                   |                   | Ten or                               |                     |       | 5            | 9    | Ŷ    | 3.5            | 9,0              | 5     | 46    | 2        | 73          | 5-6     | 9     | 7                                        |
|                                                   |                   | Discharge Temp                       |                     |       | 643          | 301  | 8770 | 1,260          | 1,360            | 2     | 14.9  | 104      | 101         | 155     | \$    | 20 M M M M M M M M M M M M M M M M M M M |
|                                                   |                   |                                      | PST                 | 1969  | 1/15         | 2/12 | 3/14 | 4/15<br>1 x c) | 7/14             | 0,111 | 1/19  | 8/6 0995 | 1 390       | 1 = 1 b | 11/12 | 12 / 9<br>3660                           |

And the second control of the second control

CENTRAL VALLEY REGION (NO. ' )

|                                 |           | 7            | by i                           |         | negs |      |      |              |              |                              |         |        |                  |                                                              |               |       |            |   |  |
|---------------------------------|-----------|--------------|--------------------------------|---------|------|------|------|--------------|--------------|------------------------------|---------|--------|------------------|--------------------------------------------------------------|---------------|-------|------------|---|--|
|                                 |           | 4            | os CoCO3 IIV MPN/mi            |         |      |      |      |              |              |                              |         |        |                  |                                                              |               |       |            | _ |  |
|                                 |           | -55          | - pid<br>- kdd c               |         |      |      |      |              |              | Ci .                         |         |        |                  | 10                                                           |               | 5     |            |   |  |
|                                 |           |              | 2000                           | mdd mdd |      | 15   | c    | 15           |              | ert                          | 9       | С      | С                | 0                                                            | 15            | -     | 0          |   |  |
|                                 |           | 1            | OS C                           | D G G   |      | 30   | 9    | 143          | 52           | 95                           | S       | 88     | 107              | 82                                                           | 88            | 19    | 8:         |   |  |
|                                 |           | Per          | Sod -                          |         |      | 13   | %    | 15           | 8            | 30                           | 66      | 8      | 33               | %                                                            | 35            | 38    | 53         |   |  |
|                                 |           | Total        | solids sod -                   |         |      | 93.5 | 113  | 217          | 125          | 127 <sup>f</sup>             | 153     | 183*   | 208 <sup>f</sup> | 180                                                          | 199f          | 167°  | 189f       |   |  |
|                                 |           |              | Other constituents             |         |      |      |      |              |              | Fe 0.13 A1 0.12 <sup>d</sup> |         |        |                  | Fe 0.02 Zn 0.01 d<br>A1 0.11 Cu 0.01<br>PO <sub>4</sub> 0.40 |               |       |            |   |  |
|                                 |           | ŀ            | Silica                         | 1       |      | 8    | 99   | 9            | m)           | 35                           | 3       | 5      | 75               | 7                                                            | 77            |       | 3          |   |  |
|                                 |           | uoi          | Boron S                        |         |      | 7.0  | 0.0  | 0.1          | 0.2          | 4.0                          | 0.3     | 4.0    | 0.5              | 9.0                                                          | 0.7           | 9.0   | 0.5        |   |  |
|                                 | millian   | per million  | Fluo-B                         |         |      | 0.0  | 0.0  | 0.00         | 0.0          | 0.2<br>0.0I                  | 0.0     | 0.0    | 0.0              | 0.0                                                          | 0.0           |       | 0.01       |   |  |
| STA. Brej                       | parts per |              | Trote                          |         |      | 0.10 | 00.0 | 6.7          | 0.2          | 0.05                         | 1.2     | 0.0    | 0.7              | 0.00                                                         | 0.0           |       | 0.0        |   |  |
| ANTELOPE CREEK NEAR MOUTH (STA. | od        | equivalents  | Chio-                          | (CI)    |      | 0.28 | 6.0  | 0.39         | 0.28         | 12 0.34                      | 12      | 17     | 18               | 0.62                                                         | %<br>         | 24    | 0.45       |   |  |
| K NEAR                          |           | Ę            | Sul -                          | (80%)   |      | 6.7  | 3.8  | 0.27         | 0.29         | 15                           | 31      | 14     | 0.33             | 0.25                                                         | 21,0          |       | 7.0        |   |  |
| DPE CREE                        |           | constituents | Bicar -                        | (HCO3)  |      | 93   | 78   | 2.62         | 70           | 01.10                        | 1.08    | 11.85  | 2.13             | 104                                                          | 1.52          | 80    | 2.28       |   |  |
| ANTEL                           |           | Mineral con  | Corbon                         | (CO)    |      | 0.0  | 0.0  | 0,0          | 0.0          | 0.0                          | 0.0     | 0.0    | 0.0              | 0,00                                                         | 0.0           | 0.00  | 0.00       |   |  |
|                                 | :         | Wil          | Potas-                         | Ξ       |      | 0.03 | 0.02 | 1.6          | 3.0          | 3.1                          | 0,10    | 5.9    | 5.4              | 5.3                                                          | 5.0           |       | 0.11       |   |  |
|                                 |           |              | Sodium                         |         |      | 0.19 | 8.4  | 0.52         | 0.148        | 0.52                         | 1200.52 | 0.74   | 0.70             | 0.78                                                         | 1.04          | 0.83  | 20<br>0.87 |   |  |
|                                 |           |              | Magne-                         | (6W)    |      | 0.38 | 6.9  | 1.61         | 6.6          | 9.0                          | 7.3     | 9.8    | 1.19             | 9.6                                                          | 9.5           |       | 1.03       |   |  |
|                                 |           |              | E oloina                       | 3       |      | 8.0  | 0.55 | 1.25         | 0.60         | 7.6                          | 120,00  | 19     | 19               | 37.85                                                        | 20            | 1.34c | 9:9        |   |  |
|                                 |           |              | PH3                            |         |      | 7.2  | 2    | 7.3          | 7.1          | 7:3                          | 7.3     | 5.     | 1.7              | 7.7                                                          | 7.4           | F.    | 5          |   |  |
|                                 |           | Specific     | (micramhos pH a                |         |      | 0.06 | 139  | 327          | 169          | 176                          | 170     | 552    | 284              | 520                                                          | 291           | 227   | 512        |   |  |
|                                 |           |              | p c c                          | % Sot   |      | 76   | 16   | 911          | 19           | 88                           | 5       | 92     | 103              | 8                                                            | 8             | 80    | 80         |   |  |
|                                 |           |              | Dissolved<br>oxygen            | mdd     |      | 0.11 | 10.8 | 11.6         | 6.8          | 8.3                          | 4.8     | 6.5    | 6.0              | 6,0                                                          | <br>          | 9.6   | 10.1       |   |  |
|                                 | -         |              |                                | -       |      | 8    | 169  | 8            | 66           | 99                           | 1/2     | 15     | 88               | 7.1                                                          | 8             | 25    | 45         |   |  |
|                                 |           |              | Bischarge Temp<br>in cfs in of |         |      |      |      | 12<br>(est.) | 16<br>(est.) | 8.5<br>(est.)                | (est.)  | (est.) | (est.)           | (est.)                                                       | 4.5<br>(est.) |       | (est.)     |   |  |
|                                 |           |              | Date<br>and time               | PST     | 1959 | 1/6  | 2/2  | 3/13         | 0000         | 5/11                         | 6/1     | 7/15   | 8/10             | 1,320                                                        | 10/12         | 11/3  | 12/1       |   |  |

o Freld pH

except as shown

<sup>6</sup> Laborotory pH

c. Sum of calcivum and magnessium in actim d. Iron (Fe), aluminum (A), arsenic (As), capper (Cu), lead (Pb), manganese (Ma), zinc (Zn), and hexavalent chramium (Gr. ), reparted here as 00 0.00 c Sum of calcium and magnesium in epm

Derived from canductivity vs TDS curves

h Annal media and range, respectively. Calculated from analyzes of deplicate monthly samples made by Calcinatio Department of Poblic Health, Durston of Laboratouses, or University Debit Health Service.

Internal insulprate made by University Service, Calcinative Memory Laboration Health Service (1994); Jan Bernadino Compy Flood
Camel Durston, 1985(CD), Bandes Service (1994); Jan Bernadino Compy Flood
Camel Durston, 1985(CD), Bandes Service of Service Calcinative Memory Laboratory (1994); Laboratory, Internal Laboratory, Internal Farma, Laboratory, Internal Farma, Laboratory, Internal Farma, Laboratory, Int. This Laboratory of Representative of Participation Compy Flood

The Calcinative Memory of Page 1997 (1994); Service Benedictive Compy Flood

The Calcinative Compy Flood

The Calcinativ

ANALYSES OF SURFACE WATER CENTRAL VALLEY HALLEY (Nr. 5, TABLE B-4

|                         | Per-<br>cert of Central Pick - Coliform Analysed<br>red - os CeCO B - Ty Many/any Bp 1<br>Toloi N.C ppm almy/any Bp 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Sec |      |      |       |      |               |            |       |              |        |       |      |                                        |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|-------|------|---------------|------------|-------|--------------|--------|-------|------|----------------------------------------|
|                         | Coliform<br>MPN/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |      |       |      |               |            |       |              |        |       |      |                                        |
|                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      |      |       |      |               |            |       |              |        |       |      |                                        |
|                         | 000 000 000 000 000 000 000 000 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 3    | 13.  |       |      |               |            |       |              |        | 1     |      |                                        |
|                         | Toto<br>Ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 10   | 05   | 3     | 3    | ,             |            | 2.    | 4            |        | 8     | ä    | 1.                                     |
| 6.                      | 4003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | ß    | ß    | -     | 1    | 5             |            | 2     | £            |        |       | 4    | 9                                      |
| Total                   | 60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146<br>60146 |       | 8    | 100  | \$    | 32   | E             |            | :     | 107          |        | 104   | Ŷ.   |                                        |
|                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |      |       |      | 1 2 1 1 7 THE |            |       | 1. n.n. (Sp. |        |       |      |                                        |
|                         | (20°5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      | শ্ৰ  | ্থ    | .0   | 1             |            | 1     | 7            |        | 2     | 11   | 4                                      |
| 1100                    | 1 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 77   | 01   | 7     | 2    | 1             |            | 1     | 4            |        | d     | 7    | 1                                      |
| million<br>er mil       | Fluo-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 50   | -18  | 100   | 7 .  | :             |            | 013   | 1            |        | 11    | 13.  | 18                                     |
| equivalents per million | rote<br>(NOs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 0.03 | 0    | 2/3   | JE.  | 1/3           |            | 4.    | 13.          |        | ્રુષ્ | .8   | 48.                                    |
| OATOO                   | Chio<br>ride<br>(CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 6.5  | .17  | C.19  | ali. | ~ !".         |            | ą.    | 4.           |        | 41    | n    | 4:                                     |
| e e                     | Sul -<br>fate<br>(50 <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 9 5  | 3. d | 10:01 | 13.7 | 4:            |            |       | 1            |        | 4.    | 7.   | 18                                     |
| efifosofi.              | Bicor-<br>bonote<br>(MCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 7:   |      | -E    | 10.  | E             |            | 1.    | 1:           |        | 1:    | - 1. | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Mineral constituents    | Potas- Corbon-<br>even (COs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 98.  | B    | F     | 183  | 8             |            | B     | 1            |        | 12.   | -13  | 13:                                    |
| e 1                     | Polas-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      | 5.   | 1.    | 1    |               |            | 1.    | ٦.           |        | 30    | 73   | 4                                      |
|                         | Sadium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 5.00 | 200  | 7.5   | 6,1  | ;E            |            | ₽.    |              |        |       | 4.   | 4.                                     |
|                         | Magne.<br>8.67<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 20.2 | 1,48 | 1/1   | 0 10 | 甚             |            | - -   | -0           |        | .[.   | . 3. | g.                                     |
|                         | Calcium<br>(Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 100  | -15  | - 17. | 0,0  | 1.            |            | 4     | 0.45<br>0.48 |        | 1     | 4 .  | - <u></u> -                            |
|                         | o I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 7.3  | ÷    | ŧ     | 7.5  | 7.9           |            | 7     | 3            |        | ş     | :    | 2                                      |
| Spacefile               | (micramba)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      | 3    | .14   | 907  | ŝ             |            | ĝ     |              |        | -     | 8    |                                        |
|                         | 9,0501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 8.   | 1    | 8     | 8    | 3             |            |       |              |        | 3     | 1    |                                        |
|                         | Ossolved<br>Osrgen<br>pom %Sof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 7    | 1    | 90    |      | 1             |            |       | 70           |        | 7.    | 3    | 5                                      |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      | -,   | 2     | 9,   | 3             | per        | E     | Q.           | 100    | =1    |      | 3                                      |
|                         | Discharge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 8    | 1    |       |      |               | Not as .ed | •     | 8            | No. Ma | ,     |      |                                        |
|                         | Date<br>ond time<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1059  | 2.9  |      | 3/13  | 381  | 7             |            | 7/411 | 12           | - 2    |       | 38   |                                        |

|                                        |                                           | Anolyzed<br>by i                        | 11363 |            |               |                  |                  |                                           |                  |            |       |                                           |                  |       |                                 |  |
|----------------------------------------|-------------------------------------------|-----------------------------------------|-------|------------|---------------|------------------|------------------|-------------------------------------------|------------------|------------|-------|-------------------------------------------|------------------|-------|---------------------------------|--|
|                                        | 4                                         | bid - Caliform<br>ity MPN/ml<br>nppm    |       |            |               |                  |                  |                                           |                  |            |       |                                           |                  |       |                                 |  |
|                                        | Tur-                                      | - bid<br>- ity<br>mpgan                 |       |            |               |                  |                  | m                                         |                  |            | 8     | 9                                         | cu .             | .7    | .7                              |  |
|                                        |                                           | N COS                                   |       | 0          | 0             | 0                | 0                | 0                                         | 0                | 0          | 0     | 0                                         | 0                | 0     | 0                               |  |
|                                        |                                           |                                         |       | 472        | ₹.            | 917              | 84               | 54                                        | 52               | 45         | 8     | 58                                        | 8                | 82    | 93                              |  |
|                                        | Par                                       | god -                                   |       | 77         | 33            | 8                | 81               | 23                                        | 23               | 100        | 55    | 24                                        | 88               | 27    | 52                              |  |
|                                        | Total                                     | solved<br>solids<br>in ppm              |       | % t        | 179T          | 106 <sup>r</sup> | 106 <sup>f</sup> | 102                                       | 122 <sup>f</sup> | 124 ľ      | 132 e | 127 <sup>£</sup>                          | 1,30             | 130°  | 128                             |  |
|                                        |                                           | Other constituents                      |       |            |               |                  |                  | Fe 0.03 Al 0.05 d<br>FO <sub>4</sub> 0.20 | Fe 0.01          |            |       | Pc 0.01 Al 0.02 d<br>PO <sub>4</sub> 0.15 |                  |       |                                 |  |
|                                        |                                           | Silico<br>(SiO <sub>2</sub> )           |       | *          | #             | 75               | 3                | 42                                        | 22               | 148        |       | 4                                         |                  |       |                                 |  |
|                                        | lion                                      | Boron<br>(B)                            |       | 0.0        | 0.0           | 0:0              | 0.0              | 0.0                                       | 0.08             | 0.0        | 0,1   | 0.7                                       | 00               | 0:    | 0.0                             |  |
| 39)                                    | million<br>per million                    | Fluo-<br>ride<br>(F)                    |       | 0.0        | 0.0           | 000              | 0.0              | 0.0                                       | 0.0              | 0.0        |       | 0.0                                       |                  |       |                                 |  |
| виттъ свеек неля соттойноор (sta. 886) | ports par million<br>equivalents per mill | Ni-<br>trote<br>(NO <sub>3</sub> )      |       | 0.02       | 0.00          | 200              | 0.0              | 0.5                                       | 0.0              | 0.0        |       | 0.00                                      |                  |       |                                 |  |
| POWWOOD                                | advive                                    | Chlo-<br>ride<br>(Cl)                   |       | 0.10       | 3.0           | 0.04             | 0.03             | 0.00                                      | 3.5              | 0.02       | 1.5   | 0.1                                       | 3.5              | 3.8   | 3.0                             |  |
| AR COT                                 | u.                                        | Sul -<br>fore<br>(SO <sub>4</sub> )     |       | 6.7        | 0.00          | 3.3              | 3.8              | 0.0                                       | 3.0              | 0.0        |       | 3.0                                       |                  |       |                                 |  |
| CREEK NE                               | constituents                              | Bicar-<br>bonate<br>(HCO <sub>3</sub> ) |       | 57<br>0.93 | 1.29          | 17.16            | 1.13             | 77.                                       | 1.29             | 84<br>1.30 | 1.44  | 1188                                      | 92<br>1.51       | 8/:   | 0<br>1<br>1<br>1<br>1<br>1<br>1 |  |
| BATTLE                                 | Mineral car                               | Corban-<br>ots<br>(CO <sub>3</sub> )    |       | 000        | 0.0           | 0.00             | 0.03             | 0.00                                      | 0 8              | 000        | 0.0   | 0.0                                       | 0.0              | 0.0   | 000                             |  |
|                                        | Mir                                       | Potas-<br>sium<br>(K)                   | į.    | 3.9        | 2.1           | 0.0              | 1.4              | 0.05                                      | 0.05             | 2.6        |       | 2.2                                       |                  |       |                                 |  |
|                                        |                                           | Sodium<br>(No)                          |       | 6.6        | 0.33          | 6.5              | 6.5              | 6.5<br>0.28                               | 0.33             | 8.7        | 9.1   | 8.8                                       | 00.44            | 9.7   | 0.39                            |  |
|                                        |                                           | Mogns-<br>srum<br>(Mg)                  |       | 6.1        | 7.1           | 5:5              | 6.3              | 6.1                                       | 7.1<br>0.58      | 5.8        |       | 7.4                                       |                  | 7.4   |                                 |  |
|                                        |                                           | Calcium<br>(Ca)                         |       | 7.6        | 0.50          | 9.6              | 8.8              | 8.0                                       | 9.5              | 12         | 1,200 | 0.55                                      | 1.16°            | 0.55  | 1.16                            |  |
|                                        |                                           | ī                                       |       | 7.50       | 7.8b          | 7.40             | 7.7              | 7.8 <sup>b</sup>                          | 8.1              | 8.1p       | 7.5ª  | T.Ta                                      | 7.8 <sup>b</sup> | 8.0   | 8.28                            |  |
|                                        | Specific                                  | (micramba<br>of 25°C)                   |       | 77         | 134           | 122              | 117              | 3178                                      | 135              | 154        | 152   | 148                                       | 149              | 149   | 147                             |  |
|                                        | -                                         | lysd<br>gen<br>%Sot                     |       |            |               | 107              | 101              | 101                                       | 102              | 24         | 16    | 8                                         | 8.               | 96    | 102                             |  |
|                                        |                                           | Dissolvs d<br>oxygen<br>ppm %Sot        |       |            |               | 12.0             | 10.6             | 10.9                                      | 10.0             | 8.1        | 46    | 10.2                                      | 10.0             | 77.7  | 12,6                            |  |
|                                        |                                           |                                         |       |            | CJ<br>-       | 15               | 25               | 45                                        | 29               | 75         | 63    | 65                                        | 95               | 617   | 4                               |  |
|                                        |                                           | Orschorge Temp<br>in cfs in oF          |       | 129        | h75<br>(est.) | 396              | 361              | 361                                       | 215              | 196        | 167   | 172                                       | 215              | 189   | 305                             |  |
|                                        |                                           | ond time<br>campied<br>P.S.T.           | 1959  | 1/5        | 2/9           | 3/11             | 1,12             | 5/15                                      | 6/16             | 1/9        | 8/11  | 9/1                                       | 10/13            | 11/11 | 12/10                           |  |

Laborotory pH. e Field pH.

Sum of calcium and magnesium in epm.

Jum of colicium and magnesium in spin.
Iron (Fe), aluminum (Al), assonic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haxavalant chramium (Cr<sup>+5</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown from (Fe), aluminum (Al), assonic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haxavalant chramium (Cr<sup>+5</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown

Determined by addition of analyzed constituents.

Gravimetric determination.

Annal median and image, rescentedy. Calculated from analyses of doplicate routhly samples made by Calculani Department of Poblic Health, Duvision of Laboratories, or United States Poblic Health Same National Public Health States (1994); Lister Bande, 1905, Lighted States Protection (1994); Lister States Department of the Interior, Bareau of Reclamation (1994); United States Protection (1994); Lister States of States and State

PAYTHAL VALLET REGION (NO. 1)

Annyzed Total Pee Houdess 6 Co form Passes as Co Co form Passes as Co Co form MPH/may as Co form MP 20.00 To a second Other constituents Baron Silico (B) (SiO<sub>2</sub>) aquivalents per million Fluo-BEAR CREEK AT MERCED ( 74, 1:14) 1ro18 (NO.) - 0 I O ( ) ( ) ( ) ( ) ( ) ( ) ( ) Sul-fore (50a) Minaral constituents in 877 Carbon-18 J. 1 Patas. (K) 0.0 33 1 Magne (Mg) 0 19 45 T Dote and time tampied P S T

and the second s a last wife biographics

The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co

TABLE B-4
ANALYSES OF SURFACE WATER
CEMTRAL VALLET REGIOM (NO. 5)

|                                |                      | Anolyzed<br>by 1                        |                       | Spea |                  |                  |                  |             |                               |                  |             |             |                   |             |             |             |      |       |
|--------------------------------|----------------------|-----------------------------------------|-----------------------|------|------------------|------------------|------------------|-------------|-------------------------------|------------------|-------------|-------------|-------------------|-------------|-------------|-------------|------|-------|
| Ì                              |                      | bid Coliformh Anolyzed                  |                       |      |                  |                  |                  |             |                               |                  |             |             |                   |             |             |             |      |       |
|                                | į                    | - pid<br>- ty                           |                       |      |                  |                  |                  |             | m                             |                  |             |             | m                 |             |             |             |      | <br>_ |
|                                |                      | Hordness<br>os CoCO <sub>3</sub>        | Total N.C.<br>ppm ppm |      | 4                | %                | 6                | 00          | 6                             | en               |             |             | 2                 |             |             |             | <br> | <br>1 |
|                                |                      |                                         | Toto<br>ppm           |      | 8                | &                | 4                | 110         | 143                           | 174              |             |             | 180               |             |             |             |      | <br>  |
|                                | ć                    | 1 po 0                                  |                       |      | 18               | 15               | Ħ                | 19          | 31                            | ₹                |             |             | 8.                |             |             |             |      |       |
|                                | Totol                | pevios<br>spilos                        | E dd u                |      | 152 <sup>f</sup> | 114              | 561              |             |                               | 33h <sup>2</sup> |             |             | 332f              |             |             |             |      |       |
|                                |                      | Other constituents                      |                       |      |                  |                  |                  |             | Fe 0.15 A1 0.24 d<br>POh 0.10 |                  |             |             | Pe 0.0k Al 0.32 d |             |             |             |      |       |
|                                |                      | Silico                                  | 120101                |      | 15               | 12               | 되                | 리           | k3                            | 55               |             |             | 8                 |             |             |             |      |       |
|                                | ion                  | <u>۾</u>                                | (g)                   |      | 0.1              | 0.0              | 0:0              | 0.1         | 11                            | 0.1              |             |             | 0.1               |             |             |             |      |       |
|                                | million<br>er mil    | Fluo-                                   |                       |      | 0.1              | 0.0              | 0.0              | 0.0         | 0.2                           | 0.0              |             |             | 0.0               |             |             |             |      |       |
| 50P)                           | porte per million    | - in                                    |                       |      | 0.03             | 0.2              | 0,0              | 0.0         | 0.4                           | 0.0              |             |             | 0.0               |             |             |             |      |       |
| BEAR RIVER AT MOUTH (STA. 20b) | Bauing               | Chlo-                                   | (CI)                  |      | 16<br>0.45       | 9.0              | 0.12             | 1k<br>0.39  | 1.86                          | 1.69             |             |             | 1.47              |             |             |             |      |       |
| AT MOUT                        | <u>c</u>             | Sul                                     |                       |      | 0.83<br>0.83     | 0.56             | 11<br>0.23       | 0.37        | 12<br>0.25                    | 0.27             |             |             | 0.31              |             |             |             |      |       |
| RIVER                          | trantitant           | Bicar-                                  | (HCO <sub>3</sub> )   |      | 67<br>1.10       | 1.08             | 0.10             | 125<br>2.05 | 163<br>2.67                   | 3.41             |             |             | 3.49              |             |             |             |      |       |
| BEAS                           | Mineral constituents | Corbon                                  | (co <sub>s</sub> )    |      | 0.0              | 0.0              | 0.0              | 0.00        | 0.0                           | 0.00             |             |             | 0.0               |             |             |             |      |       |
|                                | W                    | Potos-                                  | Œ                     |      | 3.2              | 0.7              | 0.0              | 3.5         | 6.2                           | 5.4              |             |             | 8.1               |             |             |             |      |       |
|                                |                      | Sodium                                  | (0 M 0)               |      | 0.44             | 6.3              | 3.2              | 12 0.52     | 1.78                          | 1.83             |             |             | 36                |             |             |             |      |       |
|                                |                      | Mogna-                                  | (Mg)                  |      | 4.0              | 0.60             | 2.9              | 1.10        | 11.46                         | 1.78             |             |             | 1.90              |             |             |             |      |       |
|                                |                      | alcium                                  | (62)                  |      | 23               | 8                | 8.8              | 1:10        | 28                            | 34<br>1.70       |             |             | 34 1.70           |             |             |             |      |       |
|                                |                      | °E                                      |                       |      | 7.3              | 7.3              | 7.3              | 7.9         | 7:7                           | 7.5              |             |             | 7.7               |             |             |             |      |       |
|                                |                      | Spacific<br>conductonce<br>(micromhos P |                       |      | 553              | 196              | 84.0             | 998         | LLq                           | 505              |             |             | 513               |             |             |             |      |       |
|                                |                      | D 0 0                                   | %Sot                  |      | 76               | 101              | 104              | 106         | 85                            | 102              |             |             | 102               | 2           |             |             |      |       |
|                                |                      | Dissolved<br>oxygen                     | mdd                   |      | 10.4             | 12.1             | 9.11             | 9.5         | 7.9                           | 6.9              | Dr.3        | Dry         | 8.3               | No Flow     | P.A         | Ļ           |      |       |
|                                |                      |                                         |                       |      | 25               | 9                | 23               | 7           | 88                            | 13               | led -       | -           | &                 | -           | -           | led -       |      |       |
|                                |                      | Orachorga Tamp<br>in cfg in 0F          |                       |      | Wot              | Not<br>Available | Not<br>Available | 10 est.     | 6.k eet.82                    | 5 eet.           | Not Sampled | Not Sampled | l set.            | Not Sampled | Not Sampled | Not Sampled |      |       |
|                                |                      | Oote<br>ond time<br>sompled             | P.S.T                 | 1959 | 1/9              | 2/9              | 3/11             | 4/14        | 5/12                          | 6/9              | 7/7         | 1/8         | 9/1               | 10/14       | 11/12       | 12/4        |      |       |

a Field pH.

b Laboratory pH.

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

Sum of colcium and magnessium in eight. Than (Fe), oluminum (A1), orseriz (A2), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heavvalent chromium (Cr<sup>16</sup>), reported here as  $\frac{0.0}{0.00}$  except as shawn. Sum of colcium and magnesium in epm.

Amed metan and roops respectively. Colculated from analyses of depictors monthly samples mode by Collismia Opparment of Public Health, Division of Laboratests, or United States Public Health Services.

Mental mode by United States Gool logical Servery, Challing Amed Collismia Collismia Collismia States Collismia States Collismia States Collismia States Collismia States and Performed of Presented (LADPP), City of Les Angeles States Collismia of Public States and Performed (LADPP), City of Les Angeles, Department of Public Report Collismia Collismia Department of Menta Resources (DMS); as indicated. g Gravimetric determination.

ANALYSES OF SURFACE WATER TABLE 3-4

| -                          | -                       |                                                         | -   | _   |          |       |     |      |     |            |     |     |          |    |      |
|----------------------------|-------------------------|---------------------------------------------------------|-----|-----|----------|-------|-----|------|-----|------------|-----|-----|----------|----|------|
|                            |                         | Mordness and Co form? Analysed as CoCos 17 MPN/ms 811   |     |     |          |       |     |      |     |            |     |     |          |    |      |
|                            |                         | MPN/ms                                                  |     |     | R<br>J = | 1-    |     |      |     |            |     |     |          |    |      |
|                            | 1                       | 2                                                       |     | -   |          | _     |     |      |     |            |     |     |          |    |      |
|                            |                         | 000 N N N N N N N N N N N N N N N N N N                 |     |     |          |       |     |      | 1   |            |     | 7   | 7        |    | 4    |
|                            |                         | Mordness<br>de CeCCs<br>Totol M.C.                      |     | 5.  |          |       | 5   |      | 3.  |            |     | 1   |          |    |      |
|                            | -                       | 5005                                                    |     |     |          | 7     |     |      | 3   |            |     | 0   |          |    |      |
|                            | 7010                    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                   |     | 100 | 1        |       |     |      | À   |            |     | 4   | (M)      |    | è    |
|                            |                         | Other constituents                                      |     |     |          |       |     |      |     | 11 -11 -11 |     |     |          |    |      |
|                            |                         | Baron Silica<br>(B) (\$102)                             |     |     |          |       |     |      |     |            |     |     |          |    |      |
|                            | 00                      | (B)                                                     |     | -   | 1.]      | -1    |     | +    | ۰   | Н          |     |     |          |    | N .  |
|                            | relition s              | Fluo- B                                                 |     |     |          |       |     |      |     |            |     |     |          |    |      |
| .A. ?!!                    | equivalente per million | N.— F<br>trate<br>(NO <sub>3</sub> )                    |     |     |          |       |     | ÷ſ.  |     |            |     |     |          |    |      |
| 85 The Wat of Ba Lot. J.A. | 900                     | Chio-                                                   |     | 7   |          | 1, 1, | 1/8 | 1:   |     |            |     | 9   |          | ŀ. | .01  |
| H WEA                      | 6                       | Sul<br>Pote<br>(SO <sub>e</sub> )                       |     |     |          |       |     | . F. |     |            |     |     |          |    |      |
| 11 55                      | a loan la               | Bicar -<br>banate<br>(HCO <sub>3</sub> )                |     | 1.7 | al.      | ¥ 9.  | 13  | į.   | 10  | Je.        |     |     | . #      |    | 16.  |
| 872                        | Mineral constituents in | Carbon - B<br>010<br>(CO <sub>5</sub> )                 |     | 18  |          |       | , e | J.   | 1.  | 15.        |     |     |          |    | -,4. |
|                            | Miner                   | Potos: C<br>(K)                                         |     |     |          |       |     |      |     |            |     |     |          |    |      |
|                            |                         | Sodium<br>(Na)                                          |     | -1  | -:       | 70    | *)  |      | 17. | 10         |     | 4   |          |    | eH.  |
|                            |                         | Mogne<br>6:0M)                                          |     |     |          |       |     | 7.   |     |            |     |     |          |    |      |
|                            |                         | Calcium<br>(Ca)                                         |     | 130 | .        | 187   | 13. | 2    | ŀ.  | 7.         |     | F   |          |    | 8    |
|                            |                         | Ĭ                                                       |     | 5   | · .      | 7     | 3   | -    | 2   |            |     | -   |          |    | 7    |
|                            |                         | Dissolved conductors pH asygen (micrombos pH ph 25.0 C) |     | 0.7 |          | F     |     |      |     |            |     | -   | 1        |    | 2    |
|                            |                         | % Sot                                                   |     | -   | 8        | 3     |     |      |     |            |     |     | 1        |    |      |
|                            |                         | Diesolved<br>osygen<br>ppm %550t                        |     | 100 | -        | 7*7   |     | 1    |     |            | À   |     | -        |    | -    |
|                            |                         | 0 H O H                                                 |     | 8   | 3        |       |     |      | 7   |            |     |     |          |    |      |
|                            |                         | Orscharge Temp                                          |     |     | <u>-</u> |       |     |      |     |            | 1.5 | 1   |          |    |      |
|                            |                         | Dote<br>ond time<br>compled<br>P S T                    | 100 |     | 1        |       | 33  |      | 10  | ci         | 1   | . 0 | Option . |    | 93   |

#### ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE B-4

| process      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | _     |             |             |      |              |                   |                |                                        |              |             |             | _          |                                        | <br> |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|-------------|-------------|------|--------------|-------------------|----------------|----------------------------------------|--------------|-------------|-------------|------------|----------------------------------------|------|
|              | Anolyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | 11308 |             |             |      |              |                   |                |                                        |              |             |             |            |                                        |      |
|              | Tur-<br>bid-Califormh<br>(ty MPN/ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |       |             |             |      |              |                   |                |                                        |              |             |             |            |                                        |      |
|              | - Pad<br>- Pad | E 00 00 00 00 00 00 00 00 00 00 00 00 00 |       |             |             |      |              |                   |                |                                        |              |             |             |            |                                        |      |
|              | Hordness<br>as CoCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D E C                                    |       | 0           | 0           | 0    | 0            | 0                 | 0              | 0                                      | 0            |             | 0           | 0          | 0                                      |      |
|              | Hord<br>os Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total                                    |       | 9           | 62          | 17   | 70           | 89                | 77             | 22                                     | -13          |             | 3           | 8          | 11                                     |      |
|              | Per-<br>cent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ē                                        |       | 23          | 25          | 22   | 23           | 56                | 53             | 29                                     | 24           |             | 32          | 덨          | 33                                     |      |
| Set.         | golved<br>solved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | endd u                                   |       | 82          | 118         | %    | 121          | 134               | 151            | 170                                    | 368          |             | 156         | 160        | 159                                    |      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Other constituents                       |       |             |             |      |              | Pol. 0.02 A1 0.09 |                |                                        |              |             |             |            |                                        |      |
|              | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (SiO <sub>2</sub> )                      |       | 27          | 띉           | 띪    | 28           | 22                | - L            | 삤                                      | 73           |             | 8           | 31         | 릐                                      |      |
| 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (8)                                      |       |             | T.          | 1,1  | 3            | I.                | C - 1          | 리                                      | 3            |             | 0.2         | 0,2        | 2                                      |      |
| million      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (F)                                      |       | 0000        | 0.01        | 0000 | 0000         | 0.2               | 0.0            | 000                                    | 00.0         |             | 0.1         | 000        | 0.01                                   |      |
| ports per    | N in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (NO <sub>3</sub> )                       |       | 1000        | 0.0         | 0.00 | 000          | 0.02              | 8.0            | 8 0                                    | 1000         |             | - NO        | • °        | 0.0                                    |      |
| lod          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (CI)                                     |       | 5.2<br>0.15 | 10<br>0,28  | 9E-0 | 6.5<br>0.18  | 0.0               | 0.28           | 100                                    | H.           |             | 13          | 12<br>0.31 | 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |      |
| ē            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (SO <sub>4</sub> )                       |       | 3.8         | 7.7         | 2,3  | 2.6          | 0.10              | 5.8            | 7°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° | 118          |             | 7.0         | 5.0        | 0.08                                   |      |
| constituents | Bicar-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (HCO <sub>3</sub> )                      |       | 25.0        | 78          | 1,05 | 79           | 8 L               | 101            | 110                                    | 1.8          |             | 1.3         | 1111       | 1.85                                   |      |
| Mineral con  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (CO <sub>3</sub> )                       |       | 0.0         | 00.00       | 0000 | 0.0          | 000               | 000            | 00°0                                   | 000          |             | 00°         | 000        | 000                                    |      |
| Min          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sium<br>(K)                              |       | 0.02        | 0.7         | 0,0  | 0,3          | 0.03              | 1,2<br>0,03    | 0.03                                   | 2,5          |             | 0.01        | 2.0        | 3.5                                    |      |
|              | Codina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (o N)                                    |       | 6.2         | 9.8<br>0.43 | 6.2  | 8.0          | all all           | 11h<br>0.61    | 11/1<br>0,61                           | 118          |             | 37          | 17.0       | 27                                     |      |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S:um<br>(Mg)                             |       | 1 1         | 9*9         | 5.5  | 7.7          | 3°°°              | 59.0           | 0.60                                   | 0.73         |             | 8.6         | 7.9        | 3.4                                    |      |
|              | - Binalo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Ca)                                     |       | 8.8         | 110<br>0.70 | 10   | 13           | 170               | 0.80           | 118<br>0.90                            | 17<br>0,85   |             | 1.7<br>0.85 | 19         | 17<br>0.85                             |      |
|              | a H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |       | 7.2         | 7.2         | 7.6  | 7.5          | 7.7               | 7.6            | 7.8                                    | 7.8          |             | 7.5         | 7.0        | 7.0                                    |      |
|              | Specific<br>conductonce<br>(micramhas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of 25°C)                                 |       | 707         | 161         | 120  | 150          | 180               | 197            | 212                                    | 21.9         |             | 217         | 21.7       | 2222                                   |      |
|              | D C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %Sot                                     |       | 66          | 27          | 101  | 76           | 94                | 976            | 7                                      | 76           |             | 89          | 25         | 91,7                                   |      |
|              | Dissolvad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mdd                                      |       | 2.1         | 11.3        | 1.5  | 6.6          | 9.3               | C <sub>s</sub> | 6.2                                    | 7.5          | Ponded      | 9.0         | 10.3       | 2.1                                    |      |
|              | E o E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                        |       | 91          | 877         | R    | %            | 29                | 6              | 77                                     | 2            |             | 63          | 44         | =                                      |      |
|              | Dischorge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |       | 102         | 97          | 109  | 55           | 53                | 139            | д                                      | 179          | Not Sampled | 9.2         | 0*9        | 9.2                                    |      |
|              | Dote ond time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 1959  | 2/7         | 2/10        | 3/12 | 1/10<br>0720 | 5/8               | 17/9           | 7/11                                   | 9/10<br>1010 | 3/1         | 10/12       | 1300       | 12/1                                   |      |

a Field pH

b Laboratary pH.

Sum of calcium and magnesium in spim. It capper (CD), lead (Pb), manganese (Mn), zinc (Zn), and hazavalent chromium (CL<sup>10</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown Iron (Fe), aluminum (A1), assence (As), capper (CD), incompared here as  $\frac{0.0}{0.00}$  except as shown Sum of calcium and magnessum in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of subjects manshly samples made by Calculated Describes.

Mannual median and respectively. Calculated from analyses of subjects manshly between Describes and the Calculated States Calculated States, Oberland State

ANALYSES OF SURFACE WATER TABLE B-1

CHATTRAI VALILY REGION (NO. 5)

|                        | Andryzed<br>Dy l                                                                                                                                                | 1    |       |        |       |     |         |       |       |     | -    | -   |      |     |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|--------|-------|-----|---------|-------|-------|-----|------|-----|------|-----|
|                        | dis- Con Hordness Big. Co form Analyzed solved sod os CoCo <sub>3</sub> by Malay/my By I solved sod os CoCo <sub>3</sub> by Malay/my By I n Bym I pom N C popum | -    | 1     | J.     | 1     |     |         |       |       |     |      |     |      |     |
|                        | 0                                                                                                                                                               |      |       |        |       |     |         |       |       |     |      |     |      |     |
|                        | Mordnese<br>as CaCO <sub>5</sub><br>Tota N.C<br>ppm ppm                                                                                                         |      |       |        |       |     |         |       |       |     |      |     |      |     |
|                        | Tota<br>Porta                                                                                                                                                   |      |       |        |       |     |         | £     |       |     |      |     | =    |     |
|                        | 500                                                                                                                                                             |      |       |        |       |     |         |       |       |     |      |     |      |     |
| Total                  | Bolved<br>Bolds                                                                                                                                                 |      | Þ     | -      | -     | 4   | 3       | 3     | 3     | 1   | 1    | 1   | 1019 | 1   |
|                        | Other constituents                                                                                                                                              |      |       |        |       |     | 22-00-1 | 0 4 1 | 10 mm |     | . 7  |     |      |     |
|                        | (Silco<br>(SiO <sub>2</sub> )                                                                                                                                   | -    |       |        |       |     | -1      |       |       |     | -    |     |      |     |
| 60                     |                                                                                                                                                                 |      |       | -      |       | 19  | 1       | 1     | 1     |     | 7    | 7]  | 3    | 11( |
| million<br>per million | Fluo- B                                                                                                                                                         |      |       |        |       |     | -: -:   |       |       |     | IV.  |     |      |     |
|                        |                                                                                                                                                                 |      |       |        |       |     | -5.     |       |       |     | il.  |     |      |     |
| aguivolents            | Chio<br>(Ci)                                                                                                                                                    |      | E     |        |       |     |         | 1.    |       | 4:  | -J.  | 500 |      |     |
| 6                      | Sul<br>fore<br>(SO <sub>e</sub> )                                                                                                                               |      |       |        |       |     |         |       |       |     | ·ľ.  |     |      |     |
| #1fuents               | HCO 3)                                                                                                                                                          |      | 3     | 1      |       |     | 1       | -15   | M     | 18  | =1.  | 97. | -1.  | 112 |
| Mineral constituents   | Patos- Carbon-B<br>sum (COs)                                                                                                                                    |      | 6 8   | 418    | J-    | .18 | ×,      | 13    | 9.    | di. | 13   | 1.  |      | 1   |
| Mine                   | Potos.                                                                                                                                                          |      |       |        |       |     | ٠.      |       |       |     |      |     |      |     |
|                        | Sodium<br>(No)                                                                                                                                                  |      | - 1   | 4:     | 10    | 213 | F.      | ~ .   | 04    | Fo  | şľ.  | 1   | Н    | J.  |
|                        | Mogne.<br>Brum<br>(Mg)                                                                                                                                          |      |       |        |       |     | -47     |       |       |     | -,F. |     |      |     |
|                        | Calcium<br>(Ca)                                                                                                                                                 |      | -40F. |        | 1.    | F.  | 5       | 1     | 1.    | Į.  | 1B   | 1.  | 6    | E   |
|                        | d H                                                                                                                                                             |      | 7     |        | 7.00  | -   | 1.      | .:    |       |     | 6    | 2   | 7    | 7   |
| 1                      | Dissolved conductors and consistent of 25°Cs of 25°Cs                                                                                                           |      | 9.    | 3      | LI,   |     | ÷       |       |       | d   |      | 2   | i    | 5   |
|                        | gen 6                                                                                                                                                           |      | 8     | 2:     | 001   | H   |         |       |       |     |      | 7   |      |     |
|                        | Diesolv<br>Oayge                                                                                                                                                |      | 7:11  | 2.7 sh | 7-0   |     | =       |       | -     | 2   |      | -   | 2    |     |
| -                      | 0.0                                                                                                                                                             |      | ~     |        | ī     |     | 8       | 8     | +     |     |      | =   |      |     |
|                        | Dischorge Temp                                                                                                                                                  |      | 239   | 4      | 1     |     |         | 1     |       |     | -    |     | ī    |     |
|                        | ompled<br>PST                                                                                                                                                   | 6,63 | 5:    | 75     | (0.0) |     | si.     | 31    | 38    |     | 28   | 175 | 070  | 11  |

and the second s

#### ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE B.4

| _                 |                         | _                                                                     |      |               |                 |                 |        |                       |               |             |                |                  |       |               |      |  |
|-------------------|-------------------------|-----------------------------------------------------------------------|------|---------------|-----------------|-----------------|--------|-----------------------|---------------|-------------|----------------|------------------|-------|---------------|------|--|
|                   |                         | Hardness bid - Coliform Analyzed os CoCO <sub>3</sub> ity MPN/ml by I | 0000 |               |                 |                 |        |                       |               |             |                |                  |       |               |      |  |
|                   | -                       | MPN/mi                                                                |      | Median<br>23, | Maximum<br>620. | Manimum<br>0,23 |        |                       |               |             |                |                  |       |               |      |  |
|                   | Tur-                    | - pid<br>u ty                                                         |      | 10            | 9               | g               | 61     | 0                     | 12            | н           | m              | ε.               | н     | н             | 50   |  |
|                   |                         | Nardness<br>oe CoCO <sub>3</sub><br>Total N.C.                        |      | 2             | 0               | 0               | 0      | 0                     | 0             | 0           | 0              | 0                | 0     | 0             | 0    |  |
|                   |                         |                                                                       |      | 9             | 771             | %               | ĸ      | 33                    | 야             | 97          | 7.7            | 20               | 29    | 28            | 20   |  |
|                   | Per-                    | sod -                                                                 |      | 7             | Ŋ               | ä               | H      | H                     | 18            | 17          | 23             | 13               | 23    | 33            | 17   |  |
| L                 | Total                   | solids<br>solids<br>in ppm m                                          |      | .999          | 72 <sup>e</sup> | 29e             | 239    | 265                   | e69           | 780         | 788            | 934              | 856   | 926           | 889  |  |
|                   |                         | Other constituents                                                    |      |               |                 |                 |        | PO, 0.00 <sup>d</sup> |               |             |                | Pol, 1.1 A1 0.03 |       |               |      |  |
|                   | Ì                       | Silica<br>(SiO <sub>2</sub> )                                         |      |               | -               |                 |        | 2]                    |               |             |                | 77               |       |               | _    |  |
|                   | lion                    | Baron<br>(B)                                                          |      | 0*            | 0,1             | 9               | 0.0    | ુ                     | ી             | 3           | 9              | 9                | 0.1   | 5             | 0.0  |  |
| million           | oer mil                 | Flug-<br>ride<br>(F)                                                  |      |               |                 |                 |        | 0.00                  |               |             |                | 0.0              |       |               |      |  |
| ports per million | equivalents per million | trota<br>(NO <sub>3</sub> )                                           |      |               |                 |                 |        | 000                   |               |             |                | 0.5              |       |               |      |  |
| ۵                 | equive                  | Chlo-<br>ride<br>(CI)                                                 |      | 2.0           | 0.00            | 0.06            | 0.03   | 0.03                  | 2.0           | 0.0         | 0.2            | 1.5<br>0.0       | 0.25  | 1.5           | 2.2  |  |
|                   |                         | Suf-<br>fote<br>(SO <sub>4</sub> )                                    |      |               |                 |                 |        | 1,00                  |               |             |                | 0,02             |       |               |      |  |
|                   | an in                   | Bicor-<br>bonate<br>(HCO <sub>3</sub> )                               |      | 0.75          | 15<br>-89       | 0.72            | 99°0   | 0.74                  | 53            | 98t<br>1.05 | 1,10           | 1.08             | 1,16  | 76            | 72   |  |
| Manage            |                         | Carbon-<br>ate<br>(CO <sub>3</sub> )                                  |      | 000           | 0000            | 0 6             | 000    | 000                   | 000           | 000         | 0000           | 0000             | 000   | 000           | 0.0  |  |
| 1                 |                         | Potos-<br>sium<br>(K)                                                 |      |               |                 |                 |        | 0.5                   |               |             |                | 1.6<br>0.04      |       |               |      |  |
|                   |                         | Sodium<br>(No)                                                        |      | 3.0           | 3.5             | 812             | 2.6    | 2.8                   | 0,17          | 0,19        | 3.8            | 3.7              | 0.00  | 3.9           | 0,21 |  |
|                   |                         | Magna-<br>sium<br>(Mg)                                                |      |               |                 |                 |        | 3.9                   |               |             |                | 3.6              |       |               |      |  |
|                   |                         | Calcium<br>(Ca)                                                       |      | 0,800         | . 88°           | 0.720           | 0,620  | 6.8<br>0.34           | 0,800         | 26.0        | 0 <u>*91</u> 6 | 11,<br>0,00      | 1,120 | 1,120         | 1.00 |  |
|                   |                         |                                                                       |      | 7,13          | 7.23            | 7.68            | 7.38   | 7.38                  | 7.3ª          | 8,11        | 7.13           | 7.58             | 7.5   | 7.58          | 7.3  |  |
|                   | Specific                | (micrambos pH<br>at 25°C)                                             |      | 188.7         | 97.5            | 76.1            | 72.4   | 77.2                  | 93.5          | 105         | 105            | 112              | 2115  | 121           | 113  |  |
|                   |                         | gen<br>%Sot                                                           |      | 100           | 96              | 26              | 86     | 63                    | 96            | 66          | 93             | 66               | 96    | 20            | %    |  |
|                   |                         | Dissolvad<br>oxygen<br>ppm %So                                        |      | L.9           | 12,8            | 11.6            | F. 93  | 10,1                  | 9.2           | S -7        | ω<br>ν,        | 9.6              | 10,1  | 10.6          | 12,2 |  |
|                   |                         | E C                                                                   |      | 9.            | 9               | 917             | 100    | 77                    | 79            | 72          | 69             | 8                | 10    | 55            | 17   |  |
|                   |                         | Dischorge Temp                                                        |      | c62           | 32              | 957             | 112.12 | 323                   | 181           | 140         | 13%            | in a             | 137   | 92            | 113  |  |
|                   |                         | sampled<br>P.S.T                                                      | 1959 | 1/8           | 2/10            | 3/12            | 1600   | 5/8                   | 6/11<br>00/11 | 7/13        | 8/10           | 9/1              | 10/12 | 11/2<br>11/00 | 12/1 |  |

o Field pH

Sum of calcium and magnessum in epm. Laboratory pH

Sum of colcum and magneturum in 6pm.

Iron (FL), alumnum (A.), castaci (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromum (Cr<sup>16</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. Derived fram conductivity vs TDS curves.

Determined by addition of analyzed constituents.

h Amadi madim and many, respectively, Calculated from mail yeas of displacent monthly samplest mode by Calcilation Department of Poblic Health, Division of Ladoritonies, or United States Department of Manual analyses may be used. Selected States Geological Survey, Quality of Winest Branch (USS), United States Department of Health Indiana, Black of Reclamation (USB), United States Department of Manual Calculation (WD), Last Analyses of States Geological Survey, Quality of World States (MDP), Carlo of Last Analyses, Department of Poblic Health (LADPH), Carlo of Last Analyses, Inc. (TLL), or Calcination Department of New Reclamation of Poblic Health (LADPH), Carlo of Last Analyses, Inc. (TLL), or Calcination Department of New Reclamation of Poblic Health (LADPH), Carlo of Last Analyses, Inc. (TLL), or Calcination Department of New Reclamation of New Reclamati

g Gravimetric deter

TABLE B-4 ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO.

|                         | Analyzed<br>By 1                                                    | V |         |           |      |            |       |        |     |     |           |      |      |        |
|-------------------------|---------------------------------------------------------------------|---|---------|-----------|------|------------|-------|--------|-----|-----|-----------|------|------|--------|
|                         | Heransse pro-Collector Analyzed es CoCOs 17 MPM/ms 891              |   | e dan . | N. M. St. | Ji.  |            |       |        |     |     |           |      |      |        |
|                         | 0.00                                                                |   | =       |           |      |            |       |        |     |     |           |      |      |        |
|                         | 000 PMG                                                             |   |         | 4         | .7   |            |       |        |     |     |           |      |      |        |
|                         |                                                                     |   | 2       |           | 7    |            |       |        |     |     | 3         | Ŧ    |      | ī      |
|                         |                                                                     |   | 7       | 2         |      |            | 1     |        |     |     |           | 7    | н    |        |
| 70101                   | 801/08<br>801/08<br>801/08                                          |   | 1.90    | 3         | 8    | 3          | Ju.   | Ь      | 1   | ٧   | 3         | è    | ì    | 3      |
|                         | Other constituents                                                  |   |         |           |      | * * . Alk. | 4     |        |     |     | A 12 13 A |      |      | F-10-3 |
|                         | (30100)<br>(3100g)                                                  |   |         |           |      |            | 4     |        |     |     | -         |      |      |        |
| 1100                    | Boron<br>(B)                                                        |   | 71      | 0.        | 20   |            | 2     | 20     | 1   | 3   | -         | 3    | 3    |        |
| votants per mili        | Fiuo-<br>ride<br>(F)                                                |   |         |           |      |            |       |        |     |     | 411       |      |      |        |
| squivoisnts per million | N<br>trots<br>(NO <sub>3</sub> )                                    |   |         |           |      |            | .[.   |        |     |     | - .       |      |      |        |
| 001008                  | Chio.                                                               |   | 18      |           | 12   | 70         | c F.  | g 3    | 2 . | Jr. | 7.        | -107 | 113  |        |
| 5                       | Sul -<br>Tote<br>(SO <sub>a</sub> )                                 |   |         |           |      |            | 100   |        |     |     | 1.        |      |      |        |
|                         | Bicor - S<br>bonate<br>(HCO <sub>3</sub> ) (                        |   |         | 200       | ~ ~  | ·F.        | alc.  | 5 5    | 15  | 20  | 50        | :15  | 10   | вB     |
| Minaral constituents    | CO <sub>3</sub> ) (t                                                |   | - 12    | . :       | 113  | 15         | E. 19 | : .    | 1.  | 13  | 58        | .    | 11.  | 15     |
| Minar                   | Potos- Corbon-<br>sum (CO <sub>3</sub> )                            |   |         |           |      |            | 312   |        | - 1 | -11 | -15       | -    | -0,0 | -0.00  |
|                         | Sodium PC<br>(No)                                                   |   | -1.     |           | alf. | 1.         | 13    | w. 15. |     | 1   | - 15      | 12   | ali. | :18    |
|                         | Magne. S<br>sum<br>(Mg)                                             |   |         |           | -    |            | eE.   |        |     |     | Г         |      |      |        |
|                         | Calcium (Ca)                                                        |   | F.      | 1.        | 1    | 1          | d.    | F.     |     | 1.  | J.        | F.   | 1.   | 6      |
|                         | Y di                                                                |   | 7.      | ~         |      |            |       |        | 7   |     |           | ÷    |      |        |
| Soscific                | anductonical<br>nucrombos<br>st 25°C)                               |   |         |           |      |            |       |        | Ŧ   |     |           |      | 2    | -      |
|                         | \$ 0 2 0 %                                                          |   |         |           |      |            |       |        |     |     |           | (    |      | ī      |
|                         | Dissalved<br>osygen<br>ppm %507                                     |   | 5       | 1-1       | -    |            |       |        |     | 1   | -         |      | 7    | ī      |
|                         | G L                                                                 |   |         |           | D.   |            |       | -      |     |     |           | 1    |      | ī      |
|                         | Discrete Temp Disselved conditional in cfs in of ppm 90.50 at 25 C. |   | į.      | ;         | 0    | 8          | 1     |        |     |     |           |      |      | -      |
|                         | 00000000000000000000000000000000000000                              | ^ | 1/      |           |      |            |       |        |     |     |           |      | 81   |        |

1) (Second (Se

A ...

Personal contract

ANALYSES OF SURFACE WATER TABLE

|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | E 0                                         |            |            |             |                         |
|---------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------|------------|------------|-------------|-------------------------|
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Hordne<br>as CaC                            | Tatal      | 81         | a           | 167 <sup>e</sup> 20 132 |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Des         | sod -                                       |            | 8          | 16          | 02                      |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total       | solids solids                               | mdd ui     | 1100       | 2140        | 167°                    |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Other constituents                          |            |            |             |                         |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Silico                                      | (2015)     |            |             |                         |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lion        | Boron Silica                                | <u>(i)</u> | ी          | 0.7         | 0.1                     |
| 2                         | G <sub>1</sub>                        | million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | per million | Fluor                                       | (F)        |            |             |                         |
| 1                         | (5TA.                                 | ports per million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lents g     | Ni-                                         |            |            |             |                         |
| T ACE                     | CACHE CHERK HEAR LOWER LANE (STA. 42) | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | equivalents | Chlo-                                       | (C)        | 7.0        | 2-5<br>0-11 | 8.5                     |
| 2                         | ALLEY B                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E !         | Sul -                                       | (80%)      |            |             |                         |
| 2                         | CREEK N                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STITUENTS   | Bicar-                                      | (HCO3)     | 92<br>1.51 | 1.35        | 3776                    |
| ANALISES OF SONTACE WATER | CACHE                                 | Manager Company of the Company of th | erui con    | Calcium Magne- Sodium Potas- Carbon- Bicar- | (00)       | 0*0        | 0000        | 0.0                     |
| •                         |                                       | Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CIW.        | Potas-                                      | (K)        |            |             |                         |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Sodium                                      | (ON)       | 9.7        | 77.0        | 33                      |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Magns-                                      | (6W)       |            |             |                         |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Calcium                                     | (00)       | 1.68       | 2.20        |                         |
|                           |                                       | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                             |            | 7.7        | 7.78        | 7.68                    |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spacific    | (micromhos pH                               |            | 199        | 252         | 301                     |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                             | %Sat       | 101        | 000         | 96                      |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Dissolved                                   | ppm %Sat   | D.o.       | 11.0        | 0.0                     |
|                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                             |            |            |             |                         |

Not Sambled 1.45

Dischorge Temp

Date and time sampled P.S.T.

Anolyzed by 1

Tur-bid-Coiformh ity MPN/mi

CO3 N C.

SOSE

laximum Luco. Sedian

20

Al 0.019 0,20

0,1

0.03

6.0

計

2,33 38

0.00

2.0

9.8

512

22

7.94 7.78 7.73 7.98 7.78 7.73 7.78 7.99

242

98

덫

5/12

5 8 3 0.8 001

0.01

1000

0°7

0.15

2,52

2,1

110 22 52

13

281

87

11/01

1300 1300

992

2.69 2,72 201

000 0.00

> 2,560 .680

> > 89

8,17 7.2 미류

3/8 덩

0000 0.00 0000

|   | J |       |
|---|---|-------|
| _ | 4 |       |
|   | 1 |       |
|   |   |       |
|   | 1 |       |
|   |   |       |
|   |   |       |
|   |   |       |
|   | 1 |       |
|   |   |       |
| _ | 1 |       |
| _ |   |       |
|   |   |       |
|   |   |       |
|   |   |       |
| _ | 1 |       |
|   |   |       |
|   |   |       |
| _ | 1 |       |
| _ |   |       |
|   |   |       |
|   |   |       |
| _ | l |       |
| _ |   |       |
|   | - |       |
|   | I |       |
| _ | 1 |       |
|   |   |       |
|   |   |       |
|   |   |       |
|   | 1 |       |
|   | - | -     |
|   | 1 | Au Pi |
|   | 1 | L     |
|   | ı |       |

6\*0

Ameni daniyasi mada by Uninst Stores Goological Survey, Quality of Were Borach (1955), Unined States Department of Institutes, Datases of Recomments, our transfer of Survey, Quality of Were Borach (1955), Unined States Operations (WID I. Day Agest Supparation of Institute States (1958), United States (1959), United States (1959)

252

Sum of calcium and magnesium in apm. Laboratory pH.

Jam or curvoint and magnesian in spin.

Iron (Fe), aluminum (A1), arsenic (A2), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>+6</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annual median and range, respectively. Calculated from analyzes of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health, Service. Graymetric determination.

ANALYSES OF SURFACE WATER TABLE 3-4

|                      | Hardness 6-6- Co torm Anerysed as CaCO <sub>3</sub> 17 MPN/mi 8y 1 bpm epm | 7     |       |     |              |               |       |     |     |     |            |    |     |
|----------------------|----------------------------------------------------------------------------|-------|-------|-----|--------------|---------------|-------|-----|-----|-----|------------|----|-----|
|                      | MPN/m                                                                      | 3     | 1     |     |              |               |       |     |     |     |            |    |     |
|                      | - 20                                                                       | -     |       |     | -            |               |       |     |     |     |            |    |     |
|                      | Total N.                                                                   |       |       |     |              |               |       |     |     |     |            |    |     |
|                      |                                                                            | 0     |       |     |              |               | 7     | 3   |     |     |            | 1  | 1   |
| ď                    | 0000                                                                       |       |       |     |              |               |       |     |     | 7   | 7          |    |     |
| 70101                | Bolved<br>Bolos<br>In ppm                                                  | 7     | 4     | 1   | V            | 1             | 1     | 1   | 1   | ٦   | 9          | Y  |     |
|                      | Other constituents                                                         |       |       |     | 21 · 10 · 10 | 0 TO 100 TT 1 |       |     | 7   | 117 | M. 195. 16 |    |     |
|                      | Baron Silico<br>(B) (3:0 <sub>2</sub> )                                    |       |       |     |              | -31           |       |     |     |     |            |    |     |
| no                   | Baron<br>(B)                                                               |       | -     | 31  | 7            | 5             | 2     |     | 4   | Y   |            | -  |     |
| per million          | Fluo-                                                                      |       |       |     |              |               |       |     |     | 1   |            |    |     |
|                      | frate<br>(NO <sub>5</sub> )                                                |       |       |     |              | J.            |       |     |     | 15  |            |    |     |
| equivolente          | Chido-<br>ride<br>(CI)                                                     | -1    |       | ١٠. | 15.          |               | di    | 15  | .03 | 45  | 1          | Þ. |     |
| 1                    |                                                                            |       |       |     | -            |               | 102.5 | 10  |     |     |            |    |     |
| ote in               | - Sul<br>fate<br>3) (SO <sub>4</sub> )                                     |       |       |     |              | F.            |       |     |     | \$  |            |    |     |
| netrite              | Bicar-<br>banate<br>(HCO <sub>3</sub> )                                    | 17    | . 4   | 1   | F.           | A.            | -V    |     | 165 | 10  | Ł.         | 10 |     |
| Mineral canetifuents | Patas. Carbon-<br>sum ate<br>(K) (CO <sub>5</sub> )                        | 7/3   | 0     | . 0 | J.           |               |       | 1.1 | 43  |     | P          |    | ij. |
| ž                    | Potas.<br>(K)                                                              |       |       |     |              |               |       |     |     | 30  |            |    |     |
|                      | Sodium<br>(Na)                                                             | al.   | - 4/3 |     | 9            | J.            | I.    | IL. | E   | 1   | 1          | 1  | 13  |
|                      | Magne-<br>ergm<br>(Mg)                                                     |       |       |     |              | E             |       |     |     | -1. |            |    |     |
|                      | Calcium<br>(Ca)                                                            | 1     | -     | E   | F.           | 4             | 1.    | 1   | I.  | J   | 10         | Į. |     |
|                      |                                                                            | -     | 1:    |     | 31           |               | 7.    | 1   | 1   |     |            |    | 1   |
| Specific             | onductance<br>micramhos<br>at 25°C)                                        | -     | 3     | 7   | 1            | š             |       | 8   | *   | 3   | ۲          | 7  |     |
|                      | % Sal                                                                      |       | 9     | E   |              |               | 4     |     |     |     |            |    | =   |
|                      | anygen<br>ppm %sal                                                         | 3     | el el |     |              | 7             |       | =   | 10  |     |            | Ŧ  | -   |
|                      | G.L.<br>Eo                                                                 |       | 2     |     | 10           |               |       | 0   | 7   |     |            |    | 7   |
|                      | Discharge Temp Displied by Conductors PH  In cla in of ppm Possal of 25°C) | 1     | 3     |     |              |               | ā     |     | ž   | ī   | ē          |    |     |
|                      | dapied<br>PST                                                              | 3 = 1 | 55    | 11  |              |               |       | 91  |     | 63  | 0          |    | ěΙ  |

CENTRAL VALLEY REGION (NO. 5)

ANALYSES OF SURFACE WATER

| _                                            | _                       |                                                                     |                     |       |     |              |      |       |
|----------------------------------------------|-------------------------|---------------------------------------------------------------------|---------------------|-------|-----|--------------|------|-------|
|                                              |                         | Acron bid - Coliform" Analyzed os CoCO <sub>3</sub> ity MPN/mi by i |                     | USBR  |     |              |      |       |
|                                              | 4                       | MPN/ml                                                              |                     |       |     |              |      |       |
|                                              | To_                     | Pid-                                                                |                     |       |     |              |      |       |
|                                              |                         | dness<br>cocos                                                      | ppm ppm             |       |     |              |      |       |
| L                                            |                         | ž s                                                                 | PPm<br>PPm          |       |     |              |      |       |
| -                                            | B P                     | solved sod-                                                         | E .                 |       | 31  | 8            | 2    | E .   |
|                                              | Toto                    | solva<br>solida                                                     | i i                 |       | 128 | 100          | 112  |       |
|                                              |                         | Other constituents                                                  |                     |       |     |              |      |       |
|                                              |                         | o collico                                                           | 120.5               |       | _   |              |      |       |
|                                              | lon                     | Boron Slico                                                         | 9                   |       |     |              |      |       |
| mail ion                                     | Der mill                | Fluo-                                                               | (F)                 |       |     |              |      |       |
| ports per million                            | equivolents per million | Ni-                                                                 | (NO <sub>3</sub> )  |       |     |              |      |       |
| 6                                            | Bquivo                  | Chla-                                                               | (CI)                |       | 41  | 6.4          | 18   | al ·  |
| TOTAL STREET                                 | ë                       | Sul -                                                               |                     |       |     |              |      |       |
| CACOR SHOULD BELOW LARBOR SHOOTH (SIN, LICE) | stituenti               | Bicor-                                                              | (HCO <sup>3</sup> ) |       |     |              |      |       |
| oute oute                                    | Mineral constituents in | Potas- Carbon- B                                                    | (co <sub>3</sub> )  |       |     |              |      |       |
| 5                                            | Min                     | Potas-                                                              | (K)                 |       |     |              |      |       |
|                                              |                         | muibos<br>(GM)                                                      | 0 10                |       | 13  | 4.9          | 27   | a     |
|                                              |                         | Magne-                                                              | (Mg)                |       |     |              |      |       |
|                                              |                         | Calcium Magne-                                                      | (60)                |       |     |              |      |       |
|                                              | pacific                 |                                                                     |                     |       | 182 | 155          | 190  | 1886  |
|                                              |                         | Dissolved conductance pH<br>axygen (Micromhos pH<br>at 25°C)        | ppm %Sot            |       |     |              |      |       |
| -                                            |                         | Temp<br>in of                                                       | _                   |       |     | 49           | 8    | 19    |
|                                              |                         | Drachorge Temp                                                      |                     | Tidel |     |              |      |       |
|                                              |                         | Dats<br>and time<br>sompled                                         | P.S.T.              | 1959  | 2/9 | 4/13<br>1250 | 7/13 | 10/12 |

a Field pH.

Labaratary pH.

Sum of colcum and magnesium in spin.
Iran (F.B.), aluminum (A.I.), assiric (A.B.), capper (C.D.), lead (P.B.), manganese (Mn.), zinc (Zn.), and hexavalent chromium (C.I.<sup>+</sup>5), reparted here as  $\frac{0.0}{0.00}$  except as shawn. Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Amed median and respectively. Calculated from analyst samples node by California Opperment of Public Health, Division of Lobordones, or United Stores Public Health Service.

Manual enviyees node by United Stores Conlogical Suresy, Chalify of Winey Broad, UUSS), the Department of the laterior Burson of Reclamation (USRR), United Stores Challed Suresy, Chalify of Winey Broadwale Stores Department of the laterior Challed Stores (USRS), San Bernardine Change (Library Stores of Reclamation (USRR), United Stores Challed Stores (USRS), San Bernardine Change (Library Stores of Reclamation Stores of Stores o

### ANALYSES OF SURFACE WATER TABLE B-4

|                                          |                         | 1                                       |                             | 2000  | -             |          | _    | -    |                  | -    |      | -     |           |   | -    |    |   | - | - |
|------------------------------------------|-------------------------|-----------------------------------------|-----------------------------|-------|---------------|----------|------|------|------------------|------|------|-------|-----------|---|------|----|---|---|---|
|                                          |                         | A                                       |                             | 65    |               |          |      |      |                  |      |      |       |           |   |      |    |   |   |   |
|                                          |                         | Merdass Bid - Colform Accessed          |                             |       | Meditor<br>23 | Sharlwan |      |      |                  |      |      |       |           |   |      |    |   |   |   |
|                                          |                         | 102                                     | -                           |       |               |          |      |      |                  |      |      |       |           |   |      |    |   |   |   |
|                                          |                         | 0000                                    | Total N.C.                  |       | 8             | -        |      |      |                  | 7    |      |       |           |   |      |    |   |   |   |
|                                          |                         | Hero<br>On Co                           | Total                       |       | 3             | 8        | 8    | 3    |                  | -    |      |       |           |   |      |    |   |   |   |
|                                          |                         | Peri                                    | 5                           |       | 41            | 23       | 13   |      | 1                | 0    | 3    |       |           |   |      |    |   |   |   |
|                                          | Total                   | dis. cant                               | 80:00 W                     |       | 1354          | %        | 3    | 3    | <b>L</b>         | 1    | 1    |       |           |   |      |    |   |   |   |
|                                          |                         |                                         | Other constituents          |       |               |          |      |      | I'm A may box my |      |      |       |           |   |      |    |   |   |   |
|                                          |                         |                                         | 000                         |       |               |          |      |      | 1,               |      |      |       |           |   |      |    |   |   |   |
|                                          | 100                     |                                         | (8)                         |       | -1            | 5        | 1    | 7    | 10               | 9    |      |       |           |   |      |    |   |   |   |
| (Sab.)                                   | million<br>ler mill     | -0.01                                   | (F)                         |       |               |          |      |      | E                |      |      |       |           |   |      |    |   |   |   |
| (STA, 1                                  | equivolents per million | 1                                       | frota<br>(NO <sub>3</sub> ) |       |               |          |      |      | 3                |      |      |       |           |   |      |    |   |   |   |
| Y LIND                                   | 091000                  | Chio.                                   | (C)                         |       | 10            | 5.2      | - 6  | 0 24 | F                | AT v | - 12 |       |           |   |      |    |   |   |   |
| AT JEST                                  | Ē                       | Sul                                     | fate<br>(\$0 <sub>6</sub> ) |       |               |          |      |      | 2 0              |      |      |       |           |   |      |    |   |   |   |
| RIVER                                    | filuents.               | Bicor-                                  | (MCO <sub>3</sub> )         |       | 88            | 63       | 77   | 44   | 101              | 1    | 1    |       |           |   |      |    |   |   |   |
| CALAVERAS RIVER AT JERRY LIND (STA. 16m) | Mineral constituents in | - uoquo                                 | (K) (CO <sub>3</sub> ) (    |       | 0.0           | 1000     | 00.0 | 000  | -18              | 18   | 3    |       |           |   |      |    |   |   |   |
|                                          | Mine                    | Potos-                                  | § œ                         |       |               |          |      |      | 2,0              |      |      |       |           |   |      |    | _ |   |   |
|                                          |                         | Sodie                                   | (N 0)                       |       | 6.9           | 9.4      | e 0. | -  - | ŧ                | 7    | 16   |       |           |   |      |    |   |   |   |
|                                          |                         | 90000                                   | (Mg)                        |       |               |          |      |      | - 1              |      |      |       |           |   |      |    |   |   |   |
|                                          |                         | Colcium                                 | (Ca) *:um)                  |       | 188           | 38       | -    | 1    | , F              | 1    | 8    |       |           |   |      |    |   |   |   |
|                                          |                         | e H                                     |                             |       | 1             | 4        | 4    |      | -                | -    |      |       |           |   |      |    |   |   |   |
|                                          | Specific                | onductance<br>nicromhos                 | 0-62-10                     |       | 0             | 5.1      | 8    | ī    | Y                | -    | 7    |       |           |   |      |    |   |   |   |
| -                                        |                         | 9 5                                     | 6.501                       |       | 8             |          | ,ee  |      | 1                |      | 9    |       |           |   |      |    |   |   |   |
|                                          |                         | Dissolv                                 | ppm %50t                    |       |               | 3        | 1    | Ħ    |                  |      | -1   | 7     | ī         | Ř | I    | T  |   |   |   |
| -                                        |                         | dus,                                    |                             | f     | 7             | 4        | 0    |      |                  |      | T    | 7-100 | 1 2       | 1 | 10   | 1  |   |   |   |
|                                          |                         | Discharge Yemp Dissolved conductance PM |                             |       |               | 3.5      |      | 8    | 8                | )    |      | 9     | 100 miles | 1 | N 00 | -  |   |   |   |
|                                          |                         |                                         | b-<br>en<br>a.              | 1,000 | 104           |          | 38   |      | H                | 3    | -1   |       |           | ķ | 100  | 70 |   |   |   |

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE B-4

|                                          |                      | Hordness bid Coliform Analyzed os CaCO <sub>3</sub> lly MPN/ml by I ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SSSI |                   |                   |                      |             |         |       |                   |                      |                   |                   |             |             |  |
|------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|-------------------|----------------------|-------------|---------|-------|-------------------|----------------------|-------------------|-------------------|-------------|-------------|--|
|                                          |                      | MPN/ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                   |                   |                      |             |         |       |                   |                      |                   |                   |             |             |  |
|                                          |                      | the contract of the contract o |      |                   |                   |                      |             |         |       |                   |                      |                   |                   |             |             |  |
|                                          |                      | N COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                   |                   |                      |             |         | m     |                   |                      |                   |                   |             |             |  |
|                                          |                      | Hardness<br>os CaCO <sub>S</sub><br>Toto! N.C.<br>ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                   |                   |                      |             |         | 101   |                   |                      |                   |                   |             |             |  |
|                                          |                      | sod -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                   |                   |                      |             |         | 7,1   |                   |                      |                   |                   |             |             |  |
|                                          | Total                | solved<br>solids<br>in ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                   |                   |                      |             |         | 137   |                   |                      |                   |                   |             |             |  |
|                                          |                      | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                   |                   |                      |             |         |       |                   |                      |                   |                   |             |             |  |
|                                          |                      | (2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                   |                   |                      |             |         | 11    |                   |                      |                   |                   |             |             |  |
|                                          | loo                  | Boron Silico<br>(B) (SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                   | _                 |                      |             |         | 0.0   |                   |                      |                   |                   |             |             |  |
| 16b)                                     | mullion<br>ar mil    | Fluo-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                   |                   |                      |             |         | 0.0   |                   |                      |                   |                   |             |             |  |
| (STA.                                    | parts per million    | trate<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                   |                   |                      |             |         | 0.7   |                   |                      |                   |                   |             |             |  |
| POCKTON                                  | parts per million    | Chlo-<br>ride<br>(Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                   |                   |                      |             |         | 9.2   |                   |                      |                   |                   |             |             |  |
| WEAR S'                                  | .c                   | Sul -<br>fate<br>(SO <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                   |                   |                      |             |         | 0.27  |                   |                      |                   |                   |             |             |  |
| S RIVER                                  | trituents            | Brear-<br>bonate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                   |                   |                      |             |         | 119   |                   |                      |                   |                   |             |             |  |
| CALAVERAS RIVER HEAR STOCKTON (STA. 16b) | Mineral constituents | arbon-<br>ote<br>(CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                   |                   |                      |             |         | 0.0   |                   |                      |                   |                   |             |             |  |
|                                          | Mine                 | Sodium Potos- (Na) (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                   |                   |                      |             |         | 2.6   |                   |                      |                   |                   | -           |             |  |
|                                          |                      | Sodium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                   |                   |                      |             |         | 7.9   |                   |                      |                   |                   |             |             |  |
|                                          |                      | Calcium Magne- (Co) (Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                   |                   |                      |             |         | 8.8   |                   |                      |                   |                   |             |             |  |
|                                          |                      | (Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                   |                   |                      |             |         | 1.30  |                   |                      |                   |                   |             |             |  |
|                                          |                      | D H d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                   |                   |                      |             |         | 4.    |                   |                      |                   |                   |             |             |  |
|                                          |                      | conductonce<br>(micromhos, pH a<br>ot 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                   |                   |                      |             |         | 234   |                   |                      |                   |                   |             |             |  |
|                                          |                      | gen (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _    |                   |                   | P                    |             |         | 33    |                   | P                    |                   |                   |             |             |  |
|                                          |                      | Dies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | - Dry             | - Dry             | Not Sampled - Ponded | - Dry       | - Dry   | 7.2   | - Dry             | Not Sampled - Ponded | - Dry             | - Dry             | - Dry       | - Dry       |  |
|                                          | Г                    | 0 o o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | paldi             | palds             | pled                 | ppled       | Sampled | 2     | parde             | mpled                | paldo             | npled             | pelds       | apled       |  |
|                                          |                      | Dischorge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Not Sampled - Dry | Not Sampled - Dry | Not 3er              | Not Sampled | Not San | 0.2   | Not Sampled - Dry | Not Sar              | Not Sampled - Dry | Not Sampled - Dry | Not Bampled | Not Sampled |  |
|                                          |                      | Dote<br>ond time<br>sompled<br>P.S.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1959 | 1/16              | 4/2               | 3/10                 | 14/5        | 9/5     | 06/10 | 1/3               | 9/8                  | 6/3               | 10/7              | 11/15       | 1/21        |  |

Jun of Cocicum and magnessium in sym. trans. (Su), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr\*5), reported here as  $\frac{0.0}{0.00}$  except as shawn. c Sum of calcium and magnesium in epm. b Laboratory pH.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annal median and image, respectively. Calculated from analyses of displicate monthly samples made by Calculan Department of Public Health, Division of Laboratories, or United States Public Health Service.

Memory and the States Geological Survey, Quality of Water Based Michael States Department of the Information Based, Michael States Cannel District Health Service (USPNS); Sen Beneafine County Flood

Comparison (SECTO), proposition When District and Sudden Coulders (WINDS). Les Angeles Department of Water and Percent (MAPP); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Public City of Los Angeles, Department of Mark Resources (DWP); Ander County Public City of Los Angeles, Department of Calliano Department Water Resources (DWP); Ander County Public City of Los Angeles, Department of Calliano Department Water Resources (DWP); Ander County Public City of Los Angeles, Department of Calliano Department Water Resources (DWP); Annal Angeles, Department of Calliano Department Water Resources (DWP); Annal Angeles, Department of Calliano Department of Mark Resources (DWP); Annal Angeles, Department of Calliano Department of Mark Resources (DWP); Annal Angeles, Department of Calliano Department of Mark Resources (DWP); Annal Angeles, Department of Angeles, Department of Mark Resources (DWP); Annal Angeles, Department of Mark Resources (DWP); Annal Angeles, Department of Angeles, Department of Mark Resources (DWP); Annal Angeles, Department of Angeles, Department of Mark Resources (DWP); Annal Angeles, Department of Angeles, Department of Mark Resources (DWP); Annal Angeles, Department of Angeles, Department of Mark Resources (DWP); Annal Angeles, Department of Angeles, Department of Mark Resources (DWP); Annal Angeles, Department of Mark Resources (DWP); Annal Angeles, Department of Mark Resources (DWP); Annal Angeles, Department of Mark Resources (D

ANALYSES OF SURFACE WATER CENTRAL VALLEY KELON (#0. 5) TABLE S.4

CHUNCHILLA MINER AT BUCHANAN DAN STE ("TA. 114.

|                   | -                       | 1                                                                |      |       |         | -                     |      |        |     |          |         |            |      |     |     | _ |
|-------------------|-------------------------|------------------------------------------------------------------|------|-------|---------|-----------------------|------|--------|-----|----------|---------|------------|------|-----|-----|---|
|                   |                         | A 40.72                                                          | 8    |       |         |                       |      |        |     |          |         |            |      |     |     |   |
|                   |                         | 10 M                                                             |      | 4     | 98177   | day.                  |      |        |     |          |         |            |      |     |     |   |
| -                 | 3                       | HOLDERS Did Ke form Analyzed to CaCO <sub>2</sub> ty MPN/mu by I |      | 89    |         | -                     |      |        |     |          |         |            |      |     |     |   |
|                   | -                       | 0 2                                                              |      | -     |         |                       |      |        | 3   |          |         |            | 4    |     |     |   |
|                   |                         | Pords<br>Pords                                                   |      | 2     | 5       | 3                     |      | ŝ      | 8   |          |         |            | r    | 2   | 4   |   |
|                   |                         | \$ 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                         |      | 7     | 1       | 3                     |      | 1      |     |          |         |            | -    |     | 5   |   |
|                   | Total                   | 801:00 G                                                         |      | 177   | 100     | 2                     | 1    | 3      | 1   |          |         |            | ì    | 4   | 1   |   |
|                   |                         | Other constituents                                               |      |       |         |                       |      | A      |     |          |         |            |      |     |     |   |
|                   | Ì                       | (SiO <sub>2</sub> )                                              |      | 7/    | ্য      | 21                    | al   | 101    |     |          |         |            |      |     |     |   |
|                   | 100                     | Boron<br>(B)                                                     |      | 21    | 71      | 0,0                   | 3    | 7      | 7   |          |         |            | 4    |     |     |   |
| million           | 101 mil                 | Fluo-<br>ride<br>(F)                                             |      | 35    | 10.0    |                       | 3/3  | 23     |     |          |         |            |      |     |     |   |
| ports per million | equivolents per million | 1,010<br>(NO.9)                                                  |      | 33    | 0.00    | 40<br>30<br>30<br>30  | 10.  | 30     |     |          |         |            |      |     |     |   |
| à                 | A donn                  | Chio-<br>ride<br>(CI)                                            |      | 41.   | 1,1     | 61.5<br>61.5<br>61.18 | F    | 67     | 3   |          |         |            | 41   | 1   | 逝   |   |
| 9                 |                         | Sul -<br>fore<br>(50 <sub>6</sub> )                              |      | 201   | 5:4     | B                     | 1    | 8      |     |          |         |            |      |     |     |   |
|                   |                         | Bonore<br>(MCO <sub>3</sub> )                                    |      | 1:1   | 79:1    | 177                   | ıE   | 18.    | 1   |          |         |            | 40   | 1   | 基   |   |
| Minacol           |                         | Corbon-                                                          |      | 000   | 18.     | 1                     | 0.00 | 08     | I.  |          |         |            | 25   | 3   | 15  |   |
| á                 |                         | Potos.                                                           |      | 207   | 43.     | 8                     | 37   | 0.0    |     |          |         |            |      |     |     |   |
|                   |                         | Sodium<br>(No)                                                   |      | 260   | -36     | 0.23                  | :    | 8 °°°° | 2   |          |         |            | 1    | 10: | 34: |   |
|                   |                         | Bright<br>(PMg)                                                  |      | 01    | 325     | 21.0                  | -1   | 10.    |     |          |         |            |      |     |     |   |
|                   |                         | (Co)                                                             |      | 7.2 5 | 7.8b 28 | 30                    | -1.  | 0      | 90  |          |         |            | L    | M   | 19  |   |
|                   |                         | H.                                                               |      | 7.5   | 7.8b    | 7                     | 7.11 | 13.6   | 5.  |          |         |            | 4.7. | -   |     |   |
|                   | Specific                | (micromhos pH<br>(micromhos or 25°C)                             |      | 288   | 62      | 1.80                  |      | 222    | T.  |          |         |            | ř    | 4   | 8   |   |
|                   |                         | 1ved %                                                           |      | 106   | 10.5    | 3'                    | Y    | Ĩ      | 1   |          |         |            | 2    | 2   |     |   |
|                   |                         | Dissolved<br>osygen<br>ppm %301                                  | 1    | 2.0   | 11.     | 11.4                  | 3    | 7      | i   | 1.7      | E       | E          |      | J   |     |   |
|                   |                         |                                                                  |      | A     | 5       | 2                     | ý    | 9.     | 1   | and last | 4.8.0.3 | 0.0        | 5    |     | 1   |   |
|                   |                         | Discharge Temp                                                   |      | 22    | 12      | 38                    | 8    | 2      | :   | Aut and  | 17      | But all ad |      |     |     |   |
|                   |                         | ond lime                                                         | 1959 | 1/15  | 1730    | 3/1                   | 11/1 | 13     | 300 | 911      | F       | 5/0        | М    | 10  | 98  |   |

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

|                  |                                      | Anolyzed<br>by 1                                                        | negs |      |      |      |             |                               |      |            |            |                    |       |       |       |      |  |
|------------------|--------------------------------------|-------------------------------------------------------------------------|------|------|------|------|-------------|-------------------------------|------|------------|------------|--------------------|-------|-------|-------|------|--|
|                  | -                                    | Hardness bid - Coliform" os CoCO <sub>3</sub> Ity MPN/mi Total N C. ppm |      |      |      |      |             |                               |      |            |            |                    |       |       |       |      |  |
|                  | Tu'-                                 | - pid<br>Liv                                                            |      |      |      |      |             | ~                             |      |            | 10         | 10                 | -     | te.   | -2    |      |  |
|                  |                                      | N COS                                                                   |      | 2    | 00   | 60   | m           | -                             | œ    | m          | 60         | ec .               | 10    | 6     | 00    |      |  |
|                  |                                      |                                                                         |      | 1/1  | 36   | %    | 65          | 35                            | ¥    | 4          | 19         | 65                 | 63    | 62    | 19    |      |  |
| Ī                | Par                                  | sod -                                                                   |      | 33   | 2    | 5    | %           | 2                             | 56   | 34         | 37         | 37                 | ₹     | 34    | 34    |      |  |
|                  | Total                                | solved<br>solids<br>in ppm                                              |      | 93.  | 712  | 25   | 585         | 69                            | 93.  | 8          | 1306       | 124                | 123°  | 123   | 125   | _    |  |
|                  |                                      | Other constituents                                                      |      |      |      |      |             | Pe 0 03 A1 0.04 d<br>Pou 0.05 |      |            |            | Poh 0.01 A1 0.04 d |       |       |       |      |  |
|                  |                                      | (\$105)                                                                 |      | 17   | 17   | 18   | 17          | 60                            | 8    | 15         |            | Co<br>FI           |       |       |       |      |  |
|                  | ion                                  | Boran<br>(B)                                                            |      | 0.1  | 0.0  | 0.0  | 0.0         | 0.0                           | 0.0  | 0.0        | 0.0        | 0.0                | 0.0   | 0.0   | 0.0   |      |  |
|                  | equivolents per million              | Fluo-<br>rids<br>(F)                                                    |      | 0.0  | 0.0  | 0.0  | 0.0         | 0.00                          | 0.01 | 0.0        |            | 0.0                |       |       |       |      |  |
| A. 12d)          | ports per million<br>votents per mil | Ni-<br>trots<br>(NO <sub>3</sub> )                                      |      | 0.03 | 0.00 | 0.0  | 0.0         | 0.00                          | 0.00 | 0.0        |            | 0.0                |       |       |       |      |  |
| IGO (STA. 12d)   | o doing                              | Chlo-<br>ride<br>(Cl)                                                   |      | 17   | 7.5  | 2 P  | 3.0<br>0.08 | 6.1                           | 8.5  | 0.39       | 24<br>0.68 | 26<br>0.73         | 0.59  | 80.5  | 0.59  |      |  |
| K NEAR           | Ē                                    | Sul -<br>fore<br>(SO <sub>4</sub> )                                     |      | 0.35 | 0.23 | 5.8  | 0.16        | 6.5                           | 0.27 | 8.0        |            | 9.0                |       |       |       |      |  |
| CLEAR CREEK NEAR | strtuents                            | Bicar-<br>bonate<br>(HCO <sub>3</sub> )                                 |      | 28   | 34   | 28   | 32          | 38                            | 9.75 | 53<br>0.87 | 1.11       | 70                 | 1.07  | 1.07  | 1.11  |      |  |
| CID              | Mineral constituents                 | Corbon-<br>ots<br>(CO <sub>3</sub> )                                    |      | 0.0  | 0.0  | 0.0  | 0.0         | 0.0                           | 0.0  | 0.0        | 0.0        | 0.0                | 0.0   | 0.0   | 0.00  |      |  |
|                  | Min                                  | Potas-<br>Sium<br>(K)                                                   |      | 0.5  | 0.0  | 0.3  | 0.0         | 1.3                           | 0.8  | 0.0        |            | 0.03               |       |       |       |      |  |
|                  |                                      | Sodium<br>(No)                                                          |      | 10   | 5.2  | 3.3  | 3.9         | 6.5                           | 8.8  | 0.48       | 0.74       | 0.78               | 0.65  | 15    | 15    |      |  |
|                  |                                      | Magne-<br>sium<br>(Mg)                                                  |      | 3.4  | 3.5  | 2.2  | 0.22        | 2.2                           | 3.9  | 2.1        |            | 4.3                |       | 4.1   |       |      |  |
|                  |                                      | (co)                                                                    |      | 0.60 | 9.2  | 6.6  | 0.36        | 9.0                           | 12   | 0.75       | 1.280      | 0.95               | 1.26° | 0.90  | 1.28  |      |  |
|                  |                                      | Ŧ.                                                                      |      | 7.1° | 7.1  | 7.6  | 7.38        | 7.6°                          | 7.9  | 7.8        | 7.98       | 7.98               | 7.6b  | 7.78  | 7.68  | <br> |  |
|                  | Specific                             | (micromhos<br>ot 25°C)                                                  |      | 141  | 97.8 | 70.0 | 75.7        | 94.3                          | 125  | 150        | 203        | 215                | 192   | 161   | 195   |      |  |
|                  |                                      | gan (6                                                                  |      | 5    |      | 102  | 66          | 100                           | 86   | 81         | 101        | 106                | 101   | 101   | 104   |      |  |
|                  |                                      | Dissolved<br>oxygsn<br>ppm %Sot                                         |      | 10.7 |      | 11.5 | 10.3        | 5.6                           | 9.6  | 7.9        | 60         | 6.6                | 8.6   | 11.7  | 13.3  |      |  |
|                  |                                      |                                                                         |      | 52   | 24   | - 15 | - 25        | 69                            | 72   | - 22       |            | 13                 | 63    | 89    | 9     |      |  |
|                  |                                      | Discharge Temp                                                          |      | 867  | 262  | 250  | 301         | 169                           | 19   | 9          | 19         | 50                 | 37    | 627   | 14    |      |  |
|                  |                                      | Oote<br>ond time<br>sampled<br>P.S.T.                                   | 1959 | 1/6  | 2/10 | 3/11 | 1530        | 5/14                          | 6/17 | 7/10       | 8/11       | 9/1                | 10/14 | 11/11 | 12/10 |      |  |

B-70

b Laboratory pH. o Freid pH

c Sum of calcium and magnesium in epm.

c. Sum of colicium and diagnestium in oph... d. Iron FFe), oluminum (A1), arsenic (A2), capper (Cu), Iead (P6), mangamere (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>+6</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. Derived from canductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Marter Indian Strate Geological Survey, Quality of Wores Beanch (1953), University Strates Department of the Interior, Burgar of Reclamation (1958), University Strates Strates Strates Strates Strates Strates of Strates Strates of Strates Strates and Strates and Strates Strates Strates Strates Strates Strates Strates and Strates Stra Annual median and range, respectively. Calculand from analyses of duplicate manshly samples made by Calculania Department of Public Health. Division of Laboratories, or United States Public Health Sovies.

TABLE B-4
ANALYSES OF SURFACE WATER
CENTRAL VALLEY RESIGN (NO. 5)

|                        | hotyred<br>by i                                                                                                 | 1 |     |       |          |    |     |     |    |    |       |       |    |     |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------|---|-----|-------|----------|----|-----|-----|----|----|-------|-------|----|-----|--|
|                        | 05 C6CO <sub>9</sub> 17 MPN/md B <sub>9</sub> 1<br>05 C6CO <sub>9</sub> 17 MPN/md B <sub>9</sub> 1<br>7 Total N |   |     | 30    | 1        |    |     |     |    |    |       |       |    |     |  |
|                        | 93                                                                                                              |   | 1   | 74    |          |    |     |     |    |    |       |       |    |     |  |
| 3                      | 0 0 0 0 0                                                                                                       |   |     |       |          |    |     | -   |    |    |       |       |    |     |  |
|                        | Paral N.C. park                                                                                                 | - |     |       |          |    |     |     |    |    |       |       |    |     |  |
|                        | 1 8 00                                                                                                          |   |     | 7     |          |    |     |     |    |    |       |       |    |     |  |
| - 0                    | 601.00<br>601.00<br>601.00                                                                                      | - | ÷   |       | Ŷ        |    |     |     |    |    |       |       |    |     |  |
| Tot                    | 5 6 0 1                                                                                                         | _ | 2   | 8     |          |    |     | 5   |    |    |       |       |    | b.  |  |
|                        | Other constituents                                                                                              |   |     |       |          |    |     |     |    |    | + 1:0 |       |    |     |  |
|                        |                                                                                                                 |   |     |       |          |    |     |     |    |    | 1     |       |    |     |  |
| 00                     | Baron Since<br>(B) (S.O <sub>2</sub> )                                                                          |   |     |       | -1       | -1 | 4   |     |    |    |       |       |    | 8   |  |
| r mille                | F1uo- 8                                                                                                         |   |     |       |          |    | -8. |     |    |    | 5.    |       |    |     |  |
| equivalente per milian | N:= F<br>1/0/10<br>(NO.9)                                                                                       |   |     |       |          |    | 1   |     |    |    | 3.    |       |    |     |  |
| pod                    | Chio                                                                                                            |   | -17 | :     | 41       | 10 | ,Þ. | 16  |    | ٠. | 1.    | -15   |    |     |  |
| 6                      | Sul-<br>fate<br>(SO <sub>4</sub> )                                                                              |   |     |       |          |    | -5. |     |    |    |       |       |    |     |  |
| e u                    | - 51<br>1,0<br>1,0<br>1,0                                                                                       |   |     |       |          |    |     |     | -  |    |       |       |    | -11 |  |
| one filto              | Bicar-<br>bonate<br>(HCO <sub>9</sub> )                                                                         |   | 3/3 | -     |          | 5. | E   | -1- | J. |    | _;;   |       |    |     |  |
| Minstal constituents   | Sodium Polas- Carbon-<br>(Na) (K) (CO <sub>3</sub> )                                                            |   |     | .[.   |          | 18 |     | ./. |    |    |       | i ()a |    | 18  |  |
| ž                      | Palas-<br>sium<br>(K)                                                                                           |   |     |       |          |    |     |     |    |    | 1.    |       |    |     |  |
|                        | Sadium<br>(Na)                                                                                                  |   | : . |       | 1        |    | [.  |     |    | 1  | 1.    |       | B  |     |  |
|                        | (Mg)                                                                                                            |   |     |       |          |    | = - |     |    |    | 4.    |       |    |     |  |
|                        | Calcium Magner<br>(Ca) (Mg)                                                                                     |   | [.  | X-1-1 | Ę.       |    | -1. | ſ.  | f. |    |       | 1.    | ¢. | Т   |  |
|                        | ž.                                                                                                              |   |     | •     | ਜ਼<br>ਜ਼ | è  |     | 7.  | 1. | 1. | 1     |       |    |     |  |
| pecific                | conductonce pH<br>(m.crombos at 25°C)                                                                           |   |     | 6     | 1        |    |     |     |    |    |       |       |    |     |  |
|                        | 6 Sat                                                                                                           |   |     |       |          | 7  | 0   |     |    |    |       |       |    |     |  |
|                        | Dissolved<br>oaygen<br>opm %Sot                                                                                 | - |     |       |          |    |     |     |    |    |       |       |    |     |  |
|                        | 30 0                                                                                                            |   |     |       |          |    | Ŧ   | T   |    |    |       |       |    |     |  |
|                        | Discharge Temp                                                                                                  |   |     |       |          |    |     |     |    |    |       |       |    |     |  |
|                        | Dote<br>longled<br>PST                                                                                          |   |     |       |          | ą. |     |     |    |    |       |       | 31 |     |  |

and the second of the second o

CENTRAL VALLEY REGION (NO. 5)

|                                 |                  | Annual      | by 1                                    | SDSO |                |                   |               |        |                                       |            |            |            |                                |             |            |             |  |
|---------------------------------|------------------|-------------|-----------------------------------------|------|----------------|-------------------|---------------|--------|---------------------------------------|------------|------------|------------|--------------------------------|-------------|------------|-------------|--|
|                                 |                  | Handy       | 10   10   10   10   10   10   10   10   |      | Median<br>126. | Meximum<br>2,400. | Minimum<br>5. |        |                                       |            |            |            |                                |             |            |             |  |
|                                 |                  | - In        | m ppm                                   |      |                |                   |               |        | 0                                     |            |            |            | C <sub>2</sub>                 |             |            | 15          |  |
|                                 |                  |             | N COS                                   |      | ~              | 3                 | 33            | С      | с                                     | С          | c          | С          | С                              | м           | S          | c           |  |
|                                 |                  | Houde       | os Co<br>Total<br>ppm                   |      | 1,5            | 312               | 300           | 132    | 104                                   | 121        | 136        | 124        | 118                            | 146         | 143        | 135         |  |
| Ì                               | _                | Per-        | sod -                                   |      | 20             | 20                | 5             | 36     | 173                                   | ¥          | 9          | 96         | 39                             | 35          | <u>e</u>   | 89          |  |
|                                 |                  |             | solved<br>solids<br>in ppm              |      | 343            | 741               | 701           | 25 lat | 2181                                  | J696       | 257        | 233        | <sub>5</sub> 666               | 283         | 301        | 28%         |  |
|                                 |                  |             | Other constituents                      |      |                |                   |               |        | Fe 0.06 2n 0.03 d<br>PO4 0.30 A1 0.08 |            |            |            | PO <sub>k 0.20</sub> A1 0.06 d |             |            |             |  |
|                                 |                  | 1           | (SiO <sub>2</sub> )                     |      | 15             | 16                | 133           | 8      | 15                                    | 19         | 20         | 8          | 킪                              | 2           |            |             |  |
|                                 | 1                | million     | Boron<br>(B)                            |      | 0.5            | 0.3               | 0,2           | 0.2    | 0.3                                   | 0.5        | 0.0        | 6.         | 0.1                            | 0.1         | 0          | 5.5         |  |
|                                 | million          | per mil     | Fluo-<br>ride<br>(F)                    |      | 0.0            | 0.5               | 20.0          | 0.2    | 0.0                                   | 0.0        | 0.2        | 0.0        | 0.2                            | 0.0         |            |             |  |
| STA, 87)                        | 1 10             | - 1         | rote<br>(NO3)                           |      | 5.8            | 0.7               | 0.05          | 0.04   | 0.5                                   | 1.4        | 0.1        | 0.b        | 0.0                            | 0.09        |            |             |  |
| OLUSA (S                        | od               | equivolents | Chlo-<br>ride<br>(CI)                   |      | 39             | 93                | 2.59          | 25     | 17<br>0.18                            | 0.59       | 16         | 14<br>0.39 | %9.0                           | 19 0.54     | 0.79       | 0.73        |  |
| WEAR O                          | 9                |             | Sul -<br>fote<br>(SO <sub>4</sub> )     |      | 1.77           | 4.71              | 1.16          | 1.00   | 44<br>0.90                            | 57.19      | 12<br>0.87 | 30         | 0.44                           | 1.25        |            |             |  |
| COLUSA TROUGH NEAR COLUSA (STA. | aguaraji geranga | 8111061118  | Bicor-<br>bonate<br>(HCO <sub>3</sub> ) |      | 2.75           | 327               | 326           | 2.67   | 2.33                                  | 168        | 2.93       | 2.9        | 2.95                           | 174<br>2.85 | 3.28       | 3.05        |  |
| COLUS                           | Money            | and con     | Corbon-<br>ote<br>(CO <sub>3</sub> )    |      | 0.00           | 0.0               | 0.0           | 0.00   | 0.0                                   | 0.0        | 0.0        | 0.0        | 0.0                            | 0.0         | 0.00       | 0.0         |  |
|                                 | 2                | E           | Potos-<br>erum<br>(K)                   |      | 3.5            | 0.05              | 1.8           | 2.1    | 0.04                                  | 0.04       | 0.09       | 0.05       | 0.05                           | 3.0         |            |             |  |
|                                 |                  |             | Sodium<br>(No)                          |      | 2.91           | 6.31              | 138           | 35     | 36                                    | 8m<br>5.09 | 39         | 36         | 36                             | 38          | 60<br>2.61 | 57<br>27.48 |  |
|                                 |                  |             | Mogne-<br>sium<br>(Mg)                  |      | 1.50           | 3.55              | 3.41          | 1.39   | 1.13                                  | 16<br>1.32 | 16         | 17         | 1.16                           | 1.69        |            |             |  |
|                                 |                  |             | Colcium<br>(Co)                         |      | 3.30           | 2.69              | 52            | 25     | 0.9                                   | 1.10       | 1.20       | 1.10       | 1.20                           | 26<br>1.30  | 2.86       | 2.640       |  |
|                                 |                  |             | E                                       |      | 7.8b           | 8.1               | 8.0°          | 7.7b   | 7.48                                  | 7.6ª       | 7.40       | 7.48       | 7.10                           | 7.9ª        | 7.84       | 7.7         |  |
|                                 |                  | Specific    | (micromhos<br>of 25°C)                  |      | 573            | 1,200             | 1,120         | 804    | 359                                   | 124        | 392        | 3778       | 379                            | 108         | 904        | 474         |  |
|                                 |                  |             |                                         |      | 18             | 42                |               | 83     | 8                                     | 18         | 48         | 18         | 83                             | 82          | 85         | 6           |  |
|                                 |                  |             | Discolved<br>oxygen<br>ppm %So          |      | 4.8            | 4.6               |               | 8.0    | 4.                                    | 7.0        | 6.8        | 6.9        | 7.2                            | 8.2         | 8.9        | 10.0        |  |
|                                 |                  |             |                                         |      | 15             | 39                | 95            | 69     | 39                                    | 4          | 13         | 62         | 13                             | 19          | 95         | 64          |  |
|                                 |                  |             | Dischorge Temp                          |      | 1,420          | 148               | 555           | 1403   | 1,200                                 | 703        | 617        | 166        | 1,340                          | 162         | 361        | 15.5 A      |  |
|                                 |                  |             | ond time<br>sompled<br>P S.T            | 1959 | 1/12           | 6/2               | 3/9           | 9/17   | 5/4                                   | 6/1        | 1/6        | 8/10       | 9/7                            | 10/5        | 11/13      | 12/3        |  |

b Loborotory pH.

e. Sum of colicium and magnessium in epim.

d. Inod (Pb), mangoness (An), presente (As), copper (Cu), lead (Pb), mangoness (Min), zunc (Zn), and hexavolent chromium (Cr<sup>1-8</sup>), reported here as 0 0 except as shown.

d. Inon (Fe), olumnum (A1), assente (As), copper (Cu), lead (Pb), mangoness (Min), zunc (Zn), and hexavolent chromium (Cr<sup>1-8</sup>), reported here as 0 0 except as shown. c Sum of colcium and magnessum in apm.

Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

Annal malan and range, respectively. Calculated from analysts and supplicate manufly samples each by Calcination Department of Public Monitor of Loboratorist, or United Stress Public Hoolih Sarriers (1997), San Benevation Compy Flood Manuel and Sarriers (1997), and the Stress Collection of Sarriers (1997), San Benevation Compy Flood Carello Department of Sarriers (1997), and the Sarriers (1997), San Benevation Compy Flood Carello Department of Sarriers (1997), so Sarriers (1997), San Benevation Compy Flood Carello Department of Sarriers (1997), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Carello Sarriers (1997), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing Associates, Inc. (TLL), so Calcinate Department of Manuel Testing

#### ANALYSES OF SURFACE WATER TABLE B-1

Herdness ad-Conform Angersed of Colors and asyles 9 Other constituents Flue- Baron Silico ONTRA COSTA CANAL AT 18" PUNO LIFT ( A. A.) aquivolenta per million ports per million Ni-Chlo. Sul -fore (50g) Minaral constituents in Bicor-bonofe (MCO.) Carbon-016 (CO<sub>3</sub>) Potos. Sodium (No) Mogna Ha Dissolved conductors pH 0.850 (10 25°C) Dischorge Temp Dote ond time sampled P S T **电话位标电话电话** 

|                                        |                         | Analyzed<br>by 1                                                                           | · · · |               |                  |                 |      |                    |     |     |     |     |      |      |      |
|----------------------------------------|-------------------------|--------------------------------------------------------------------------------------------|-------|---------------|------------------|-----------------|------|--------------------|-----|-----|-----|-----|------|------|------|
|                                        |                         | Angl                                                                                       | Spen  |               |                  |                 |      |                    |     |     |     |     |      |      |      |
|                                        | ,                       | Hardness bid - Caliform <sup>II</sup><br>as CaCO <sub>3</sub> 11y MPN/mI<br>Tatol N C. ppm |       | Nedžan<br>23° | Ha.cimum<br>230. | Minimum<br>0,23 |      |                    |     |     |     |     |      |      |      |
|                                        | į                       | - pid<br>- hid<br>mpgd u                                                                   |       |               |                  |                 |      | 0                  |     |     |     |     |      |      |      |
|                                        |                         | Hardness<br>as CaCO <sub>S</sub><br>Tatol N.C.<br>ppm ppm                                  |       | 0             | 0                | 0               | 0    | 0                  |     |     |     |     |      |      |      |
|                                        |                         |                                                                                            |       | 97            | 33               | 79              | 22   | 98                 |     |     |     |     |      |      |      |
|                                        | 8                       | sod -                                                                                      |       | 18            | 79               | 4               | 19   | 18                 |     |     |     |     |      |      |      |
|                                        | Totol                   | solved<br>solved<br>mudd ni                                                                |       | 69            | 78               | 35              | 97   | 55                 |     |     |     |     |      |      |      |
|                                        |                         | Other constituents                                                                         |       |               |                  |                 |      | Fe 0.07 PO, 0.00 d |     |     |     |     |      |      |      |
|                                        |                         | (SiO <sub>2</sub> )                                                                        |       | 91            | গ্ৰ              | ্ৰ              | 77   | 21                 |     |     |     |     |      |      |      |
|                                        | ion                     | Borgn<br>(B)                                                                               |       | 0.0           | C.3              | 0:0             | 0.0  | 0,1                |     |     |     |     |      |      |      |
| _                                      | per million             | Fluo-<br>rids<br>(F)                                                                       |       | 0.00          | 000              | 0000            | 0.0  | 0.00               |     |     |     |     |      |      |      |
| COSUMMES RIVER AT MCCONNELL (STA. 94a) | equivalents per million | Ni-<br>trate<br>(NO <sub>3</sub> )                                                         |       | 0.03          | 000              | 0.0             | 0.0  | 0.00               |     |     |     |     | -    |      |      |
| S) TIBE                                | equivo                  | Chia-<br>rida<br>(CI)                                                                      |       | 4:4           | 5.6              | 2.8             | 0.03 | 0.03               |     |     |     |     |      |      |      |
| AT McCO                                | u. s                    | Sul -<br>fate<br>(SO <sub>4</sub> )                                                        |       | 2.3           | 0.07             | 3.8             | 0.10 | 5.8                |     |     |     |     |      |      |      |
| S RIVER                                | constituents            | Brcor-<br>bonats<br>(HCO <sub>3</sub> )                                                    |       | 0.69          | 58<br>0.95       | 38              | 27   | 34,0               |     |     |     |     |      |      |      |
| COSUMATE                               | Minaral ca              | Corbon-<br>ote<br>(CO <sub>3</sub> )                                                       |       | 0000          | 0.00             | 0.00            | 0.0  | 0.00               |     |     |     |     |      |      |      |
|                                        | M                       | Potas-<br>sium<br>(K)                                                                      |       | 0.0           | 0.0              | 0.03            | 0,0  | 0.7                |     |     |     |     |      |      |      |
|                                        |                         | Sodium<br>(Na)                                                                             |       | 0.18          | 0.19             | 0.19            | 2.6  | 6.13               |     |     |     | _   |      |      |      |
|                                        |                         | Mogra-<br>sum<br>(Mg)                                                                      |       | 3.9           | 5.6              | 2.4             | 1.9  | 0.4                |     |     |     |     |      |      |      |
|                                        |                         | (Ca)                                                                                       |       | 9.5           | 0,50             | 0.36            | 5.6  | 6.4                |     |     |     |     |      |      |      |
|                                        |                         | Ĭ.                                                                                         |       | 7.5b          | 7.7b             | 7.38            | 7.2ª | 7.43               |     |     |     |     |      |      |      |
|                                        | Spacific                | conductance<br>(micramhas<br>of 25°C)                                                      |       | 101           | 120              | 71.7            | 6.99 | 70*1               |     |     |     |     |      |      |      |
|                                        |                         | gen<br>%Sat                                                                                |       | 46            | %                | 96              | 96   | 100                |     |     |     |     |      |      |      |
|                                        |                         | Dissolved<br>oxygen<br>ppm %Sat                                                            |       | 11.0          | 11.3             | 10.5            | 0.6  | 9,1                |     |     |     |     |      |      |      |
|                                        |                         | Temp<br>in OF                                                                              |       | 22            | 127              | 55              | 99   | 69                 |     |     | -   |     |      |      |      |
|                                        |                         | Oischarge Temp<br>in cfs in oF                                                             |       | 184           | 108              | 705             | 432  | 177                | Dry | Dry | Dry | Dry | Dry  | Dry  | Drry |
|                                        |                         | and time<br>sampled<br>P.S.T                                                               | 1959  | 1/16          | 2/4<br>1200      | 3/10            | 1530 | 5/6                | /9  | 1/3 | 9/8 | 6/6 | 10/5 | 11/2 | 12/1 |

Sum of calcium and magnesium in epm.

soll of the concernment of the c Derived from conductivity vs TDS curves.

Gravimetric determination.

Determined by addition of analyzed constituents.

h Amad madian and range, respectively. Colculated from markyeas of digiticate monthly samples made by California Department of Public Health, Division of Loboraouses, or Univer Database Public Health Service.

London Status Calescopical Starvey, Calescopical Status Colorian of Status Calescopical Starvey, Calescopical Status 
ANALYSES OF SURFACE WATER CENTRAL VALLET NO. 8 (NO. 5) TABLE B-4

OL "PINE, " TEK AT P. . . LAN BAH . I . 94,

|                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |               |         | -       |     |     |     |     |     | _   |    |     |    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|---------|---------|-----|-----|-----|-----|-----|-----|----|-----|----|
|                         | Andryza<br>By 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Se al |               |         |         |     |     |     |     |     |     |    |     |    |
|                         | Mandhass bid Colform Analyzed os CaCOs ''; Mahayand bollope open and Colform bollope open per call below the colform below the call below the |       | Period<br>LDs | Sales . | Aut law |     |     |     |     |     |     |    |     |    |
| 3                       | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ì     | -             | 3       |         |     | 2   |     | -   |     | -   |    |     |    |
|                         | 1000<br>N C 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 10            | 4       |         |     |     |     | 9   |     | -   |    | -   | ,  |
|                         | Mardness<br>es CeCOs<br>Tord N.C<br>ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 4             |         | \$      | 2   | 5   |     | 2   | ,   |     | M. | 0   | 5  |
| 0                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | , A           | 2       | 7       | 5   | 7   |     | **  | -   | =   |    | 7   | -  |
| Tatai                   | Solved Sod -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 2             | 91.0    | ž       | 9)  | 3   | 1/2 | 3   |     | 1   | •  | 8   | ,  |
|                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |               |         |         |     | ,   |     |     |     | 4   |    |     |    |
|                         | Sinco<br>(5.0 <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |               |         |         |     | -1  |     |     |     | 7   |    |     |    |
| 00                      | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 1             | 9       | 1       | ?   | O.  | 7   | 71  | 3   | 1   | 3  | 4   | 4  |
| office a                | Fluo-Baron<br>ride (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -     |               |         |         | -   | 13  | -   | -   |     | 1/3 | -  | 1   | -  |
| equivalents per million | trote r<br>(NOs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |               |         |         |     | #   |     |     |     | 4.  |    |     |    |
| # qu. vole              | Chia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 1:            | 11.     | 37:     | 18  | 16  | 4.  | 15  | -4: | 1.  | #: | F   | 4. |
| ē                       | Sul<br>fore<br>(50 <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |               |         |         |     | 40  |     |     |     |     |    |     |    |
| constituents            | Bicar<br>banate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 0.50          | 10      | 1.      | 100 | 7.0 | 18. | 16. | -   | J*. | B  | JE. | -8 |
| 101 0008                | Carbon - (CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | #             | 500     | 1.      | 1.  | 18  | J.  | 8   | 35  | F   | 1. | 1.  | 1. |
| Mineral                 | Potos. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |               | _       |         |     | -   |     |     |     | 1.  |    |     |    |
|                         | Sadium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 6.1           | 0       | 4.      | 1.  | 201 | +   | 指   | 4.  | Œ   | +  | 7   |    |
|                         | Magner (Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |               |         |         |     |     |     |     |     | 7.  |    |     |    |
|                         | Calcium Magne-<br>(Ca) (My)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 1             | B       | H.77.   | 1   | 17: | 1.  | 1   | P.  | ₹.  | Į. | 1.  | 8  |
|                         | g<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 0             | -       | ۲.      | 5   | 2   | 5   | 3   |     | **  | 2  | 5   | 2  |
| Specific                | conductance pix a C (m.crombos pix a C 25° C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 10.00         |         | r       | 4/2 | ž   |     | 1-1 | 2   | ý.  | -  | L   | 4  |
|                         | 0501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 92            |         | 3       |     | ٧.  | 7   | ٧.  | E   | 2   | w  | Ŧ   | N  |
|                         | Dissolved<br>asygen<br>ppm %5ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -             |         |         |     |     | 7   |     |     | 3   | 3  | 3   | 3  |
|                         | 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |               |         |         |     | ÷   |     |     |     |     |    | -   |    |
|                         | Orscharge Temp Dissalvad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | į.            | ĕ       | -0      | ī   |     |     |     | 15  | ;   | :: |     |    |
|                         | and lime<br>sampled<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1959  | 177           | E#      |         |     |     | sl  | 1   | 100 | 28  | 11 | 53  | 81 |

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

|                                              |                         | _                         | _                   |      |              | -                |                   |       |                                           |             |       |         |                                           |       |      |      |  |
|----------------------------------------------|-------------------------|---------------------------|---------------------|------|--------------|------------------|-------------------|-------|-------------------------------------------|-------------|-------|---------|-------------------------------------------|-------|------|------|--|
|                                              |                         | Analyzed<br>by i          |                     | USGS |              |                  |                   |       |                                           |             |       |         |                                           |       |      |      |  |
|                                              | -                       | bid - Caliform 11y MPN/mi |                     |      | Median<br>22 | Maximum<br>2.400 | Minimum<br>0.046  |       |                                           |             |       |         |                                           |       |      |      |  |
|                                              | - Lo                    | bid -                     |                     |      | -            | cv               | 10                | 8     | 6                                         | 9           | -     | ev _    | 0.                                        | -     | m    | 8    |  |
|                                              |                         | COS                       | PPG                 |      | 12           | 9                | C.                | 9     | 0                                         | 0           | 0     | 0       | 0                                         | 0     | 0    | 0    |  |
|                                              |                         |                           | Tatol               |      | 100          | 8                | ま                 | 16    | 8                                         | 8           | 93    | 4       | 72                                        | 72    | 72   | 8    |  |
|                                              | i i                     | Cant<br>Sod -             | 5                   |      | 16           | 17               | 13                | 12    | 16                                        | 19          | 19    | 53      | 8                                         | 28    | 2    | 8    |  |
|                                              | Total                   | solids<br>solids          | mdd ui              |      | 1446         | 134e             | 1119 <sup>e</sup> | 1186  | 123 <sup>f</sup>                          | 120         | 108e  | 104     | 116 <sup>f</sup>                          | 108   | 110  | 113  |  |
|                                              |                         | Other good tale           | - 1                 |      |              |                  |                   |       | Fe 0.03 Al 0.01 d<br>PO <sub>b</sub> 0.10 |             |       |         | Fe 0.01 PO <sub>4</sub> 0.00 <sup>d</sup> |       |      |      |  |
|                                              |                         | Sile                      | (Z <sub>0</sub> (S) |      |              |                  |                   |       | 72                                        |             |       |         | 12                                        |       |      |      |  |
|                                              | lion                    | Boran                     | (8)                 |      | 0            | 0.1              | 0:0               | 0.0   | 0.0                                       | 0.0         | 0.0   | 0.0     | 0,0                                       | 0.0   | 0.0  | 0.1  |  |
| 12b)                                         | per million             | Fluo-                     |                     |      |              |                  |                   |       | 0.0                                       |             |       |         | 0.0                                       |       |      |      |  |
| (STA.                                        |                         | -                         | (NO3)               |      |              |                  |                   |       | 0.9                                       |             |       |         | 0.00                                      |       |      |      |  |
| FORMOOD                                      | parts pe<br>equivalents | Chlo-                     | -                   |      | 18           | 0.23             | 6.5               | 6.2   | 3.5                                       | 0.23        | 0.12  | 3.8     | 3.4                                       | 6.0   | 0.11 | 0.20 |  |
| SAR COT                                      |                         | Sui -                     | -+                  |      |              |                  |                   |       | 5.8                                       |             |       |         | 0.4                                       |       |      |      |  |
| OOD CREEK NEAR COTTONNOOD (ST                | constituents            | Bicar -                   |                     |      | 107          | 110              | 112               | 1.70  | 1.75                                      | 113         | 108   | 102     | 86.                                       | 108   | 106  | 104  |  |
| CONTIONNOOD CREEK NEAR COTTONNOOD (STA. 12b) | ol consi                |                           | (\$00)              |      | 0.0          | 0.00             | 0.00              | 0.00  | 0.00                                      | 0.00        | 0.0   | 0.00    | 0.0                                       | 0.0   | 0.0  | 0.0  |  |
| COPT                                         | Mineral                 | Potos- Co                 |                     |      |              |                  |                   |       | 0.03                                      |             |       |         | 0.04                                      |       |      |      |  |
|                                              |                         | Sodium                    | 6                   |      | 8.5          | 8.8              | 6.5               | 0.26  | 7.6                                       | 77.0        | 8.7   | 30      | 8.6                                       | 0.57  | 0.52 | 0.61 |  |
|                                              |                         | Mogne- Soc                |                     |      | 00           | ωlo              | olo.              | 90    | 9.0                                       | 60          | 800   | allo    | 8.4 8.                                    | FILO  | 216  | 6/0  |  |
|                                              |                         | um Mo                     | 3                   |      | 2.00°c       | 1.92             | .88: I            | 1.88° |                                           | 1.80°       | 1.62° | - ET. I |                                           | 1.440 | 2,44 | 09.1 |  |
|                                              |                         | Calcium                   | 2                   |      |              |                  |                   |       | 0.90                                      |             |       |         | 0.75                                      |       |      |      |  |
|                                              |                         | 2 8 C                     |                     |      | 7.1          | 7.3              | 7.5               | 7.3   | 7:3                                       | 7.3         | 7.6   | 0.0     | 7.9                                       | 7.8   | 7.6  | 8,1  |  |
|                                              | Specific                | (micramhas pH             |                     |      | 948          | 888              | 203               | 202   | 197                                       | 502         | 184   | 177     | 173                                       | 184   | 187  | 198  |  |
|                                              |                         | Dissolved                 | %Sot                |      | ь            | 8                | 83                | 8.    | 8                                         | 100         | 119   | 147     | 135                                       | 11.7  | 911  | 132  |  |
|                                              |                         | Disso                     | mdd                 |      | 10.1         | 11.8             | 10.2              | 4.6   | 9.2                                       | 6.8         | 5.6   | 11.3    | 11.0                                      | 11.2  | 11.5 | 13.9 |  |
|                                              |                         | Temp<br>In OF             |                     |      | 153          | 7.7              | 25                | 29    | 19                                        | Ę           | 88    | 76      | 8                                         | 69    | 19   | 99   |  |
|                                              |                         | Discharge Temp            |                     |      | 382          | 5662             | 831               | 540   | 377                                       | 186         | 59    | 20      | 53                                        | 76    | 85   | 81   |  |
|                                              |                         |                           | P.S.T               | 1959 | 1/5          | 2/3              | 3/13              | 4/10  | 5/4                                       | 6/2<br>0945 | 7/14  | 8/10    | 9/1                                       | 10/12 | 11/3 | 12/1 |  |

o Freid off.

Sum of calcium and magnesium in opm. Laboratary pH.

Sum of societies management in spin.

The first plantimism (M.) a storic (A.), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>16</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Gravimetric determination

Annual and even executaristy. Calculation mendators of displacements and a second contraction of Leaderscore, and Calculated States Calcul

# TABLE B-4 ANALYSES OF SURFACE WATER

C'HTRAL VALLEY TON (N . . .

|                  | Cent Hordness Fut College Analysed     |     |       |     |     |     |     | -   |       |     |           |     |      |    |  |
|------------------|----------------------------------------|-----|-------|-----|-----|-----|-----|-----|-------|-----|-----------|-----|------|----|--|
| -                | 4<br>E E                               |     |       |     |     |     |     |     |       |     |           |     |      |    |  |
|                  | 01.03                                  | _   |       |     |     |     |     |     |       |     |           |     |      |    |  |
|                  | 30-0                                   |     | ÷     |     |     |     |     |     |       |     |           |     |      |    |  |
|                  | Caco                                   |     |       |     |     |     |     |     | -     |     |           |     |      |    |  |
| -                | 18 00                                  | -   | 1     | 4   | ٨   | 4   | 4   |     | 31    | 3   | 1         |     |      |    |  |
|                  | 2505                                   | -   | 1     | 3   |     | -   |     |     |       | Ĭ.  |           |     |      |    |  |
| ,                | 00 00 00 00 00 00 00 00 00 00 00 00 00 |     | -     |     | 3   | ٩   | 3   |     | 1     |     | ٦         | 3   | 3    | -  |  |
|                  | Other constituents                     |     |       |     |     |     |     |     | 0     |     | See Marie |     |      |    |  |
|                  | (2.0.5)                                |     | d     | -3  | સો  | d   | 1   | V.  | Ť     | is. | T         |     |      |    |  |
| 001              | 5                                      |     | 3     |     |     |     | GT. |     |       |     |           |     |      |    |  |
| malton<br>ac men | 00-                                    |     |       | FE  |     | -   |     | 38  | .2    |     |           | 7   |      | 36 |  |
| à í              |                                        |     | -10   | -16 | 18  | -08 | -6  | ati | o. fr | 35  | 1         | d   |      | 25 |  |
| a challenge      | Chid<br>ride<br>(CI)                   |     | 7     | #   | 15  |     | oF  | 36  | F     | =0  |           | sE  | a Pr |    |  |
| 6                | Sul -<br>fole<br>(50 <sub>e</sub> )    |     | -     | E   | F   | ELO | f   | =7  | 16    | :1  | £         | ;E  |      | 2  |  |
| constituents     | Bicor<br>banate<br>(HCO <sub>5</sub> ) |     | -   c | ;Ĭ  | 25  | =E  |     | -   | 4     | -1  | 差         | S.  | 3    | 17 |  |
| Mineral con      | orban-<br>(CO <sub>3</sub> )           |     | 16    | -16 | .8  | :0  | .15 | 100 | TP.   | 2   | ::        | -2  |      | 10 |  |
| N.               | Patoe-<br>(x)                          |     | 7.7   | Ī   | e E | 36  | 11  | Œ   | 15    | T.  | 土         | 30  |      | -3 |  |
|                  | Sadium<br>(No)                         |     | 7 7   | F   |     | 2   | į.  | 10  | 10    | ьE  | -P        | 28  | d    | -8 |  |
|                  | Mogne.<br>s.um<br>(Mg)                 |     | 5. 4  | 1   | 1   | E C | Æ   | 1   | 2     | :6  | ,P        | 2   |      | -2 |  |
|                  | (Co)                                   |     | = 1   | eE. | el. | 0   | 2   | ±Ē. | 12    |     | d         | I.E | B    | £  |  |
|                  | e H                                    |     | 1     | -   | ė.  | -   |     |     |       |     |           | -   | i    |    |  |
| Sacrific         | Conductonce pH of at 25°C)             |     |       | š   | à   | ě   | á   | à   |       | ł   | *         |     | Ä    |    |  |
|                  | % Sat                                  |     | Q.    | li. |     |     |     |     | 8     | г   |           |     | П    |    |  |
|                  | Dissaired<br>oxygen<br>ppm [%Sat       |     |       | i   |     | :   |     | 51  |       |     |           |     |      |    |  |
|                  |                                        |     | Ť     | 1   | Ť   | ī   |     |     | ī     | E   |           | 2   |      | 5  |  |
|                  | Discharge Temp                         |     |       |     | ž   | 1   |     |     |       |     |           | 3   |      | 1  |  |
|                  | Date<br>and time<br>compied<br>P S T   | 198 | 12.0  | 88  |     | 31  | s), | N.  |       | 00  | 61        |     |      |    |  |

CENTRAL VALLEY REGION (NO.

Analyzed by 1 Coliformh MP N/mi Hordness bid - Cc as CaCO<sub>3</sub> ity M. Totol N.C. O \_ 122 128 132 Sod -9 9 9 Total dis-solved solids in ppm 162 f 158 £ 136<sup>f</sup> 153f J991 179£ 179r 185f 500g POh 0.00 Cu 0.01 d Other constituents 0.02 A1 0.01 127 Alk. 83 SOUTH FORK ABOVE COTTONHOOD CREEK (STA. 11b) Boron (B) 0.2 0.1 7. 9 porte per million 1.0 0.0 Flug-0.2 0.0 0.0 1.0 hrote (NO<sub>3</sub>) 0.0 0.0 0.0 0.0 71 14 14 Chlo-77 252 250 100 77.60 010 Sul -fora (SO<sub>4</sub>) ,c Mineral constituents 919 25 200 57 99. 163 0.07 Srum (X) 2.04 1.8 4.1 Sodium (Na) -12 - E 13 27.52 7.7 07.88 31 33 34 34 39 БНа Specific conductance (micromhos at 25°C) 288 545 278 ppm %Sot 8 Dissolved 8 102 88 22 8 88 Oxygen Discharge Temp 18 88 12 9 89 8 0.5 (eff.) Available 2 (eet.) 1.5 eet.) 0.5 Date and time sampled P S.T 6/2

Muncal analysis made by United Stores Goolagied Survey, Quality of Maner Branch (USGS); United Stores Department of the Interior & Bureau of Reclamation (USBR); United Stores (USBPR); Sam Burnardino County Flaod County (USBP); United Stores (USBPR); County Flaod County (USBP); United Stores (USBPR); County Flaod County (USBPR); Count

except as shawn.

reported here as 0.00

um (Cr +6),

manganese (Mn), zinc (Zn), and hexavalent chron

B-78

Loborotory pH. o Field pH

Sum of calcium and magnesium in epm.

Iron (Fe), aluminum (AI), arsenic (As), copper (Cu), lead (Pb), Derivad from conductivity vs TDS curves

Determined by addition of analyzed constituents. Gravimetric determination.

Anny un median and range, respectively. Colculated from analyses of duplicate monthly samples made by Colifornio Department of Public Health, Division of Laborators, or United States Public Health Service.

### ANALYSES OF SURFACE WATER TABLE 1-4

THE VALLEY CEGILS (No. 1)

|                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                         |          | -    | -    | _    |     |     |       |      |     |                            |     |  |
|-----------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------|----------|------|------|------|-----|-----|-------|------|-----|----------------------------|-----|--|
|                             |                      | Cent Merchaels Tub Co form Analysed of Cells of the Phylind of the Cells of the Cel |      |                                         |          |      |      |      |     |     |       |      |     |                            |     |  |
|                             |                      | We how                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                         |          |      |      |      |     |     |       |      |     |                            |     |  |
|                             |                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                         |          |      |      |      |     |     |       |      |     |                            |     |  |
|                             |                      | 0.03<br>0.03<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                         |          |      |      |      |     |     |       |      |     |                            |     |  |
|                             |                      | Pot of Po |      |                                         | ĕ.       | -    | 9    |      |     | 1   | +     | 0    |     | 7                          |     |  |
|                             |                      | 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                         |          | 1    |      |      | 7   |     |       |      | 7   | 187                        |     |  |
|                             | 1000                 | 000 Dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 3                                       | 3        | 4    |      | 4    |     |     | Ŷ     | B    | 8   | 3                          | 3   |  |
|                             |                      | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                         |          |      |      | 31   |     |     |       | 1000 |     |                            |     |  |
|                             |                      | (\$10.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 4                                       | -        |      | ij.  | al   | 3   |     |       | H    |     |                            |     |  |
|                             | 100                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1                                       | 3        | 51   |      | 9    | 3   |     | 1     | 7    | a.  |                            |     |  |
| and.                        | muliton              | F100-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | . 8                                     | 18       | 36   | 33   | 1    | 1   |     |       | 16   |     |                            |     |  |
|                             | porte per million    | N<br>1,014<br>(NO3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 75                                      | - 00     |      | 1/8  | 1    | 3/5 | JE. |       | 15   |     |                            |     |  |
| VIETS (                     | 0.                   | Chid-<br>ride<br>(Ci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 0.10                                    | 0.30     | 1.0  | 17.  | JE.  | 4   | 1   | 1     | 16   | 1/3 |                            | 1.  |  |
| AR MILI                     | 6                    | 5ut<br>fate<br>(50g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                         | 10       | 1    | 13   | 中    |     | 4   |       | 1/2  |     |                            |     |  |
| TOW TREEK NO.AR MILLVILLE ( | elituenti.           | Brcar-<br>bonate<br>(MCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 30.0                                    | 40       | 8    | 1300 | L.I. | 1.  | 4   | JE.   |      |     | 12<br>  12<br>  12<br>  12 | 1   |  |
| 100                         | Minaral constituents | Patas- Carbon<br>sum<br>(K) (CO <sub>S</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | -18                                     | 18       | 8.0  | 18   | 18:0 | 0.0 | 8   | 16.   | 13   | 18  | 12.                        | - 2 |  |
|                             | Min                  | Parae.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 30                                      | 8        | 30   | 45   | 18   | şF. | 10  |       |      |     |                            |     |  |
|                             |                      | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 7:5                                     | 1        | #    | 4    | 16   | ₹.  | F   | J.    |      | į.  | 北                          | 16  |  |
|                             |                      | Magne.<br>e.cm<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3/2                                     | . 6.     | 0.00 | 180  | : 0  | 1.  |     |       | 1    |     | 48                         |     |  |
|                             |                      | Calcium<br>(Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1.                                      | <u>a</u> | #    | B    | 1    | 1   | -18 | Ŀ     | 0    | -   | Ţ.                         | 1   |  |
|                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                         |          | 3    |      | 4    | 3   | 3   | *.    | 3    | 9   | 1                          |     |  |
|                             |                      | Specific<br>conductance<br>micrambae<br>at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 7                                       | 141      | 171  | ā    | 8    | 2   |     |       | •    |     |                            | 9   |  |
|                             |                      | 6.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | -                                       |          | 3    |      | -    | 100 | ,   |       | 8    | -   | ï                          | 3   |  |
|                             |                      | Dissolved<br>oxygen<br>ppm %5501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                         |          | -    | ė,   | 7    |     | 1   |       | 7    | Y   | 3                          |     |  |
|                             |                      | 60 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                         | -        | 4    |      |      | ě.  | ۲.  |       |      |     |                            | ξ,  |  |
|                             |                      | Dischorge Temp Dissolved Soferchic PH<br>In cfe in F caygen (instrument PH<br>ppm %550t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 2                                       |          | 1    | 2    | 2    | 1   | 3   |       | Ŧ.   |     |                            | 1   |  |
|                             |                      | Dore cond time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1,00     | 10   | 7.5  | - 1  | 10  | 93  | i.who |      |     | 1.                         |     |  |

CENTRAL VALLEY REGION (NO. 5)

| ſ                                                |              | Anolyzed<br>by 1                                                    | usas  |                |                   |                |       |                                              |                     |         |      |                                                    |      |      |       | <br> |   |
|--------------------------------------------------|--------------|---------------------------------------------------------------------|-------|----------------|-------------------|----------------|-------|----------------------------------------------|---------------------|---------|------|----------------------------------------------------|------|------|-------|------|---|
|                                                  | £            | Hordness bid - Coliform" os CaCO <sub>3</sub> ify MPN/ml foral N C. |       | Median<br>112. | Meximum<br>2,000. | Minimum<br>6.2 |       |                                              |                     |         |      |                                                    |      |      |       |      |   |
|                                                  | 15           | - bid<br>in pom                                                     |       | 8              | н                 | 35             | 35    | 95                                           | 10                  | 6       | 80   | 9                                                  | 8    | 10   | 8     |      |   |
|                                                  |              | Hordness<br>os CaCO <sub>3</sub><br>Total N.C.<br>ppm ppm           |       | Φ.             | 0                 | -              | 0     | 0                                            | 0                   | 0       | 0    | 0                                                  | 0    | 0    | 0     |      |   |
|                                                  |              |                                                                     |       | 37             | 28                | 3              | 55    | 69                                           | 73                  | 29      | 25   | ಹೆ                                                 | 99   | 7    | 72    | <br> |   |
|                                                  | Per          | and - bod -                                                         |       | 8              | %                 | 8              | 23    | 30                                           | 33                  | 32      | 33   | 35                                                 | 8    | 27   | 8     |      |   |
|                                                  | Tatol        | solids<br>in ppm                                                    |       | 649            | 105e              | 1000           | 976   | 120f                                         | 145°                | 110°    | 1100 | 158 <sup>f</sup>                                   | 1186 | 122° | 1%e   |      |   |
|                                                  |              | Other constituents                                                  |       |                |                   |                |       | PO <sub>2</sub> <u>0.45</u> Al <u>0.21</u> d |                     |         |      | Pe 0.02 Zn 0.03 d<br>PO <sub>1, 0.25</sub> Al 0.05 |      |      |       |      |   |
|                                                  |              | (ZOIS)                                                              | -     |                |                   |                |       | 17                                           |                     |         |      | 8                                                  |      |      |       |      | 1 |
|                                                  | 00           | Boron Si<br>(B) (S                                                  |       | 0.0            | 0.0               | 0.0            | 0,1   | 0.1                                          | 0.1                 | 0,1     | 0.1  | 0,1                                                | 0:0  | 0,2  | 1,0   |      |   |
| 4. 98)                                           | per million  | Fluo-<br>ride<br>(F)                                                | -     |                |                   | -              |       | 0.1                                          |                     |         |      | 0.00                                               |      |      |       |      | 1 |
| rovs (sr                                         |              | N -<br>trote<br>(NO <sub>3</sub> )                                  |       |                |                   |                |       | 0.02                                         |                     |         |      | 0.0                                                |      |      |       |      |   |
| ALMUT GF                                         | equivolents  | Chlo-<br>ride<br>(CI)                                               |       | 5.0            | 8.5               | 7.5            | 5.8   | 0.34                                         | 114<br>0.39         | 9.5     | B.0  | 0.48                                               | 8.5  | 9.5  | 16    |      |   |
| WEAR W                                           | Ē            | Sul -<br>fate<br>(SO <sub>4</sub> )                                 |       |                |                   |                |       | 0.27                                         |                     |         |      | 0,27                                               |      |      |       |      |   |
| HANNEL                                           | constituents | Bicor-<br>bonate<br>(HCO <sub>3</sub> )                             |       | 35             | 1.21              | 1.15           | 01.10 | 1.36                                         | 1:54                | 1.16    | 1.23 | 1.93                                               | 1.49 | 1.49 | 1.51  |      |   |
| DELITA CROSS CHANNEL NEAR WALNUT GROVE (STA. 98) |              | Carbon-<br>ote<br>(CO <sub>3</sub> )                                |       | .000           | 0.0               | 0.00           | 0.00  | 0.0                                          | _<br> 8<br> 0<br> 0 | 0.0     | 000  | 0.0                                                | 000  | 0.0  | 0.00  |      | 1 |
| DELLEV                                           | Mineral      | Potos- C<br>K)                                                      |       |                |                   |                |       | 0.03                                         |                     |         |      | 1.7                                                |      |      |       |      | 1 |
|                                                  |              | Sadium<br>(No)                                                      |       | 4.3            | 9.4               | 7.4            | 7.5   | 14                                           | 36                  | 12 0.52 | 0.57 | 0.91                                               | 0.57 | 12   | 13    |      |   |
|                                                  |              | Mogne-<br>sium<br>(Mg)                                              |       |                |                   |                |       | 9.8                                          |                     |         |      | 9.5                                                |      |      |       |      |   |
|                                                  |              | Colcium<br>(Co)                                                     |       | 0,776          | 1.16              | 1. 8           | 1.10  | 11<br>0.55                                   | 1.16                | 1.12    | 1.11 | 0.90                                               | 1.36 | 1.10 | 17.11 |      |   |
|                                                  |              |                                                                     |       | 7:             | 7.3               | 7.3            |       | 7.3                                          | 7.5                 | 3       | 2    | 2                                                  | 3    | 7.3  | 7.3   |      |   |
|                                                  | Spanific     | conductance<br>(micramhos pH<br>at 25°C)                            |       | 97.0           | 159               | 151            | 146   | 191                                          | 573                 | 167     | 166  | 52                                                 | 179  | 184  | 190   |      |   |
|                                                  |              | gen (n                                                              |       | 16             | 51                | 16             | 55    | 83                                           | 8                   | 33      | 93   | 8                                                  | 95   | 78   | 85    |      |   |
|                                                  |              | Diesalved<br>oxygen<br>ppm %Sat                                     | -     | 10.1           | 10.5              | 7.6            | 9.6   | 1.5                                          | 6-1                 | <br>    | 8.1  | 8.2                                                | 8.8  | 8,2  | 9.6   |      | 1 |
|                                                  |              |                                                                     |       | 25             | 9                 | 22             | 92    | 0,                                           | 57                  | r.      | 73   | #                                                  | 49   | 95   | 64    |      | 1 |
|                                                  |              | Discharge Temp                                                      | Tidel |                |                   |                |       |                                              |                     |         |      |                                                    |      |      |       |      |   |
|                                                  |              | ond time<br>sompled<br>P.S.T.                                       | 1959  | 1/14           | 2/9               | 1/11           | 4/1   | 5/13                                         | 6/8                 | (/)     | 8/10 | 9/7                                                | 10/5 | 11/2 | 12/7  |      |   |

a Field pH.

b Laboratory pH.

Sum of calcium and magnesium in agm. Iron (Fa), aluminum (AI), argenic (A2), coppar (CU), load (Pb), manganesa (Mn), zinc (Zn), and hexavalent chromium (G1<sup>-6</sup>), reported have as  $\frac{0.0}{0.00}$  except as shown. Sum of calcium and magnosium in apm.

Derived from conductivity vs TDS curves.

Gravimetric determination.

Determined by addition of analyzed constituents.

Musel entyear ande by United States Geological Survey, Quolity of Water Branch (USSS), United States Disparament of the Institute. Burkey and Residence in No. 1998 (United States Calculated States Control States Control States (United States Calculated States Control States Control States (United States Calculated States Control States Control States (United States Calculated States Calculated States Calculated States Control States (United States Calculated Annual median and range, respectively. Calculated from analyses of duplicate menthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

ANALYSES OF SURFACE WATER TABLE B-4

DELIZA-MENDOTA CAMAL NEAR MENDOTA (STA. 92) ENTRAL VALLET STOM (S)

|                         | Anoryzed<br>by i                                        |     | 12        |            |                |       |                |     |      |       |                 |      |      |        |
|-------------------------|---------------------------------------------------------|-----|-----------|------------|----------------|-------|----------------|-----|------|-------|-----------------|------|------|--------|
|                         | Mordness Bud - Co form Analysed as CoCOs 17 MPN/ms By I |     | 100       | 690<br>690 | Minimum<br>0 % |       |                |     |      |       |                 |      |      |        |
|                         | 7.00                                                    |     | 35        | 70         | N              | Y     | 6.             | A.  | 2    | ~     | 8               | .0.  | Y,   | R      |
|                         | Mordness<br>es CeCOs                                    | 600 |           | 6.7        | 2              |       | 93             | ×   | £    |       | 8               | 67   | ~    | 2      |
|                         | Pord<br>Totol                                           | 300 | 127       | 156        | 171            | -     | 200            | ř   | 8    | -     | ped .           | 5    | 173  | 7.     |
|                         | 1000                                                    |     | 0         | J          | d.             | 6     | %              | 9   | 0    | 9     |                 | 0    | 8    | CF     |
| Te101                   | 20 00 00 00 00 00 00 00 00 00 00 00 00 0                |     | 3         | 3          | Jun.           | 200   | 50             | *g  | °oy. | 716   | 200             | 4100 | Ŧ    | 428    |
|                         | Other constituents                                      |     |           |            |                |       | A1 22 POL 20 d |     |      |       | 70 .11 Ln .74 6 |      |      |        |
|                         | Sii.co                                                  | T   |           |            |                |       | 21             |     |      |       | 21              |      |      |        |
| 000                     | 5                                                       |     | 100       | 70         | ी              | 100   | 0 0 0          | 0+1 | 0 0  | 000   | - C             | 3,1  | 3    | Dolla. |
| 10 /01                  | F100-                                                   |     |           |            |                |       | 200            |     |      |       |                 |      |      |        |
| equivolente per million | N 1                                                     |     |           |            |                |       | 1.6            |     |      |       | « E.            |      |      |        |
| 0.0000                  | Chia                                                    |     | 2         | 200        | 223            | 21.   | 101            | 8 2 | RE:  | 21/10 | THE STREET      | 1.01 | 95.  | SE.    |
| 01 4                    | \$01 -<br>fare<br>(50.)                                 |     |           |            |                |       | 100            |     |      |       | 3               |      |      |        |
| constituents            | Brcor-<br>bonate<br>(MCO.)                              |     | 8Ē        | sř.        | 107            | 22.50 | 152            | 31: | 7    | 88    | 8E              | 3E   | 郭    | 819    |
| Mineral cor             | Potas Carbon -                                          |     | 0.00      | 0          | 0.0            | 0.0   | 0.0            | 000 | 000  | 0     | 0.0             | 000  | 0.0  | C 6    |
| Min                     | Potas.                                                  |     |           |            |                |       | 3.6            |     |      |       | 9 7             |      |      |        |
|                         | Sodium<br>(No)                                          |     | 38        | 28         | 2 0            | 24.5  | 66             | 200 | E.   | at:   | 13              | E.   | 200  | 711    |
|                         | Mogne-<br>e.um<br>(Mg)                                  |     |           |            |                |       | 92 F.          |     |      |       | 100             |      |      |        |
|                         | Colc.um<br>(Co)                                         |     | E-7       | E          |                | 3.76  | 13/12          | 10. | E    | P.    | t               | 0.1  | 27.1 | E.     |
|                         | e I o                                                   |     | 7.4       | 7,1        | 7.4            | 7+7   | 2              | 7.6 | 7.5  | 7.5   | 7° V            | 7.5  | 7.0  | 7.,7   |
| and in the same         | Dissolved condictores oaygen (micromhos oaygen ot 250C) |     | 695       | 716        | 533            | 34,5  | i.             | 139 | 157  | 0201  | 129             | 33   | 7 1  | 33     |
|                         | 9 00                                                    |     | -         | 16         | 8              | 66    | 7              | 8   | 8    | g/    | ą.              | 6    | 8    | R      |
|                         | Dieselved<br>osygen                                     |     | 70        | 10.0       | 9.1            | -2    | C1 0           | 6.2 | -,   | 5.5   | 7.2             |      | V.   | 9      |
|                         | 90 1                                                    |     | 25        | 23         | Ĉ.             |       | 8              | 2   | -    | 2     | K               | 9    | 39   | 29     |
|                         | Discharge Temo                                          |     | for Kated |            |                |       |                |     |      |       |                 |      |      |        |
|                         | Date<br>and time<br>amoted<br>P S T                     |     | 1959      | 1.00       | 1/3            | 54    | 101            | 4   | 201  | 33    | 52              | 1    | 5    | 5      |

And the state of t

|                                           |                         | Analyzed<br>by i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11505 |                |                   |                 |              |                  |            |                |            |                                                  |         |        |                  |      |
|-------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|-------------------|-----------------|--------------|------------------|------------|----------------|------------|--------------------------------------------------|---------|--------|------------------|------|
|                                           | ,                       | bid - Coliform Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | Median<br>180. | Yaximum<br>7,000. | Minimum<br>0.23 |              |                  |            |                |            |                                                  |         |        |                  |      |
| Ì                                         | Tar.                    | - pig<br>- pig |       | н              |                   | 20              | S            | 1710             | 877        | 35             | 2          | 15                                               | 35      | 22     | 30               |      |
|                                           |                         | SO NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 15             | 63                | 917             | 09           | 56               | 11         | 23             | 29         | 277                                              | 22      | 65     | 73               |      |
|                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 150            | 173               | 135             | 134          | 35               | 88         | 103            | 134        | 122                                              | 108     | 182    | 193              | <br> |
|                                           | d                       | sod -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 23             | 53                | 8               | 97           | 77               | 175        | 다              | 18         | 88                                               | 23      | 8      | 86               |      |
|                                           | Totol                   | solved<br>solids<br>in ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 398            | 1,53°             | 3170            | 298          | 195              | 161        | 246            | 4667       | 34.95                                            | 262°    | 1,57°  | 783 <sub>e</sub> |      |
|                                           |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                |                   |                 |              | Fe 0.05 POL 0.25 |            |                |            | Fe 0.07 ON 0.02<br>FO <sub>11</sub> 0.15 A1 0.11 |         |        |                  |      |
|                                           |                         | (SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                |                   |                 |              | 27               |            |                |            | 91                                               |         |        |                  |      |
|                                           | lon                     | Baran Silica<br>(B) (SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 7              | 5                 | 0,5             | 5            | 0,2              | 1,         | 0.1            | 7          | 7                                                |         | 0,4    | 0.2              |      |
| 165                                       | million<br>er mil       | Fluo-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                |                   |                 |              | 0.2              |            |                |            | 0.0                                              |         |        |                  |      |
| (STA.                                     | equivalents per million | NI-<br>trate<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                |                   |                 |              | 8.0<br>0.0       |            |                |            | 0.0                                              |         |        |                  |      |
| DRITA-NEWDYNYA CAMAL NEAR TRACY (STA. 937 | equiva                  | Chlo-<br>ride<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 3.41           | 3,72              | 2,62            | 73           | 1,21             | 32.        | 99 <u>1.85</u> | 206        | 3.64                                             | 81 2.28 | 14.2   | 160              |      |
| ANAL NEV                                  | <u>c</u>                | Sul -<br>fate<br>(SO <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                |                   |                 |              | 34               |            |                |            | 34<br>0.71                                       |         |        |                  |      |
| NUMBA C                                   | stifuent                | Bicar-<br>bonate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 11.90          | 2.20              | 109             | 90<br>1,18   | 133              | 87<br>1.13 | 1.59           | 82<br>1.34 | 1.61                                             | 105     | 150    | 2,39             |      |
| PETTA-NE                                  | Mineral constituents    | Carbon-<br>ate<br>(CO <sub>5</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 0              | 0.0               | 010             | 0.0          | 0.0              | 0.0        | 0.00           | 0.0        | 0.0                                              | 0.0     | 0.0    | 0.0              |      |
|                                           | Min                     | Potas-<br>sium<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                |                   |                 |              | 1.9              |            |                |            | 0.12                                             |         |        |                  |      |
|                                           |                         | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 3.22           | 107               | 6f.<br>2,96     | 2.26         | 32               | 27         | 2,18           | 320        | 3.26                                             | 3,8     | 90° 17 | 107              |      |
|                                           |                         | Mogne-<br>sium<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                |                   |                 |              | 9.0              |            |                |            | 1.24                                             |         |        |                  |      |
|                                           |                         | (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 3.00           | 3.46              | 2.69°           | 2.68         | 21<br>1.05       | 1.64°      | 2.07           | 2.68       | 24                                               | 2.16    | 3.640  | 3.86             |      |
|                                           |                         | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 7.3            | 7.8ª              | 7.1.8           | 7.70         | 7.3a             | 7.32       | 3.3            | 2.         | 7.3                                              | · · ·   | 8.13   |                  |      |
|                                           | Spacific                | (micromhos<br>at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 707            | 805               | 9179            | 000          | 337              | 30F        | 36.7           | r Ness     | 909                                              | 5017    | 813    | 857              |      |
|                                           |                         | year (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | S              | 100               | 06              | 97           | 18               | E          | 63             | 2          | 6                                                | 8       | 123    | 117              |      |
|                                           |                         | Dissalved<br>oxygen<br>ppm %Sat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 9              | 27.5              | 6.0             | -7<br>-0     | 7.0              | 7.3        | 7-7            | G. B.      | 7.0                                              | 7.0     | 12,3   | 13.1             |      |
|                                           |                         | Te ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | B              | G!                | 19              | 63           | 20               | 22         | 75             | 79         | 92                                               | 99      | 9      | C.               |      |
|                                           |                         | Discharge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 0              | 165               | 1,660           | 2,541        | 1,620            | 3,360      | 3,24.B         | 3,129      | 3,270                                            | 1,670   | 960    | 12/20            |      |
|                                           |                         | ond time<br>sompled<br>P.S.T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1959  | 1/13           | 2,733             | 3/12            | L/2<br>11:10 | 5/13<br>09U5     | 1200       | 1200           | 1345       | 9/7<br>11:30                                     | 10/5    | 11/2   | 12/7             |      |

b Labaratory pH.

Sum of colcium and magnessum in spin.

Inn (2,1), arsenic (43), cosper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hazavolent chromium (Cr<sup>16</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. Sum of colcium and magnessum in epm.

Gravimetric determination.

Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

Annul medan and arrays craspertively. Calculated from and yeas of duplicate monthly samples monthly samples monthly samples monthly samples monthly samples monthly samples monthly can be monthly samples monthly can be monthly samples mont

### ANALYSES OF SURFACE WATER TABLE B.4

CENTRAL VALLEY REGION (NO. 5)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sedium<br>(No) |                                    |                                              |                                      | e doinglents |      | neilin med | 000 |        |                    | Total       |      |                                              |                                                       |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------|----------------------------------------------|--------------------------------------|--------------|------|------------|-----|--------|--------------------|-------------|------|----------------------------------------------|-------------------------------------------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 8:0m 01e<br>(K) (CO <sub>3</sub> ) | n - Bicor -<br>bonate<br>(HCO <sub>3</sub> ) | Sul -<br>fore<br>(\$0 <sub>0</sub> ) | Chio-        |      | 1000       |     | 02015) | Other constituents | - 90 perios | 1005 | Merdness<br>sa CeCOs<br>Forei N.C<br>ppm ppm | Mardones and Coliform as CaCO <sub>3</sub> in Mark/ma | Analyzed<br>by 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                    |                                              |                                      |              |      |            |     |        |                    |             |      |                                              |                                                       | T                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38             | 5.6                                | 2.21                                         | 1.36                                 | 3.16         | 0.08 | 1.0.0      | ~   | 2      | 70                 |             |      |                                              | 9                                                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 7            | 0.00 P                             | 2.13                                         | 76<br>1 1 B                          | 3 74         | 3.5  | C+ C       | 7   | 8      | 70                 | ŝ           | 2    | 7.3                                          | 3                                                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49<br>FT. 9    | 3 8 71.0                           | 101                                          | 1 27                                 | 85<br>31     | 1 ×  | 0          | 3   | -      | 32                 | į.          | 6    | -                                            |                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.57          | - F                                | TE.                                          | 9 2                                  | 21.5         | 20.0 | 05)E       | 1   | x)     | 0                  | 1           | ò    | Ж.                                           |                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86             | 8                                  | 1                                            | 192                                  | S   C        | 9 8  | 0          | 2   | 4      |                    | 196         | 5    |                                              |                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 2            | 21.0                               | 166                                          | ~==                                  | 18           | =    | Ŧ          | 3   | ĸ      | 0 2                | 5           | Ť    |                                              | -                                                     |                  |
| 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of.            | #                                  | 8 1 28                                       | E                                    | 2 8          | -18  | a t        | 0   | (d)    | 87 2               | Ī           | r    |                                              |                                                       |                  |
| 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 238            | 0010                               | 311                                          | 2                                    | 27           | - 12 | 1          | 7   | 11     |                    | 1           |      |                                              |                                                       |                  |
| E C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200            | · ·                                | 18                                           | SK.                                  | æ            | 100  | 1          |     | 3]     | 101 4              | Ī           | ÷    | ÷                                            |                                                       |                  |
| 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F              | 0 0 0                              | 22                                           | 42                                   | 92           |      |            | 1   |        | - 4                | 8           | 2    | ÷                                            |                                                       |                  |
| The same of the sa | 138            | 9 2                                |                                              | s.P                                  | 1, 2         | 1    | T          | v   |        | 10 4               | 1           |      | 1                                            |                                                       |                  |
| 259 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J.             | 2.6                                | 2 7                                          | 12.                                  | 2/2          | 业    | 3          |     | 1      |                    | ŝ           | 3    | Ŧ                                            |                                                       |                  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J.             | 10                                 | 3Ľ                                           | F                                    | 1            | 10   |            | T   | d      |                    | ī           | Ġ    |                                              |                                                       |                  |
| 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -              | 1                                  | -                                            | 28                                   | -4           |      |            |     |        | 70                 | ř           | £    |                                              |                                                       |                  |

telul : " " = " | en | es en | especie | en en especie | en en es es en es

And the second s

ANALYSES OF SURFACE WATER TABLE B-4

|                                                                |                         | Anolyzed<br>by 1              |                       | SDGO |            |         |             |             |             |                  |            |             |         |         |             |             |  |
|----------------------------------------------------------------|-------------------------|-------------------------------|-----------------------|------|------------|---------|-------------|-------------|-------------|------------------|------------|-------------|---------|---------|-------------|-------------|--|
|                                                                |                         | bid - Coliformh<br>ity MPN/ml |                       |      |            |         |             |             |             |                  |            |             |         |         |             |             |  |
|                                                                | ,                       | - pid<br>- Liy                |                       |      |            |         |             |             |             |                  |            |             |         |         |             |             |  |
|                                                                |                         | Hardness to cacO <sub>3</sub> | Tatal N.C.<br>ppm ppm |      | 9          | 2       | 79          | 8           | 73          | C. 47            | 8          | 104         | 37      | 4       | 95          | 66          |  |
|                                                                |                         |                               |                       |      | 122        | 130     | 1,48        | 152         | 142         | 114              | 104        | 258         | 126     | 156     | 232         | 178         |  |
|                                                                | -                       | e od                          |                       |      | 20         | 89      | 19          | 67          | 19          | 63               | 57         | 53          | 51      | 50      | 51          | 25          |  |
|                                                                | Total                   | solids                        | e p                   |      | 536        | 432     | 996         | 996         | 684         | 384              | 294        | 643         | 321     | 387     | 579         | 864         |  |
|                                                                |                         | Other constituents            | - 1                   |      | Fe 0.01    | Fe 0.02 | Fe 0.04     | Fe 0.00     |             | Fe 0.02          | Fe 0.02    | Fe 0.00     | Fe 0.02 | Fe 0.00 | Fe 0.00     | Fe 0.00     |  |
| ed)                                                            |                         | Silica                        | (2015)                |      | 19         | 18      | 19          | 8           | 19          | El               | 2          | 80          | 10      | 2       | 13          | 8           |  |
| ontino                                                         | lon                     | Baron Silica                  | (g                    |      | 0:         | 0.0     | 0.2         | 0.1         | 6           | 0.2              | 0.2        | 0.5         | 0.5     | 0.2     | 7.0         | 6.0         |  |
| . 93 0                                                         | million<br>er mil       | Fluo-                         | (F)                   |      | 0.0        | 0.0     | 0.0         | 0.0         | 0.0         | 0.0              | 0.0        | 0.0         | 0.0     | 0.1     | 0.0         | 0.0         |  |
| ANT (STA                                                       | aquivalents per million | - Ni -                        | $\overline{}$         |      | 0.0        | 0.03    | 2.2         | 1.5         | 0.03        | 0.0              | 0.0        | 0.05        | 1.4     | 0.0     | 2.4         | 0.02        |  |
| PINT PL                                                        | d oving a               | Chio-                         | (CI)                  |      | 8.5<br>1.7 | 3.30    | 7.22        | 7.28        | 212<br>5.98 | 151              | 8/2/       | 204<br>5.75 | 2.90    | 3.21    | 3.25        | 3.75        |  |
| RACY PUR                                                       | 01 83                   | Sul -                         | - 1                   |      | 33         | 0.87    | 1.02        | 39          | 0.90        | 35               | 09.0       | 93          | 33      | 1.00    | 81<br>1.69  | 1.23        |  |
| AL AT T                                                        | stifuen                 | Bicor-                        | (нсоэ)                |      | 93         | 1.20    | 84<br>1.38  | 86          | 84<br>1.38  | 1.44             | 1.51       | 3.08        | 108     | 136     | 2.93        | 145<br>2.38 |  |
| DELTA-MENDOTA CANAL AT TRACY FUNDINT PLANT (STA. 93 continued) | Mineral constituents    | Carbon-                       | (co <sub>3</sub> )    |      | 0.00       | 0.00    | 0.0         | 0.0         | 0.00        | 0.0              | 0.0        | 0.0         | 0.0     | 0.0     | 0.0         | 0.0         |  |
| CTA-MEN                                                        | W                       | Potos-                        | (K)                   |      | 3.6        | 0.11    | 6.8         | 6.4         | 5.8         | 4.4              | 3.5        | 6.4         | 3.9     | 0.12    | 6.4<br>0.16 | 0.12        |  |
| DE                                                             |                         | Sodium                        | (NO)                  |      | 59<br>2.57 | 102     | 147<br>6.39 | 147<br>6.39 | 5.35        | 94               | 99<br>2.87 | 136<br>5.92 | 63      | 3.26    | 3.05        | 8 %         |  |
|                                                                |                         | Mogna-                        | (Mg)                  |      | 17.39      | 1.50    | 1.57        | 23          | 17.7        | 1.33             | 1.18       | 33          | 17      | 17      | 25.05       | 1.51        |  |
|                                                                |                         | Colcium                       |                       |      | 1.05       | 1.10    | 28          | 23          | 1.10        | 0.99             | 0.90       | 2.45        | 1.10    | 34      | 2.59        | 2.05        |  |
|                                                                |                         | °H.                           |                       |      | 8.0        | 7.9     | 7.8         | 7.8         | 7.7         | 7.9              | 7.9        | 8.2         | 8.0     | 8.0     | 7.2         | ci.         |  |
|                                                                | Concellio               | (micromhos                    |                       |      | 516        | 780     | 997         | 1,030       | 877         | 169              | 520        | 1,110       | 531     | 199     | 1,010       | 77.0        |  |
|                                                                |                         |                               | %Sat                  |      |            |         |             |             | _           |                  |            |             |         |         |             |             |  |
|                                                                |                         | Discolvad                     | mdd                   |      |            |         |             |             |             |                  |            |             |         |         |             |             |  |
|                                                                |                         | Temp                          |                       |      |            |         |             |             |             |                  |            |             |         |         |             |             |  |
|                                                                |                         | Discharge Temp                |                       |      |            |         |             |             |             |                  |            |             |         |         |             |             |  |
|                                                                |                         | Dote<br>and time<br>sampled   | P.S.T                 | 1959 | 7/1-13     | 7/14-24 | 7/25-31     | 8/1-9       | 8/10-16     | 8/17-31<br>9/1-8 | 9/6-18     | 9/19-25     | 9/26-30 | 10/1-14 | 10/15-21    | 10/22-31    |  |

Sum of calcium and magnesium in epm. b Laboratory pH.

Sum of calcum and magnessum in agm.

Let (2, ), inclination (41), arrange (20), lead (Pb), manganese (Mn), zinc (2n), and heravialent chromium (Ci<sup>+6</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. Determined by addition of analyzed constituents. Denved from conductivity vs TDS curves

Annual median and integratively. Calculated from and yeas of duplicate monthly samples most by Calculana Department of Poblic Health, Deviator of Laboratories, or Unived States Poblic Health Service.

Kennel branch season of the States Caelagical Service, Queline of Water Backer (USDS), Unived States Department of the Internet States Caelagical Service, Queline of Water Backer (USDS), Unived States Poblic Health Service (USPS), San Bernaldine County Flood

Control Department of States of Water Backer (USDS), Unived States Department of Water and Power (USDPP), Calculated States (USDP), States (USDPP), Calculated States (USDP), Calcula Gravimetric determination.

B-84

### ANALYSES OF SURFACE WATER TABLE B-4

CENTRAL VALLEY (COLON (NO. 5

|                                                 | _                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |      |      |       |      | -   |                |      |  |  |  |  |
|-------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|-------|------|-----|----------------|------|--|--|--|--|
|                                                 |                         | Office can't Marganger out. Coffeen Angleted colds and cold and cold and cold and cold and colds cold and cold and cold and colds cold and | ñ     |      |      |       |      |     |                |      |  |  |  |  |
|                                                 |                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 | -                       | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 | -                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 |                         | Margna<br>as CeC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 |                         | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 | 10 10 10                | 0 e E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 8    | 9%   | 2     | 1    | į.  | 2              | 2    |  |  |  |  |
|                                                 |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 |                         | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 | 100                     | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |      |       |      |     |                |      |  |  |  |  |
| 1066)                                           | mullion<br>Br mili      | F (VG-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |      |      |       |      |     |                |      |  |  |  |  |
| DATECH BLOXOR AT FARRAR PARK BRIDGE (STA, 1085) | equivalents par million | N Fiua- Baron Suica<br>irais (8) (3:0g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |      |       |      |     |                |      |  |  |  |  |
| K BRIDG                                         | DAING .                 | Chio-<br>rids<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |      |       |      |     |                |      |  |  |  |  |
| RAR PA                                          | ç                       | Sul -<br>fate<br>(SO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |      |       |      |     |                |      |  |  |  |  |
| R AT FA                                         | atifusof.               | Bicar-<br>bonats<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |      |       |      |     |                |      |  |  |  |  |
| CH BLOUG                                        | Mineral constituents in | Catcum Wagner Sadum Potas Carbon Bicar Sul- (Ca) (Wg) (Na) sum aum 010 bonds fats (KG) (HQ) (KG) (SO <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |      |       |      |     |                |      |  |  |  |  |
| DATE:                                           | Min                     | Potas-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 |                         | Sadium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 |                         | Magne-<br>trum<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 |                         | Calcium<br>(Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 | Specific                | Osscharge Yamp Dissolved conductoring PM in cfs in appara (micrombos PM payars) object at 250 CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 249  | 366  | 1,819 | 2,29 | 246 | s <sub>1</sub> | 2 *1 |  |  |  |  |
|                                                 |                         | Dissolved<br>anygen<br>ppm %3at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |      |       |      |     |                |      |  |  |  |  |
|                                                 |                         | Te al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 69   | 00   | 48    |      | 67  | 69             | -    |  |  |  |  |
|                                                 |                         | Orecharge<br>in che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tidal |      |      |       |      |     |                |      |  |  |  |  |
|                                                 |                         | Dare<br>admined<br>p S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1959  | 1245 | 6,17 |       | 1123 | 111 | 133            | 201  |  |  |  |  |

b Loborotory alt Millie J .

Sum of mode and most open.

Number of the second as a second to the second as a second as a second to the second t

<sup>.</sup> Equ tod for a ty the 105 week

<sup>- 12 - 10 10 10</sup> B

A Any and the responsing Coll and from an installable of the control of the contr

|                                  | Anning                  | 15y MPN/ml by i                         | usas |      |               |               |               |                               |               |      |      |     |       |      |      |  |  |      |
|----------------------------------|-------------------------|-----------------------------------------|------|------|---------------|---------------|---------------|-------------------------------|---------------|------|------|-----|-------|------|------|--|--|------|
|                                  | d washing               | MPN/mi                                  |      |      |               |               |               |                               |               |      |      |     |       |      |      |  |  |      |
|                                  | 107                     | n ppg                                   |      |      |               |               |               | С                             |               |      |      |     |       |      |      |  |  |      |
|                                  | -                       | os CoCO <sub>3</sub> r                  |      | 32   | 15            | S             | v-            | 00                            | u:            |      |      |     |       |      |      |  |  |      |
|                                  | 3                       | Totol<br>PPM                            |      | 118  | 151           | 123           | 126           | 191                           | 500           |      |      |     |       |      |      |  |  |      |
|                                  | Per                     | sad -                                   |      | 딦    | 11            | 14            | 1%            | 17                            | 16            |      |      |     |       |      |      |  |  |      |
| -                                | Total<br>dis-           | solved sod -<br>solids rum<br>in ppm    |      | 173  | 195           | 154           | 156           | 212                           | 258           |      |      |     |       |      |      |  |  | _    |
|                                  |                         | Other constituents                      |      |      | Tot. Alk. 169 | Tot. Alk. 138 | Tot. Alk. 148 | Pe 0.02 Al 0.08 d<br>Po, 0.10 | Tot. Alk. 226 |      |      |     |       |      |      |  |  |      |
|                                  | İ                       | Silico<br>(SiO <sub>2</sub> )           |      | ᆲ    | g             | 77            | 125           | 9                             | 70            |      |      |     |       |      |      |  |  |      |
| li                               | non                     | Boron<br>(B)                            |      | 0.2  | 0.0           | 0.0           | 0.1           | 0.1                           | 0.7           |      |      |     |       |      |      |  |  |      |
| million                          | ar mill                 | Fluo-<br>ride<br>(F)                    |      | 0.0  | 0.0           | 0.00          | 0.0           | 0.2                           | 0.0           |      |      |     |       |      |      |  |  |      |
| M. 95a)<br>ports per million     | equivalents per million | hrate<br>(NO <sub>3</sub> )             |      | 0.12 | 0.9           | 0.00          | 0.0           | 0.0                           | 0.0           |      |      |     |       |      |      |  |  |      |
| SR (STA.                         | oAinba                  | Chlo-<br>ride<br>(Ct)                   |      | 28   | 25            | 12            | 14            | 24,0                          | 28.0          |      |      |     |       |      |      |  |  |      |
| AT GERB                          |                         | Sul -<br>fate<br>(SO <sub>4</sub> )     |      | 33   | 0.33          | 0.23          | 0.10          | 12 0.25                       | 12            |      |      |     |       |      |      |  |  |      |
| ELDER CREEK AT GERBER (STA. 95a) | STITUENTS               | Bicar-<br>bonate<br>(HCO <sub>3</sub> ) |      | 101  | 2.45          | 2.16          | 2.26          | 3.05                          | 3.51          |      |      |     |       |      |      |  |  |      |
| ELDER CREEK A                    | erai con                | Carbon-<br>ate<br>(CO <sub>3</sub> )    |      | 0.0  | 0.33          | 3.10          | 5             | 0.0                           | 0.20          |      |      |     |       |      |      |  |  |      |
| 2                                | With                    | Potas-<br>srum<br>(K)                   |      | 1.4  | 0.0           | 0.03          | 0.0           | 1.3                           | 1.3           |      |      |     |       |      |      |  |  |      |
|                                  |                         | Sodium<br>(No)                          |      | 0.65 | 14            | 0.39          | 0.3           | 15                            | 17<br>0.74    |      |      |     |       |      |      |  |  |      |
|                                  |                         | Magne.                                  |      | 1,36 | 1.57          | 1.30          | 1.32          | 23                            | 27.20         |      |      |     |       |      |      |  |  |      |
|                                  |                         | Colcium<br>(Ca)                         |      | 1.00 | 2.45          | 23            | 2.20          | 26                            | 36            |      |      |     |       |      |      |  |  |      |
|                                  |                         | ± E                                     |      | 7.5  | 4.            | 8.3           | 7.7           | 4.5                           | 7:5           |      |      |     |       |      |      |  |  | <br> |
|                                  | Specific                | (micromhos<br>(micromhos<br>ot 25°C)    |      | 568  | 350           | 267           | 274           | 367                           | 1,414         |      |      |     |       |      |      |  |  |      |
|                                  |                         |                                         |      | \$   | 102           | 101           | 89            | 86                            | ii d          |      |      |     |       |      |      |  |  |      |
|                                  |                         | Dissolved<br>oxygen<br>ppm %Sc          |      | 4.1  | 11.7          | 10.6          | 0,0           | 8.0                           | 7.3           |      |      |     |       |      |      |  |  |      |
|                                  |                         | n or                                    |      | 5    | 64            | 66            | 25            | 69                            | 7.            |      |      |     |       |      |      |  |  |      |
|                                  |                         | Discharge Temp                          |      | 142  | 39            | 7-0           | 14            | 122                           | 5.6           | Dry  | Dry  | Dry | Dry   | Dry  | Dry  |  |  |      |
|                                  |                         | and time<br>sampled<br>P.S.T            | 1959 | 1/6  | 2/2           | 3/13          | 4/14          | 5/12                          | 6/1           | 7/15 | 8/10 | 9/1 | 10/12 | 11/3 | 12/1 |  |  |      |

a Field pH

b Laboratory pH

c. Sum of calcum and magnetium in them
d. Inc. (2.), i.e.); IPD, , mangainese (Min), zinc (2.n), and herevalent chromium (C. "3), reported here as 0 0 except as shown
d. Inc. (Fe), draminum (A1), arsenic (A4), copyer (C.), i.e.); IPD, , mangainese (Min), zinc (2.n), and herevalent chromium (C. "3), reported here as 0 0 except as shown

Determined by addition of analyzed constituents Derived from conductivity vs TDS curves

h Annal medin and stope, respectively. Calculated from noil-sets of signicine recently samples made by Calcinano Department of Poblic Health, Division of Laboritonists, or United Stores Public Health Service.

Whereast consistent made by United Stores Geological Service, Dealth of Rever Band (USS), and Benediate Committee and Service (USPS). Some Demand of Management of Intelligence of Recinement (USS), United Stores Public Health Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Committee and Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Some Demand of Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS), Service (USPS)

ANALYSES OF SURFACE WATER

CENTRAL VALLETY ROSE IN (NY. -- 1

|                                       |                   |                 | Merchant and Carters Assisted as a CoCo of the Market as a CoCo of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Market as a company of the Mark | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |             |           |                |           |         |     |               |       |                |          |  |
|---------------------------------------|-------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|-----------|----------------|-----------|---------|-----|---------------|-------|----------------|----------|--|
|                                       | -                 | -               | 4 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |             |           |                |           |         |     |               |       |                |          |  |
|                                       |                   |                 | of fore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |             |           |                |           |         |     |               |       |                |          |  |
|                                       |                   | 100             | - p. q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |             |           |                |           |         |     |               |       |                |          |  |
|                                       |                   |                 | 000 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E    |             | -         |                |           |         | I   | 4             | 3     | v              |          |  |
|                                       |                   |                 | Merdiness<br>as CeCOs<br>Tatal N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |             |           | 4              | 8         |         | 7   |               | 7     | 411            | 1        |  |
|                                       |                   | Par             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | -           |           |                |           | 7       |     | -             | 5     | 7              |          |  |
|                                       |                   | T0101           | adived and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | ž.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · k  | 1           |           | 1              | B         | Y       | 7   | F             | 1     | *,             | -        |  |
|                                       |                   |                 | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | The Alk and | To= Alk I | 70 10 10 10 10 | Di wi isa | W 10 10 |     | A 155 m 155 m |       | 21 0           |          |  |
|                                       |                   |                 | 80-15<br>8-0 <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H    | al.         |           | 0              |           | 2       | Ti. |               |       |                | 1        |  |
|                                       |                   | mi lion         | 8 or on Silico<br>(8) (5:0 <sub>g</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | 1           | 0         |                | 1         |         | 1   | 77            |       | -31            |          |  |
| 10                                    | million           | er mil          | Fluo-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76   | 16          | 3         | 18             | ā         | 18      | 1   | £             | 3     |                | -5       |  |
| ELLER CHEYK NEAR PACHCENTA (CTA. 136) | parte per millian | equivolente per | regio<br>(NOg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 18          | 98        | -2             | 1         | -8      | :B  | 思             | 18    |                | -2       |  |
| DEPTER (                              | 00                | 041000          | Chio-<br>ride<br>(Ci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 1 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 777  | 20 34       | 710       | No.            | B         | - 2     | 9   | 16            | 46    |                | 3E       |  |
| PAS PA                                |                   | ç               | Sul -<br>fore<br>(SO <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A lo | 24          | +         | 1              | :0        | E       | Î   | P             | 4     |                | 3.       |  |
| CHENK                                 | 919               | CONSTITUENTS    | Bicor-<br>bonate<br>(MCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 818  | 1.67        | 1         | 10             | JF.       | W.      | 5   | 4             | 16    | 姐              | ell.     |  |
| ELDER                                 | Manager           | 101 COM         | Carbon-<br>are<br>(CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16   | 76          | E         | J.             | £         | -0      | 1/2 | 15            | 28    | £              | :0       |  |
|                                       | 100               | No.             | Pords.<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15   | 10          | :8        | 10             | 9         | :1      | 9   | 1             | 3     |                | 重        |  |
|                                       |                   |                 | Sadium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | VB   | :6          | :0        | -P             | X,        | oP.     | E.  | 100           | × [8] | #              | E        |  |
|                                       |                   |                 | (pw)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | JB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40   | 1           | 10        | -B             | -         | 30      | â   | 5             | P     |                | Æ        |  |
|                                       |                   |                 | (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | el.  | 2           | :E        | 15             | 10        | 18      | E   | 4             | 18    | To the same    | all land |  |
|                                       |                   | ۰               | I a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 1  |             | Ġ.        | =              | 5         | 2       | Ī   | 2             |       | 20             | 2        |  |
|                                       |                   | Specific        | Conductorce p.H<br>(m.cromboe p.H<br>at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 7  | ,           |           | ž              | Ř         | ĭ       | 1   | 9             | 8     | L              | 1        |  |
|                                       |                   |                 | 9/0501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ő    |             |           |                | ž         | F       | 4   | 3             |       | e <sub>k</sub> |          |  |
|                                       |                   |                 | Disagived<br>oaygen<br>ppm %Sat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8    |             | ٠         | -              | 1.8       | T       | 7   |               | -     | ,              | 1        |  |
|                                       | -                 |                 | 0 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5    | 5           | F         | į.             | 1         | ŕ       | £   | r             | 2     | 5              | 1        |  |
|                                       |                   |                 | Discharge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sc.  | ž           | 4         | :              |           | 3       |     |               | 1     | 8              |          |  |
|                                       |                   |                 | and time<br>eampled<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1959 | 1/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1730 | 171         | 280       | 28             | 16        | 0.00    | 21  | 50            | 54    |                | 1.5      |  |

i operfe here is as ept is en the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

is the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the propert

# ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

|                                      |                         | by l                                                             | USER  |      |      |       |       |      |       |      |
|--------------------------------------|-------------------------|------------------------------------------------------------------|-------|------|------|-------|-------|------|-------|------|
|                                      | E                       | Paranasa bad Contorm os CoCO <sub>3</sub> 11y MPN/mil Total N.C. |       |      |      |       |       |      |       |      |
|                                      | To.                     | n ppg                                                            |       |      |      |       |       |      |       |      |
|                                      |                         | Hardness<br>os CaCO <sub>S</sub><br>Total N.C.<br>ppm ppm        |       |      |      |       |       |      |       |      |
| T                                    | Par                     | ing ing                                                          |       |      |      |       |       |      |       | 8    |
|                                      | Total                   | solved sod -                                                     |       | 160  | 516  | 892   | 820   | 568  | 557   | 176  |
|                                      |                         | Other constituents                                               |       |      |      |       |       |      |       |      |
|                                      |                         | SiO <sub>2</sub> )                                               | _     |      |      |       |       |      |       |      |
| 1                                    | uo                      | Baron Silica<br>(B) (SiO <sub>2</sub> )                          |       |      |      |       |       |      |       |      |
|                                      | ar mill                 | Fluo-<br>ride<br>(F)                                             |       |      |      |       |       |      |       |      |
| A. 1120                              | ports per million       | rrote<br>(NO <sub>3</sub> )                                      |       |      |      |       |       |      |       |      |
| UMP (ST                              | ovinbe                  | Chlo-<br>ride<br>(Cl)                                            |       |      |      |       |       |      |       | 8    |
| F WEBB F                             | u                       | Sul -<br>fore<br>(SO <sub>6</sub> )                              |       |      |      |       |       |      |       |      |
| FALSE RIVER AT WEBB FUMP (STA. 1120) | titusnts                | Bicor-<br>bonote<br>(HCO <sub>3</sub> )                          |       |      |      |       |       |      |       |      |
| FALSE                                | Mineral constituents in | orbon-<br>ote<br>(CO <sub>3</sub> )                              |       |      |      |       |       |      |       |      |
|                                      | Min                     | Sodium Potos- C<br>(No) Sium<br>(K)                              |       |      |      |       |       |      |       |      |
|                                      |                         | Sodium<br>(No)                                                   |       |      |      |       |       |      |       | 83   |
|                                      |                         | Mogne-<br>sum<br>(Mg)                                            |       |      |      |       |       |      |       |      |
|                                      |                         | Calcium Magne- S<br>(Ca) (Mg)                                    |       |      |      |       |       |      |       |      |
|                                      |                         | I a                                                              |       |      |      |       |       |      |       |      |
|                                      | 0                       | conductone.<br>(micromhos                                        |       | 203  | 339  | 1,518 | 1,412 | 405  | 594   | 330  |
|                                      |                         | Dissolved conductorice pH osygan (micrombbs ph osygan of 25°C)   |       |      |      |       |       |      |       |      |
|                                      |                         | Te or                                                            |       | 8    | 69   | 7/2   |       | %    | 69    |      |
|                                      |                         | Dischorge Temp<br>in cfs in 9F                                   | Tidel |      |      |       |       |      |       |      |
|                                      |                         | Dote<br>ond time<br>somplad<br>P S.T                             | 1959  | 5/14 | 1100 | 7/13  | 8/10  | 9/15 | 10/14 | 1135 |

o Field pH.

Loboratory p.H.

Sum of colcium and magnesium in epm.

Sum of colcium and magnesium in Apm. (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr $^+8$ ), reported here as  $\frac{0.0}{0.00}$  except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Annot melan and range, respectively. Calculated from analyses of dealicen reachity searches reade by Calculated by Calculated Districts.

Mineral analyses made by blants Streets Galacies Streets, Opality of Hane Branch (1955); Hank Streets Districts Branch (1955); Hank Streets Districts Branch Streets (1954); Hank Streets Districts Branch Streets (1954); Hank Streets District Branch Streets (1954); Hank Streets Branch Streets (1954); Hank Streets Branch Streets (1954); Line Analyses District Streets (1954); Hank Streets Streets (1954); Hank Streets Streets (1954); Hank Streets Streets (1954); Hank Streets Streets (1954); Hank Streets Streets (1954); Hank Streets Streets (1954); Hank Streets Streets (1954); Hank Streets Streets (1954); Hank Streets Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets (1954); Hank Streets

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE B-1

|                                     | Annytes                                                                    | 1970 a |          |          |             |          |                   |       |      |        |                    |                 |               |      |  |  |
|-------------------------------------|----------------------------------------------------------------------------|--------|----------|----------|-------------|----------|-------------------|-------|------|--------|--------------------|-----------------|---------------|------|--|--|
|                                     | Hardress of Colform<br>as CeCO <sub>B</sub> of MPsy/ad<br>oro NC           |        | 23 E     | # SS 6-  | - C         |          |                   |       |      |        |                    |                 |               |      |  |  |
|                                     | 34.4                                                                       |        | 8        | S        | S           |          | <                 | 4     | ~    | λ      |                    | -               | .0            |      |  |  |
|                                     | 0000 med                                                                   |        |          | c        | -           | $\times$ |                   |       | c    | c      | 4                  | -               |               |      |  |  |
|                                     |                                                                            |        | >        | 5        | 5           | -        | 5                 | 5.    | 0,   | F      | 8                  | B               | b             | *    |  |  |
|                                     | 2000                                                                       |        | e.       | 16       | 17          | 20       | k                 | È.    | 17   | 14     | -                  | 1.4             | 19            | r.   |  |  |
|                                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                      |        | 44       | -52      | 57.6        | 8        | 2                 | 3     | Pd   | ę.<br> | 1 1                | 1               | P.            | Tt.  |  |  |
|                                     | Other constituents                                                         |        |          |          |             |          | Pe 0.0h A1 0. b d |       |      |        | 11 1. 1 PO 1. 12 d |                 |               |      |  |  |
| 1.                                  | 80 con Siico                                                               |        | 1        | -        | -           | -        | 125               | -     | .1   | 1      | -                  | -1              | -1            |      |  |  |
| 100                                 |                                                                            |        | 0.0      | 0.1      | 0.0         | 0.0      | 0.0               | 0.0   | 0.0  | 0.1    | 0.1                | C.              | 0.0           | d    |  |  |
| O)                                  | Fluo-<br>ride<br>(F)                                                       |        |          |          |             |          | 0.1               |       |      |        | 0.0                |                 |               |      |  |  |
| LAUR (STA, 20)<br>parts per million | N. 1009<br>(NO <sub>9</sub> )                                              |        |          |          |             |          | 0.0               |       |      |        | 0.0                |                 |               |      |  |  |
| OKAUS                               | Chio<br>rida<br>(Ci)                                                       |        | 3.5      | 8.00     | 2.8<br>0.08 | 0.00     | 3.5               | 0.0   | 0.0  | 5.0    | 0.08               | 3.8             | 3.0           | 8.5  |  |  |
| A AT MI                             | Sul -<br>form<br>(\$0 <sub>4</sub> )                                       |        |          |          |             |          | 90.0              |       |      |        | 8.0                |                 |               |      |  |  |
| PEATWER RIVER AT MICOLAUS (STA, 20) | Bicor-<br>bonote<br>(HCO <sub>3</sub> )                                    |        | 57       | 8.0      | 3 0.7       | 0.67     | 6.9<br>0.80       | 5E    | 1.23 | 8 15:  | 1.38               | 1.18            | F  2          | 1.34 |  |  |
| Minarol constituents                | Carbon-<br>ore<br>(CO <sub>5</sub> )                                       |        | 0.00     | 0.00     | 0.00        | 0.0      | 0.0               | 0.00  | 0 0  | 0.00   | 0.00               | 0.00            | 0.0           | - 8  |  |  |
| Min                                 | Poros. (K)                                                                 |        |          |          |             |          | 4.0               |       |      |        | 2.3                |                 |               |      |  |  |
|                                     | Sodium<br>(No)                                                             |        | 9.0      | 6.1      | 3.7         | 2.6      | 61.0              | 5.6   | 5.3  | 6.8    | 6.8                | 5.8             | 6.3           | 6.6  |  |  |
|                                     | Mogne<br>Brum<br>(Mg)                                                      |        |          |          |             |          | 3.4               |       |      |        | 5.50               |                 |               |      |  |  |
|                                     | Colcium<br>(Co)                                                            |        | 0.40     | 8.0      | 0.76        | 0.70     | 9.6               | PL'I  | 1.16 | 1.500  | 16<br>0.80         | 1.206           | 1.1           | 178  |  |  |
|                                     | T a                                                                        |        | 7.3      | 4.3a     | F           | 7.3      | 7.3               | 7.3   | 7.9  | 7.5    | 7.6                |                 | 7.5           |      |  |  |
|                                     | Specific<br>anductance<br>nicrombos<br>or 25°C)                            |        | 110      | 411      | 87.0        | 78.4     | 8.6               | 131   | 135  | 172    | 158                | 131             | 132           | 163  |  |  |
|                                     | % Sot                                                                      |        | 101      | 100      | 100         | 98       | 99                | 8     | 100  | 8      | 8                  | -83             | 2             | 1C   |  |  |
|                                     | Dissolvad<br>osygen<br>ppm %Sof                                            |        | 11.6 101 | 12.5 100 | n           | 9.6      | P. 9              | 8.9   | 6.7  | 7.6    | 7.2                | ò               | 9.1           |      |  |  |
|                                     | T 60 00 00 00 00 00 00 00 00 00 00 00 00                                   |        | 64       | 3        | 25          | 5        | 2                 | 70    | 73   | 2      | 12                 | - 9             | 5.1           | 2    |  |  |
|                                     | Dischorga Temp Dissolved conductores in cfs in 9F ossgen (microholos Head) |        | b,803    | 0994*4   | 10,620      | 6,536    | 3,722             | 1,000 | 634  | 530    | 939                | 1,100           | 1,250         | 98.  |  |  |
|                                     | ond time<br>sompled<br>p S T                                               | 1959   | 1/9      | 2/9      | 3/11        | 4/14     | \$/15             | 1400  | 1/1  | 8/4    | 9/R<br>0770        | LI/LI<br>Office | 11/10<br>0010 | 12/4 |  |  |

b oborotory H

<sup>5</sup> of a run an importal in spin d lon Fe aluminum All careen, Asi capper II - I lead (Pb), manganese likin; sinc (Zn), and herevalent chromium (Gr.\* reported here as 0 0 except as shown on the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o

g Gr v -etr | determ notion

Lace and and progressive and provided and an experience of the College Department of Public Health Oriente of Libert State Publishes Man as Comment of the International Comment of Comment of Public Health Oriented Comment of Public Health Oriented Public Health Oriented Comment of Public Health Oriented Public Health Oriented States Comment of Public Health Oriented Public Health Oriented States Oriented States Oriented Health Oriented Manufactured States Oriented Health Oriented National Oriented Researces ORM is naticated.

ANALYSES OF SURFACE WATER TABLE B-4

CENTRAL VALLEY REGION (NO. 5)

|                    |                      |             | n ppm MPN/ml by i                       | SDSIQ |               |                 |                |                 |                                           |       |       |       |                  |       |       |       | <br> |   |
|--------------------|----------------------|-------------|-----------------------------------------|-------|---------------|-----------------|----------------|-----------------|-------------------------------------------|-------|-------|-------|------------------|-------|-------|-------|------|---|
|                    |                      | H. T. T.    | MPN/mi                                  |       | Median<br>2.3 | Maximum<br>230. | Minimum<br>.13 |                 |                                           |       |       |       |                  |       |       |       |      |   |
|                    |                      | 15          | - N - N - N - N - N - N - N - N - N - N |       | -1            | 33              | 0              | 8               | 0                                         | ~     | -     |       | ٥.               | 0     | ~     | н     |      |   |
|                    |                      |             | oe CoCO <sub>3</sub>                    |       | 0             | 0               | 0              | m               | 0                                         | 0     | 0     | 0     | 0                | 0     | 0     | 0     |      |   |
|                    |                      |             |                                         |       | 70            | 04              | 37             | 34              | 33                                        | 9     | 50    | 9     | 55               | 45    | 20    | 96    |      |   |
|                    |                      | Per         | - Poe                                   |       | 17            | 8               | 11             | 15              | 16                                        | 18    | 8     | 8     | 19               | 2     | 7     | 8     |      |   |
|                    |                      | Total       | solids<br>in ppm                        |       | 16            | 64e             | 646            | 51 <sub>e</sub> | 56*                                       | 1     | F     | 78°   | 82,5             | 8     | 82°   | 89    |      |   |
|                    |                      |             | Other constituents                      |       |               |                 |                |                 | Pe 0.04 A1 0.03 d<br>PO <sub>b</sub> 0.00 |       |       |       | A1 0.13 PO, 0.00 |       |       |       |      |   |
|                    |                      |             | Silica<br>(SiO <sub>2</sub> )           |       |               |                 |                |                 | 15                                        |       |       |       | 91               |       |       |       |      |   |
|                    |                      | million     | Boron<br>(B)                            |       | 0,0           | 0:              | 0.0            | 0.0             | 0.0                                       | 0.0   | 0:0   | 0:0   | 0.1              | 0:0   | 0.0   | 0.0   |      |   |
| (6:                | million              | Der mi      | Fluo-<br>ride<br>(F)                    |       |               |                 |                |                 | 0.0                                       |       |       |       | 0.0              |       |       |       |      | 1 |
| OROWILLE (STA. 19) |                      |             | N:-<br>trote<br>(NO <sub>3</sub> )      |       |               | -               |                |                 | 0.0                                       |       |       |       | 0.0              |       |       | -     |      |   |
| OROVILLE           | ١                    | aguivolents | Chio-<br>ride<br>(CI)                   |       | 0.07          | 0.00            | 0.07           | 0.04            | 0.03                                      | 0.04  | 0.07  | 0.03  | 0.07             | 0.11  | 0.06  | 0.06  |      |   |
| HEAR               | 5                    |             | Sul -<br>fate<br>(SO <sub>4</sub> )     |       |               |                 |                |                 | 0.05                                      |       |       |       | 3.0              |       |       |       |      |   |
| FEATHER RIVER HEAR | stituents            |             | Bicar-<br>bonote<br>(HCO <sub>3</sub> ) |       | 1.00          | 08.0            | 0.79           | 38              | 24.0<br>0.75                              | 86.0  | 1.08  | 1.08  | 1.18             | 1.15  | 1.15  | 1.26  |      |   |
| FEATH              | Mineral constituents |             | Carbon-<br>ote<br>(CO <sub>3</sub> )    |       | 0.0           | 0.0             | 0.0            | 0.0             | 0.0                                       | 0.0   | 0.0   | 0.0   | 0.0              | 0.0   | 0.0   | 0.0   |      |   |
|                    | Ä                    |             | Potas-<br>Sium<br>(K)                   |       |               |                 |                |                 | 0.02                                      |       |       |       | 0.05             |       |       |       |      |   |
|                    |                      |             | Sodium<br>(No)                          |       | 0.19          | 9.30            | 3.5            | 0.00            | 3.1                                       | 0.20  | 5.7   | 5.6   | 5.7              | 6.6   | 6.1   | 6.5   |      |   |
|                    |                      |             | Magne-<br>sium<br>(Mg)                  |       |               |                 |                |                 | 3.2                                       |       |       |       | 0.39             |       |       |       |      |   |
|                    |                      |             | Calcium<br>(Ca)                         |       | 0.940         | 0.80            | 0.74           | 99.0            | 0.80                                      | 0.99  | 1.00  | 0.96  | 13               | 1.08° | 1.00  | 1.12  |      |   |
|                    | L                    |             | T O                                     |       | 7.2           | 7.3             | 7.5            | 7.3             | 1.0                                       | 7.3   | 7.6   | 7.9   | 7.7              | 7.5   | 4.    | 7.5   |      |   |
|                    |                      | Specific    | (micromhos pH & C                       |       | 108           | 9*06            | 91.0           | 42.8            | 84.7                                      | 109   | 110   | 177   | 125              | 123   | 121   | 151   |      |   |
|                    |                      | 3           | gen<br>%Sat                             |       | 103           | 102             | 101            | 100             | %                                         | 5     | 5     | 102   | 8                | 8     | 8     | 8     |      | 1 |
|                    |                      |             | Des<br>Des<br>Des<br>Des                |       | 13.0          | 12.9            | 11.9           | 11.11           | 10.2                                      | 9.1   | 8.5   | 80    | 80               | 7.6   | 11.5  | 12.0  | _    |   |
|                    |                      | į           | E o c                                   |       | 24            | .4              | 5              | 25              | 55                                        | %     | 2     | 4     | Ę                | 8     | 89    | 67    |      |   |
|                    |                      |             | Discharge lemp                          |       | 000'4         | 5,400           | 7,330          | 5,680           | 4,360                                     | 2,360 | 2,360 | 1,980 | 1,000            | 1,920 | 1,630 | 1,380 |      |   |
|                    |                      | Oote        | sompled<br>p.S.T                        | 1959  | 1/8           | 2/10            | 3/6            | 14/9            | 5/8                                       | 6/10  | 7/17  | 8/13  | 9/10             | 10/15 | 11/13 | 12/10 |      |   |

a FieldpH.

b Laboratary pH.

Sum of calcium and magnesium in epm.

Jum of Golcium and magnessum in spin.

Iron (E.), aluminum (A.), arsainc (As), copper (CJ), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr\*5), reported here as  $\frac{0.0}{0.00}$  except as shawn.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed canstituents.

Gravimetric determination.

Armel median and range, respectively. Calculated from analyses of displicate monthly samples mode by California Department of Poblic Health, Division at Labaratories, or United States Public Health Service.
Milenati and public services. Department of Water Baron (1902), Linest States Bernational Propertment of the Internet SERCED), Divisional States Public Health States (1954); San Bernation County Flood
County Dispute Modern SERCED), Report of Sandam California (MID), Las Aspeits Department of Milen and Public Health (1904), United States Public Health (1904); City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, Department of Public Health (1904), City of Los Aspeits, City of Los Aspei

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE B-4

|                                              |                   |             | Anolyzed<br>by i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2020 |               |             |              |              |                |        |          |       |                                 |       |       |                |
|----------------------------------------------|-------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|-------------|--------------|--------------|----------------|--------|----------|-------|---------------------------------|-------|-------|----------------|
|                                              |                   |             | Nerdness and Collections of Collection of Color of Color of Color of Color of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collection of Collecti |      | de Item<br>60 | Early o     | Marinia de C |              |                |        |          |       |                                 |       |       |                |
|                                              |                   | 100         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |               |             |              |              |                |        |          | Œ.    | 1                               | 4     | 4     | <u>×</u>       |
|                                              |                   |             | Herdness<br>os CeCOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | L)            | 4           |              | P            |                | A      |          |       |                                 | 0     |       | 0              |
|                                              |                   |             | 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 3             | ž           | 5            | 3            | 5              | \$     | 5        | £     | ř                               | S     | à     | 2              |
|                                              |                   | Per         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | È.            | 91          | 11           | 12           | 20             | . 22   | <u>«</u> | 14    | 17                              | 4     | 10    | 0.             |
|                                              |                   | Totel       | # 20 00 - 100 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |               | 10.0        | 69           | 68.          | fry            | 8      | PH.      | 11160 | Ē                               | 9.10  | 8     | 8              |
|                                              |                   |             | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |               |             |              |              | 70 00 A1 .05 8 |        |          |       | 7+ 0.03 2h 0.02 41 0.05 64 6.05 |       |       |                |
|                                              |                   |             | (5:02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 47            | 4           | 2            | =            | 2              | 21     |          |       | 5                               |       |       |                |
|                                              |                   | 1001        | Baron<br>(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 20            | 0.0         | 0.0          | 0.0          | C. C           | 0.0    | 0.0      | 3     | 0.0                             | c'    | 0.0   | 0.1            |
| 200                                          | m.41100           | per mi      | Fluo-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 100           | 000         | 0 0          | 0.0          | 0.0            | 0.0    |          |       | 0                               |       |       |                |
| (STPA,                                       | parte per mullion |             | N. Irone<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 0.00          | 0.00        | 0.00         | 0.0          | 0.0            | 0.0    |          |       | 2.0                             |       |       |                |
| IAT BENT                                     | bd                | equivalents | Chio-<br>ride<br>(Ci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 3.5           | 3.8<br>0.11 | 0.03         | 2.5          | 0.0            | 0 10   | 90.0     | 0.15  | 4 0                             | 87.0  | 3.5   | 8.00           |
| W SHANGE                                     | 4                 |             | Sul -<br>fore<br>(50 <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 5.8<br>0.12   | 1.0         | 8.5          | 11           | 6.8            | 9.6    |          |       | 9.71                            |       |       |                |
| TER BETLO                                    |                   |             | Bicor<br>bondle<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 36            | 800         | 10           | 84.0         | 120            | 5E     | 4 12     | 85    | 8 5                             | 24    | * 12  | 1.31           |
| PEATHER RIVER BELOW SHANDHAI BEND (STA, 24a) | Manage (press)    | 0           | Carbon-<br>ote<br>(CO <sub>9</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 0.0           | 0.0         | 0.0          | 0.0          | 0.0            | 0.0    | 0.00     | 0.0   | 0.00                            | 0.00  | 0.0   | 0.0            |
| È                                            | 1                 |             | Patae.<br>evum<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 0.0           | 8.00        | 9.0          | 0.5          | 0.7            | 0.03   |          |       | 0.04                            |       |       |                |
|                                              |                   |             | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 2.10          | 3.8         | 3.5<br>F. C  | 9.9          | 21.5           | 0.8    | 5.7      | 6.9   | 0.00                            | 0.36  | 6.1   | 6.00           |
|                                              |                   |             | Magne-<br>erum<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 0.0           | 90          | 23.3         | 6.2          | 3.2            | 6.7    |          |       | 7.7                             |       |       |                |
|                                              |                   | Ì           | Colcium<br>(Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 0.60          | 0.55        | 9.6          | 8.2          | 0.50           | 13     | 71.1     | 3     | 17<br>0.R5                      | 1.39  | 1.13  | 2              |
|                                              |                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 7.34          | ٦. ٠٥       | 88.5 7.3     | 98.8 7       | 88.9 7.1       | d_<br> | 1        | -     | 4                               | 2.    | 1     | d <sub>y</sub> |
|                                              |                   | Specific    | conductonce pH<br>(m.cromhog of of 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 103           | 108         | 88.5         | 8,8          | 88.9           | 1.1    | 130      | 191   | 176                             | 134   | 135   | <u>1</u>       |
|                                              |                   |             | gen (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 8             | 8           | 901          | 100          | 100            | 100    | 103      | 8     | 8                               | æ     | 8     | 3              |
|                                              |                   |             | Osygen<br>osygen<br>opm %5at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 9.11          | 2.5         | 11.4         | -01          | 9.3            | 0.0    | D        | 7.9   | C. 80                           | 6.0   | 6.6   | 2.11           |
|                                              | -                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 17            | 1           | 50           | 8            | 19             | 10     | 16       | 8     | 98                              | 99    | Ş     | 15             |
|                                              |                   |             | Discharge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 5,160         | 5,070       | 9,460        | 6,350        | 3,640          | ř      | 429      | 168   | 394                             | 1,280 | 1,070 | 1,380          |
|                                              |                   |             | 000 000 000 000 000 000 000 000 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1469 | 5 1           | 2/9         | 3/11         | k/14<br>1600 | 5/12           | 6/9    | 1/1      | 8/7   | 9/1                             | 10/14 | 11/13 | 10/4           |

b Laboratory pH Fellin

and hexavalent chromium. Cr. , reported here as a except as shown 0.00

S of  $\sigma$  and one operator in eq. . It is  $P\Phi$  in congenes as Mol and  $Z\sigma$  is a Derived in Figure by a TDS layers.

h Accounts and proper regard that control to another control to a proper regard to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE B-4

|                                     |                            |                                                           | 1    |               |                   |                |      |                   |      |       |             |             |      |       |       |      | - 1 |
|-------------------------------------|----------------------------|-----------------------------------------------------------|------|---------------|-------------------|----------------|------|-------------------|------|-------|-------------|-------------|------|-------|-------|------|-----|
|                                     |                            | Hordness bid - Californ Analyzed os CaCOs ity MPN/ml by i | USGS |               |                   |                |      |                   |      |       |             |             |      |       |       |      |     |
|                                     |                            | Caliform<br>MPN/mi                                        |      | hedian<br>62. | Maximum<br>2,400. | Ninimum<br>2.3 |      |                   |      |       |             |             |      |       |       |      |     |
| Ì                                   | 170                        | - Pid<br>- Lty                                            |      |               |                   |                |      | 7                 | 9    | 9.0   |             |             | ~    | ~     | -3    |      |     |
|                                     |                            | N COS                                                     | Š    | 0             | 0                 | 0              | 0    | 0                 | 0    | -7    |             |             | 4    | 0     | 30    |      |     |
|                                     |                            |                                                           | ă.   | 82            | 37                | 7              | 63   | 9                 | 52   | 63    |             |             | 73   | 22    | 56    |      |     |
|                                     | d                          | - pog                                                     |      | -1            | 3                 | 37             | 37   | 67                | 97   | 55    |             |             | 54   | 53    | 3     |      |     |
|                                     | Total                      | solved<br>solved<br>in ppm                                |      | 785           | 102f              | 71°L           | J779 | J65               | 969  | 120   |             |             | ,31° | 1669  | 37,50 |      |     |
|                                     |                            | Other constituents                                        |      |               |                   |                |      | Fe 0.08 Al 0.11 d |      |       |             |             |      |       |       |      |     |
|                                     |                            | Silica<br>(\$0.0)                                         |      | 읾             | 97                | 湖              | 레    | 17                |      |       |             |             |      |       |       |      |     |
|                                     | lion                       | Boron<br>(B)                                              |      | 000           | 이                 | 0.0            | 000  | 0.1               | 0.0  | 0.0   |             |             | 0.3  | ं     | 0.1   |      |     |
| _                                   | per mili                   | Fluo-<br>rids<br>(F)                                      | T    | 0.0           | 0.1               | 0.0            | 0.0  | 0.0               |      |       |             |             |      |       |       |      |     |
| TA. 113                             | ports psr<br>equivalents p | frota<br>(NOs.)                                           |      | 000           | 0.0               | 0.0            | 000  | 000               |      |       |             |             |      |       |       |      |     |
| ULTOW (S                            | d oninge                   | Chio-                                                     |      | 13            | 18                | 9.0            | 0.25 | 7.0               | 13   | 30    |             |             | 1.97 | 53    | 1,24  |      |     |
| NEAR DA                             | <u>s</u>                   | Sul -<br>fate<br>(SO <sub>6</sub> )                       |      | 3.8           | 3.8               | 0.0%           | 0.02 | 0.06              |      |       |             |             |      |       |       |      |     |
| FRESNO RIVER NEAR DAULTON (STA. 113 | netituen                   | Broor-<br>bondta<br>(HCOa)                                |      | 37            | 0,82              | 38             | 0.52 | 32                | 36   | 0,79  |             |             | 1.05 | 28    | 5.97  | <br> |     |
| FRESN                               | Mineral constituents       | Carbon<br>(CO.)                                           |      | ୍  <br>୦ ୦    | 000               | 000            | 00   | 000               | 000  | 0.00  |             |             | 000  | 0.0   | 000   |      |     |
|                                     | W                          | Potas-<br>svum<br>(K)                                     |      | 0.0           | 0.04              | 0.03           | 0.9  | 0.03              |      |       |             |             |      |       |       |      |     |
|                                     |                            | Sadium<br>(No)                                            |      | 11            | 0.61              | 7.9            | 6.5  | 200               | 9.6  | 1.04  |             |             | 39   | 30    | 38    |      |     |
|                                     |                            | Magne-<br>stum<br>(Ma)                                    |      | 1.5           | 0.19              | 2,2<br>0,18    | 0,14 | 0.12              |      |       |             |             |      |       |       |      |     |
|                                     |                            | Calcium<br>(Ca)                                           |      | 8,8           |                   | 7.2            | 6.4  | 0.40              | 0,50 | 0,860 |             |             | 1.46 | 1.14c | 1,12° |      |     |
|                                     |                            | T a                                                       | 1    | 6.64          | 7.8               | 7.2ª           | 7.38 | 7.3ª              | 7.5ª | 7.48  |             |             | 7.38 | 7.7ª  | 7.5ª  |      |     |
|                                     | Spanific                   | conductonce<br>(micromhos<br>at 25°C)                     |      | 108           | 1446              | 93.5           | 82.0 | 78.9              | 101  | 184   |             |             | 336  | 273   | 252   |      |     |
|                                     |                            | gan<br>gan                                                |      | 86            | 96                | 66             | 76   | 76                | 76   | 76    |             | -           | 96   | 96    | 56    |      |     |
|                                     |                            | Dissolved<br>oxygan                                       |      | 22.1          | 10,3              | 11.2           | 7.6  | 7.6               | 8,2  | 0.8   | r O         | 0rzy        | 9**  | 10.0  | 10.3  |      |     |
|                                     |                            |                                                           |      | 8             | z                 | 2              | 9    | 95                | 2    | 92    | led -       | - per       | 62   | - 65  | 3.5   |      |     |
|                                     |                            | Orachorga Tamp                                            |      | 43            | 59                | 101            | 98   | 82                | 30   | 3.9   | Not Sampled | Not Sampled | 3.0  | 3.4   | 0.9   |      |     |
|                                     |                            | and time<br>sampled                                       | 0.00 | 1/15          | 2/3               | 3/10           | 07/1 | 9/9               | 9/9  | 7/8   | 9/8         | 9/2         | 10/7 | 11/10 | 12/3  |      |     |

b Labaratory pH. a Field pH

c. Jum at calcum and anapassium in apm... d is copper (Cu), load (Pb), manganese (Mn), zinc (Zn), and haxavalent chromium (Ci <sup>16</sup>), reparted here as 0.0 except as shown. Sum of colcium and magnessum in apm.

e Darived from conductivity vs TDS curves.

Gravimetric determination.

Detamined by addition of analyzed constituents

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples and aby California Department of Public Health, Division of Leboratories, or United States Public Health Service.

Alex and the States Geological Every, Ocially of Weste Branch (1953), United States Department of the Internor, Bursou of Reclaimate States Control Every, Ocially of Wester Beamer States Control Every (1958), United States Public States (1958), United States (1959), United States (1959

CENTRAL VALLEY REGION (NO ...

|                      | Andryzed<br>by 1                                                             | 2     |      |           |         |          |                              |                |            |           |           |       |      |      |
|----------------------|------------------------------------------------------------------------------|-------|------|-----------|---------|----------|------------------------------|----------------|------------|-----------|-----------|-------|------|------|
|                      | Hordness bid - Cortorm Analysed os CoCO <sub>3</sub> 17 MPN/ms by 1 ord by C |       | 2 2  | Maximum I | Miria   |          |                              |                |            |           |           |       |      |      |
| 33                   | - 00                                                                         |       |      |           |         |          |                              |                | 1          |           |           | 1     |      | 10   |
|                      | Hordness<br>es CoCO <sub>S</sub><br>fotal Nr C<br>pom pom                    |       | 2    |           |         |          |                              |                |            |           | 1         | Þ     | 1    |      |
|                      | Pord<br>pam                                                                  |       | 5    |           | 1       | <u>z</u> | -                            | 2              | 3          | 8         | E         |       | è    | T    |
| 0                    | Pog - Pog                                                                    |       |      |           | -       |          |                              |                |            |           | 2         | 3     |      |      |
| Total                | solved sod -                                                                 |       | 1    | Ť         | 1112    | i i      | -                            | -8-            | .8         | 3         | 1         | •     | ï    | 1    |
|                      | Other constituents                                                           |       |      |           |         |          | - 11<br>- 11<br>- 11<br>- 11 |                | * Alk IIII | TI Alk II |           |       |      |      |
|                      | (SiO <sub>2</sub> )                                                          |       | -    | 2         | =       | -        | 2                            | -7             |            | 71        | 3         |       |      |      |
| 401                  | Baron Sinca<br>(B) (SiO <sub>2</sub> )                                       |       |      | 21        |         | 1        | 1                            | 3              | 7          | 0         | 3         | 7     | 1    | 31   |
| per million          | Fluo-<br>ride<br>(F)                                                         |       | 10.0 | 2         | Ŧ       |          | 7                            | T <sub>c</sub> |            | 1         | P         |       |      |      |
|                      | frote<br>(NO <sub>5</sub> )                                                  |       | 200  | 0         | - No. 1 | 200      | -15                          | afi            |            | -18       | ~ 8<br> c |       |      | A-76 |
| equivolents pe       | Chip.                                                                        |       | 2 45 | 121       | 8 8     | 282      | 25                           | 17.            | 1177       | 2 2       | 12        | S. E. | 5 X  | 28   |
| ē                    | Sul-<br>fote<br>(50 <sub>6</sub> )                                           |       | 25 C | 5/2       | 100     | 13.      | 10                           | 19             |            | 8         | - 1       |       |      |      |
| Mineral constituents | Brear<br>bondle<br>(MCO <sub>9</sub> )                                       |       | 104  | 200       | 1112    | 2.56     | 3.08                         | 19.9           | 179        | 100       | 200       | 50    | 3    | 234  |
| rol cone             | orbon-<br>ore<br>(CO <sub>5</sub> )                                          |       | 180  | 4         | 0.00    | 4.       | #                            | 8              | 13         | 270       | 100       | 1     |      | 10   |
| Mine                 | Potos: Corbon - B                                                            |       | 25   | 2.        | - 1     | 2        | 8                            | 2.5            |            | 2.        | = 1       |       |      |      |
|                      | Sadium<br>(No)                                                               |       | 500  | 1         | 21-     | 1 2      | 118                          | 1.70           | 124        | 0 K       | 3/0       | 25.5  | Thg  | E:   |
|                      | Magna-<br>5.0m<br>(Mg)                                                       |       | 7    |           | - 12    | 27.1     | 24                           | 2 H.I          |            | 91.1      | 28        |       |      |      |
|                      | (Co)                                                                         |       | 2/2  | 1         | 1       | 3 6      | 200                          | 1              | 2          | 17        | 2 10      | 2     | 211  | C.   |
|                      | Ŧ.                                                                           |       | 000  |           |         | -        | 0 _                          | e              | 4          | 3.0       | 7 8       | 1     |      | 5    |
| 0801610              | nicrombos<br>st 25°C)                                                        |       | 41/5 | 747       | 4 4     | 3        |                              | ्रे<br>इ       |            |           | -         | .1    | 834  | e    |
|                      | # 0 S of                                                                     |       | -2   | 1         | 4       | 1        | -3                           | #              | 9          | 8         | *         | 1     | 109  | Š.   |
|                      | Dissolved<br>orggen<br>ppm %Sof                                              |       | -    | 1         |         |          |                              |                | 7          |           | 2         | 8.1   |      | 1    |
|                      | 034                                                                          |       | Σ.   |           |         |          |                              |                | Y          | 7         | 2         | 1     | ÷    | N.   |
|                      | Dischorge Tamp Dissolved conductored in cfs in 0f ossgen (micrombos)         | Tidel |      |           |         |          |                              |                |            |           |           |       |      |      |
|                      | ond time<br>sompled<br>p S Y                                                 | 1,009 | 38   | 0110      | 93      | - 1      |                              | -1             | 1          | - 6       | 100       | 11    | 9/11 | ė    |

and hasoralent by a living reported have a secopt as --

d trin Fe (P) isseni (As opper in the (P) is againste (An izn (Zn i

A and the properties of the many provided from the world is smaller for filtering Department of Pour Manney Pure for the state of the many forms of the manney of the manney Beauson (16) and state of the manney Beauson (16) and the manney Beauson (16) and the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of the manney of

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

|                                             |                                      | Anolyzed<br>by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | USGS | _                       |         |                    |                   |                    |       | -     |      |                                           |       |       |       |   |              |
|---------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------|---------|--------------------|-------------------|--------------------|-------|-------|------|-------------------------------------------|-------|-------|-------|---|--------------|
|                                             |                                      | In ppm MPN/mi by I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Median                  | Maximum | Minimum<br>Minimum | <0.040<br>(0.040) |                    |       |       |      |                                           |       |       |       |   |              |
|                                             |                                      | - pid<br>- pid |      |                         | 0.      | -                  | 32                | 10                 | -     | 10    | 12   | 6                                         | œ     | e,    | 9     |   |              |
|                                             |                                      | Hordness<br>as CoCO <sub>S</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ā    |                         | С       | 0                  | 2                 | 0                  | 0     | 0     | 0    | 0                                         | 0     | 0     | 0     |   |              |
|                                             |                                      | Hord<br>Totol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ā    |                         | 58      | 39                 | #                 | 84                 | 99    | 102   | 117  | 118                                       | 93    | 16    | 75    |   |              |
|                                             |                                      | Sod -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                         | 19      | 8                  | 17                | 19                 | 18    | 63    | 245  | 54                                        | 8     | 8     | 8     |   |              |
|                                             | Total                                | solved<br>solved<br>in ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                         | d 4     | .99                | 67e               | 96°                | 96    | 163°  | 195e | 1881                                      | 125   | 125¢  | 121   |   |              |
|                                             |                                      | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                         |         |                    |                   | Fe 0.14 POh 0.40 d |       |       |      | A1 0.06 PO <sub>3</sub> 0.15 <sup>d</sup> |       |       |       |   |              |
|                                             |                                      | Sinco<br>(SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |                         |         |                    |                   | 15                 |       |       |      | 2                                         |       |       |       |   | <br>$\dashv$ |
|                                             | 6                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                         | 6:      | 0.1                | 0.0               | 9                  | 0.0   | 0.1   | 0.1  | 0.2                                       | 0:1   | 0.2   | 0.0   |   |              |
| 174)                                        | r million                            | Fluo- B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -    |                         |         |                    | -                 | 0,1                |       |       |      | 0.0                                       |       |       |       |   |              |
| (STA.                                       | ports per million<br>volents per mil | Irote<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         |         |                    |                   | 0.5                |       |       |      | 0.00                                      |       |       |       |   | <br>7        |
| T MILLS                                     | ports ps                             | Chlo.<br>ride<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | -                       | 3.0     | 2.2                | 1.8               | 1.5                | 0.06  | 5.8   | 8.5  | 0.50                                      | 4.2   | 5.0   | 3.0   |   | <br>-        |
| CRESCE                                      | 5                                    | Sul -<br>fore<br>(SO <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                         |         |                    |                   | 3.8                |       |       |      | 8.0<br>0.17                               |       |       |       |   | -            |
| INDIAN CREEK NEAR CRESCENT MILLS (STA. 174) | tituents                             | Bicor-<br>bonate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                         | 1.25    | 53                 | 50<br>0.82        | 1.11               | 84    | 139   | 164  | 2.80                                      | 105   | 100   | 102   |   | <br>1        |
| IDIAM CR                                    | Mineral constituents                 | Corbon-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                         | 0.00    | 0.00               | 0.0               | 0.00               | 0.00  | 0.0   | 0.0  | 0.00                                      | 0.0   | 0.0   | 0.00  |   |              |
| I                                           | Mine                                 | Potos- C<br>sium<br>(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                         |         |                    |                   | 1.3                |       |       | ,    | 3.1                                       |       |       |       |   | <br>7        |
|                                             |                                      | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                         | 6.5     | 5.0                | 0.18              | 5.4                | 6.8   | 14    | 0.74 | 18                                        | 9.5   | 10    | 9.6   |   |              |
|                                             |                                      | Mogna-<br>sium<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                         |         |                    |                   | 4.4<br>0.36        |       |       |      | 9.8                                       |       |       |       |   |              |
|                                             |                                      | Calcium Magne-<br>(Ca) Sium<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                         | 1.16    | 0.78               | 0,88°             | 12                 | 1.36° | 2.010 | 2.34 | 31                                        | 1.66  | 1.52  | 1.50° |   |              |
|                                             |                                      | ď E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                         | 7.2     | 7.2                | 7.1               | 7.1                | 7.2   | 6.9   | 4.0  | 7.3                                       | 7.3   | 7.7   | 7,1   |   |              |
|                                             | Spacific                             | (micromhos pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                         | 142     | 97.3               | 98.3              | 121                | 144   | 540   | 286  | 593                                       | 183   | 183   | 178   | - |              |
|                                             |                                      | on on o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | purnoq                  | %       | 28                 | %                 | 180                | 102   | 42    | 68   | 46                                        | 98    | 7     | - 63  |   | -            |
|                                             |                                      | Oissolvad<br>oxygan<br>ppm %Sof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Snow?                   | 12.1    | 11.2               | 10,2              | 8.3                | 8.8   | 6.9   | 9,   | 7.7                                       | 8.6   | 10.4  | 11.2  |   |              |
|                                             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    | . paid                  | 3       | 9                  | - A               | 29                 | 4     | 19    | 22   | %                                         | 8     | 35 1  | 36 1  |   | <br>$\dashv$ |
|                                             |                                      | Dischorge Tamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Not Sampled - Snowbound | 218     | 856                | 129               | 398                | 305   | 15    | 11   | 5.2                                       | 5     | 95    | 62    |   |              |
|                                             |                                      | ond time<br>sompled<br>P.S.T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1959 | 1/                      | 2/5     | 3/6                | 4/9               | 5/7                | 6/5   | 7/17  | 8/13 | 9/10                                      | 10/15 | 11/13 | 12/10 |   |              |

o Field pH.

b Loborotory pH.

Sum of cocicum and magnessum in April. (Ca.), and (Pb.), manganese (Mh.), zinc (Zn.), and hexavalent chromoun (Gr.<sup>6</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

is, axed made and may assertable. Calculated from excepts according controls and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of g Grovimetric determination.

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 31 TABLE RAN

|                       |                         | Angiyzed<br>by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17703 |             |      |              |       |                    |             |       |             |           |      |        |              |  |
|-----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|------|--------------|-------|--------------------|-------------|-------|-------------|-----------|------|--------|--------------|--|
|                       |                         | Michael Bid - Cofform Analyzed OCCOS proport MP4/md by 1 Por NC por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |             |      |              |       |                    |             |       |             |           |      |        |              |  |
|                       | 100                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 2           | 9    | 8            | 1     | q                  | à           | 4.    |             |           |      |        | -            |  |
|                       |                         | Mardhese<br>es CaCO <sub>S</sub><br>Totol M.C<br>ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 33          | 6    | -            | 9     | 0                  |             | -     | 0           | 3         | E    | 7      | 1            |  |
|                       |                         | Potol<br>Ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 3           | ž.   | 14           | 2     | 7                  | 3           | 5     | 4           | ^         | 8    | 3      | 2            |  |
|                       | 9                       | - 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 9           | .2   | 0.           | 3     | 5                  | ā           |       | :           |           | -    | 2      | 5            |  |
|                       | Total                   | solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - solide - sol |       | 903         | 2    | 27           | 3 - 6 | 500                | 236         | 8     | 724         | tu<br>J   | 20   | %<br>= | 6<br>F       |  |
|                       |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |             |      |              |       | A 20 2 4 4 5 5 4 4 | No 20 005 4 |       |             | Po. 1 1 4 |      |        |              |  |
|                       | ŀ                       | 00°S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |             |      |              |       |                    |             |       |             | 8         |      |        |              |  |
|                       | uo                      | Baron S<br>(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 6.5         | ~    | 2            | 31    | 1                  | 21          | 3     | 1           | 4         | 2    | 2      | 2)           |  |
| million.              | tim 14                  | Fluo- B<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |             |      |              |       | 10 O               | - FE        |       |             | 0 =       |      |        |              |  |
| parts per million     | equivalents per million | frote<br>(NO <sub>S</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |             |      |              |       | 6.0                | 0.03        |       |             | 0.0       |      |        |              |  |
| ao d                  | ednikai                 | Chlo-<br>ride<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 17.5        | 3 8  | 532          | 0.00  | 18                 | 9 E.        | 275   | 112<br>H R5 | 17 19     | 25   | 160    | 5.87<br>8.87 |  |
| 9                     |                         | Sul -<br>fate<br>(50 <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |             |      |              |       | 0.8                | 36          |       |             | 9         |      |        |              |  |
| 1,000                 |                         | Bicar -<br>bonate<br>(MCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 250         | 324  | 3.42         | 1.64  | 8 1.5.1            | 113         | 11.90 | 100         | 98 F      | 2 31 | 3.98   | 90.99        |  |
| Mineral constitutions | 1                       | 010<br>(CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 0.0         | 900  | - 18.        | 3 8   | m  80              | 0.00        | 1.8   | - 8         | 0.15      | - 18 | 08     | 018          |  |
| Mina                  | -                       | Polas- Carbon-<br>aum ate<br>(K1) (CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |             |      |              |       | 25                 | 9.1         |       |             | 6.2       |      |        |              |  |
|                       |                         | Sadmm<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 126<br>5 39 | 124  | 1.81<br>7.87 | 25.44 | 1 61               | 178         | 20.5  | 191         | 26        | 6 7  | 13,    | 7.00         |  |
|                       |                         | Magne-<br>8:6m<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |             |      |              |       | 8.8                | 28          |       |             | 1.56      |      |        |              |  |
|                       |                         | (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 21 B        | 1.50 | 7.45         | Ĕ     | 26                 | 01:10       | 180   | JE2         | 1.2       | 1    | 1926   | 8.10         |  |
|                       | -                       | T a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 7.          | . 8  | 800          |       | 1.                 | 4           | 7     | -           | 7         | 13   | 7.7    | 12           |  |
|                       | Specific                | (micromhos pH<br>ot 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 1.80        | 1    | 3.5          | 584   | 188                | ij          | 1     | 1,300       | 78%       | 402  | 1,010  | 1,420        |  |
|                       | ,                       | 96.50f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | U           | 0.0  | Б            | 8     | F                  | d           | ī     | E.          | 2         | £    | 8      | 5            |  |
|                       |                         | pow % 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -     |             | 1    | ٠,           | 4.5   | 6.8                | 1,2         | 9.0   | n           | 1         | 1    | ŝ      | 4.           |  |
|                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 5           | 5    |              | 98    | 42                 | 1.          | -     | -           | 8         | 8    | 3      | 5            |  |
|                       |                         | Dischorge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tidai |             |      |              |       |                    |             |       |             |           |      |        |              |  |
|                       |                         | P ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36    | 199         | 2/10 | 7            | 16    | 5.112              | 300         | 0 0   | 0100        | . 9       | 37   | 21.    | <u>a</u> 5   |  |

b Laboratory pH

Jan and its immort improvement that a proof Culting (Pb management Mai and I have and have and the proof of the proof of the management of the I to the management of the I to the management of the proof of the management of the management of the proof of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the management of the manag

Amenia in any separatra district and the majers of against respect to the majers and by Californa Department of Public Heart III crisis of Linear Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security Department of Security California Beauth Security Department of Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security California Beauth Security Californi g Gr vr ett i determinati n

ANALYSES OF SURFACE WATER TABLE B-4

CENTRAL VALLEY REGION (NO. 5)

|                                      |                        | Anolyzed<br>by 1                                            |                                                                    | SOSO  |               |                    |                 | -    |                                                            |                               |      |            |                                           |            |       |       |  |
|--------------------------------------|------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------|---------------|--------------------|-----------------|------|------------------------------------------------------------|-------------------------------|------|------------|-------------------------------------------|------------|-------|-------|--|
|                                      |                        | Hardness bid - Coliform<br>as CoCO <sub>3</sub> lity MPN/ml |                                                                    |       | Medfan<br>62. | Max1mum<br>>7,000. | Minimum<br>0.62 |      |                                                            |                               |      |            |                                           |            |       |       |  |
|                                      | 1                      | - pid                                                       |                                                                    |       | 2             | p.                 |                 | 8    | 9                                                          | 80                            | 94   | 35         |                                           | 04         | 30    | e.    |  |
|                                      | ,                      | 888                                                         | o e<br>o e<br>o e<br>o e<br>o e<br>o e<br>o e<br>o e<br>o e<br>o e |       | 140           | Ē                  | 23              | 99   | 16                                                         | Ξ                             | 8    | 81         | 37                                        | 23         | 35    | 135   |  |
|                                      |                        | Hordr<br>08 Co                                              | Total N.C.<br>ppm ppm                                              |       | 135           | 202                | 148             | 138  | F                                                          | 86                            | *    | 150        | 106                                       | 103        | 137   | 86    |  |
|                                      | ä                      | cant<br>cont                                                |                                                                    |       | 6             | 57                 | 85              | 3    | 38                                                         | 3                             | 57   | 89         | 58                                        | 32         | 53    | 22    |  |
|                                      | Totol                  | a dis-<br>solvada<br>sorida                                 | mdd ui                                                             |       | 365           | 5386               | 1,148°          | 305  | 157 <sup>f</sup>                                           | 167                           | 224° | 571°       | 314                                       | 364°       | 330   | 561   |  |
|                                      |                        | Other constituents                                          |                                                                    |       |               |                    |                 |      | Fe 0.19 Cu 0.01<br>A1 0.19 Zn 0.01<br>PO <sub>L</sub> 0.20 | Pe 0.12 A1 0.20 d<br>POL 0.15 |      |            | Pe 0.06 Al 0.05 d<br>PO <sub>k</sub> 0.10 |            |       |       |  |
|                                      |                        | Silico                                                      | SiO <sub>2</sub> )                                                 |       |               |                    |                 |      | 15                                                         | 1,4                           |      |            | 17                                        |            |       |       |  |
|                                      | lon                    | 5                                                           | (8)                                                                |       | 5]            | 91                 | 31              | 6.0  | 6.2                                                        | 0.0                           | 0.1  | 0.1        | 0.1                                       | 0.2        | 0.2   | 9.0   |  |
|                                      | per million            | Fluo-                                                       |                                                                    |       |               |                    |                 |      | 0.01                                                       | 0.0                           |      |            | 0.2                                       |            |       |       |  |
| PA, 106                              | squivolents per millon |                                                             | (NO3)                                                              |       |               |                    |                 |      | 0.5                                                        | 0.4                           |      |            | 0.02                                      |            |       |       |  |
| S) HING                              | Bquivo                 | Chio.                                                       | (CI)                                                               |       | 3.05          | 168                | 3.86            | 2.06 | 0.83                                                       | 31                            | 58   | 535        | 3.24                                      | 81<br>2.28 | 2.74  | 5.10  |  |
| MEAR M                               | u u                    | Sul -                                                       | (80%)                                                              |       |               |                    |                 |      | 0.50                                                       | 05.0                          |      |            | 32                                        |            |       |       |  |
| ITALIAN SLOUGH NEAR MOUTH (STA, 106) | stituanti              | Bicor-                                                      | (HCO <sub>3</sub> )                                                |       | 101           | 112                | 11.90           | 1.44 | 1.21                                                       | 1.43                          | 1.52 | 84<br>1.38 | 1.38                                      | 1.59       | 124   | 11.85 |  |
| ITALIA                               | Minsrol constituents   | Carbon-                                                     | (CO3)                                                              |       | 0.0           | 0.0                | 0.0             | 0.0  | 0.0                                                        | 0.0                           | 0.00 | 0.00       | 0.0                                       | 0.0        | 0.0   | 0.00  |  |
|                                      | Min                    | Potos-                                                      | (K)                                                                |       |               |                    |                 |      | 0.06                                                       | 1.7                           |      |            | 0.12                                      |            |       |       |  |
|                                      |                        |                                                             | (0 N.)                                                             |       | 2.91          | 5.35               | 1.13            | 2.13 | 23                                                         | 3.13                          | 1.87 | 114.8      | 3.04                                      | 57.2       | 3.09  | 4.92  |  |
|                                      |                        | Mogns-                                                      | (Mg)                                                               |       |               |                    |                 |      | 7.8                                                        | 0.6                           |      |            | 1.22                                      |            |       |       |  |
|                                      |                        | Colcium                                                     | (00)                                                               |       | 2.640         | 14.04c             | 2.96°           | 2.76 | 0.9                                                        | 0.90                          | 1.80 | 3.00°      | 90.90                                     | 290.9      | 2.740 | 1.56° |  |
|                                      | •                      | Hd                                                          |                                                                    |       | 7.2           | 7.3                | 5.5             | 7.3  | 7.3                                                        | 4.7                           | 7.3  | 7.3        | 7.3                                       | 7.3        | 7.5   | 6.9   |  |
|                                      | Spanific               | conductonce<br>(micromhos pH                                |                                                                    |       | 01/9          | 943                | 784             | 535  | 792                                                        | 284                           | 393  | 1,000      | 545                                       | 1463       | 578   | 8     |  |
|                                      |                        | p u u                                                       | %Sot                                                               |       | 98            | 92                 | 8               | 85   | 87                                                         | 88                            | 95   | 87         | 88                                        | 87         | 84    | 482   |  |
|                                      |                        | Oissolved                                                   | mdd                                                                |       | 6.9           | 9.6                | 7.6             | 60.7 | 4.8                                                        | 4.8                           | 7.2  | 6.8        | 6.7                                       | 8          | 0.6   | ·- 0  |  |
|                                      |                        | Tamp<br>in oF                                               |                                                                    |       | 25            | 9,                 | 99              | 99   | 10                                                         | 1                             | 92   | 77.00      | 8                                         | 99         | 29    | 27    |  |
|                                      |                        | Dischorge Tamp<br>in ofs in oF                              |                                                                    | Tidel |               |                    |                 |      |                                                            |                               |      |            |                                           |            |       |       |  |
|                                      |                        | ond time                                                    | P S.T.                                                             | 1959  | 1/13          | 2/10               | 3/12            | 1550 | 5/13                                                       | 0041                          | 1/2  | 8/9        | 9/8                                       | 10/5       | 13.15 | 18/7  |  |

o Field pH.

b Loborotory pH

c. Sum of colcium for amygrasium in sym. d inch. (24), orapper (Cu), load (Pb), manganase (Mn), sinc (Zn), and haxavalent chromium (Ci <sup>+6</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. c Sum of colcium and magnesium in apm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Manel analyses made by bared Stores Geological Suresy, Opelity of More Beach (1953); bared Stores Department of the Internot, Burston of Reclamation (1958); burst described the Stores of Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1954); burst described the Stores (1955); burst described the Stores (1954); burst des Annual median and amps, respectively. Colculated from analyses of duplicate monthly samples mode by California Department of Public Health, Division at Lebarateries, or United States Public Health Service. Gravimetric determination.

CENTRAL VALLEY REGION (NO. 5)

|                      |                      | 3144                                                               | -          |                |      | _     |       |           |                |      |       |         |     |     |            |
|----------------------|----------------------|--------------------------------------------------------------------|------------|----------------|------|-------|-------|-----------|----------------|------|-------|---------|-----|-----|------------|
|                      | _                    | A Pro                                                              |            |                |      |       |       |           |                |      |       |         |     |     |            |
|                      |                      | Hordness sid-ICollform Anayzed on CaCO <sub>3</sub> in all anayzed |            | an .           | 1    | 17    |       |           |                |      |       |         |     |     |            |
|                      |                      | 300                                                                |            | r              |      |       |       |           |                | •    | -     |         |     |     |            |
|                      |                      | 0000                                                               | Yotal N.C. | ~              |      |       |       |           | -1             |      |       |         |     |     |            |
|                      |                      |                                                                    |            | 1              | -    |       |       | 0.        | el             | -3   | 1     |         |     | 9.  | 2          |
|                      |                      | 0000                                                               |            |                |      | 0     | 9     |           |                |      | 0     | 0       | 9   | S   |            |
|                      | Total                | 00100                                                              | 6 9 9      | 1              | 06   | Y     |       | 8         | B              | 404  | 124   | T. II   | 0   | à   | 4          |
|                      |                      | 000000000000000000000000000000000000000                            |            |                |      |       |       | 1 1 1 1 1 |                |      |       | Alx. 1  |     |     |            |
|                      |                      | Silico                                                             | (2005)     |                |      |       |       | রা        |                |      |       | =1      |     |     |            |
|                      | 100                  | 8                                                                  | (8)        | -              | 3    | 7     | 3     | 7         | 3              | *    | -     |         | 21  | 3   |            |
| ř                    | million<br>ser mi    | - huo.                                                             |            |                |      |       |       | 19        |                |      |       | .15     |     |     |            |
|                      | porte per million    | 1                                                                  | (6 ON)     |                |      |       |       | 0         |                |      |       | 13.     |     |     |            |
|                      | 001100               | Chio-                                                              | ((C)       | 9 2            |      |       |       | 0.        | 14.5<br>United | ļ.   | 17    | 1<br>2. |     | 2 7 |            |
| -                    | ē                    | Sol                                                                | (20%)      |                |      |       |       | 20        |                |      |       | 2 3     |     |     |            |
| 200                  | alluents.            | Bicor-                                                             | (нсол)     | 2 B.           | 1.1  | d.    | -0    | 100       | 1 0° 2 1 1     | - 1  | X     | 1: 1    | E.  | 1   | ) <u>i</u> |
| were the total total | Mineral constituents | Carbon -                                                           |            | Æ              |      | ş.    | 0.    | 315       | 0.18           | - 10 |       | 13      |     |     | 4 .        |
|                      | Min                  | Patae-                                                             | (X)        |                |      |       |       | 70.       |                |      |       | 100     |     |     |            |
|                      |                      | Sodium                                                             | (0%)       | 2              |      | - 510 | .: 17 | 45        |                | - -  | -   - |         |     |     | 1.         |
|                      |                      | Magne.                                                             | (0 M)      |                |      |       |       | g .       |                |      |       | - 1,1   |     |     |            |
|                      |                      | Colcium Magne.                                                     | (00)       | ALL CONTRACTOR | Ŀ    | 10    | ŀ.    | . 9.      | 1              | F.   | E.    | ~ .     | 120 | 10  |            |
|                      |                      |                                                                    |            | 8.0<br>8       |      | -     | -     | 4         | ž.             | -    |       | 7.18    |     | -   |            |
|                      | Control              | Dissolved conductonce pH<br>osygen (micromhos pH                   |            | 8              | 2.95 | -     | 3     |           | 79.0           | -:   |       | -1      | -1  | 1   | 9          |
|                      |                      | * 5                                                                | 1º5%       | 2.             |      | à     |       |           | 30             | 9    | 1     |         | 1   |     |            |
|                      |                      | Dissol                                                             | ppm %Sat   | -              |      | -     | 1     | 3         | 3              | 9.   | 7     | 3       | 3   |     | 1          |
|                      |                      | 0 E 0 E                                                            |            | -              |      |       | e     | et        | -              |      | 11    | -       | 3   | 0   | e          |
|                      |                      | Dischorge Temp                                                     |            | 7              |      | b.    | į.    |           |                | 7.5  | 92    | 8       | ۶   | ε   | E          |
|                      |                      | and lime                                                           | P S T      | 123            |      | ***   | 35.   | 81        | 50             | -    | > "   | /3      | 31  | 31  |            |

Summer of the summer of the summer of the summer of the summer restricted to the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summer of the summe a "ter ved from on tryity vs TDS urves

A med trope inspirately inclination analysis of delivers with respirate table. He is not the first P. Man, See, a Manner of the first selected Sees, the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the first Sees of the fir

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5)

|                                       |                                           | Anolyzed<br>by i                               | USGS |               |                |                 |       |                  |       |       |          |                                       |           |       |                   |  |
|---------------------------------------|-------------------------------------------|------------------------------------------------|------|---------------|----------------|-----------------|-------|------------------|-------|-------|----------|---------------------------------------|-----------|-------|-------------------|--|
|                                       | 4                                         | bid - Coliform"<br>ity MPN/ml                  |      | Nedtan<br>2,3 | Yaxdmun<br>23, | Hinimun<br>0.23 |       |                  |       |       |          |                                       |           |       |                   |  |
|                                       | 1.0                                       | - p-d                                          |      | 52            | 0              | .2              | 0     | 0                | -21   | w     | 52       | 15                                    | 3         | 9     |                   |  |
|                                       |                                           | CO <sub>3</sub>                                |      | 0             | 0              | 0               | 0     | 0                | 0     | 0     | ю        | 0                                     | 0         | 0     |                   |  |
|                                       |                                           | Hardnese<br>os CoCO <sub>S</sub><br>Totol N.C. |      | 8             | 15             | 26              | 53    | \$3              | 20    | 79    | 20       | 26                                    | 59        | 79    |                   |  |
|                                       | Par                                       | man - poe                                      |      | 36            | 92             | 33              | 88    | 37               | 39    | 34    | 39       | 173                                   | 977       | 91    |                   |  |
|                                       | Total                                     | solved<br>solids<br>in ppm                     |      | 122°          | 9971           | .97T            | Ë     | 951              | 107°  | 100   | 1096     | 120f                                  | 3770      | 151,  |                   |  |
|                                       |                                           | Other constituents                             |      |               |                |                 |       | Al 0,10 PO, 0,00 |       |       |          | Fe 0.02 Ou 0.01<br>POL 0.00 Zn 0.01 d |           |       |                   |  |
|                                       |                                           | Silica<br>(SiO <sub>2</sub> )                  |      |               |                |                 |       | 8                |       |       |          | ន្ទា                                  |           |       |                   |  |
|                                       | lion                                      | Boron<br>(B)                                   |      | 21            | 0,2            | 0,1             | 0.2   | 0.2              | 0.1   | 0,1   | 0,2      | 0.3                                   | 700       | 0.2   |                   |  |
| (9)                                   | per mi                                    | Fluo-<br>ride<br>(F)                           |      |               |                |                 |       | 0.3              |       |       |          | 0.03                                  |           |       |                   |  |
| (STA.                                 | porte per million<br>equivalents per mill | Ni-<br>trate<br>(NO <sub>S</sub> )             |      |               |                |                 |       | 0.0              | -     |       |          | 0,0                                   |           |       |                   |  |
| HSFIELD                               | aguive.                                   | Chio-<br>ride<br>(CI)                          |      | 0,28          | 7.5            | 8.8             | 7.0   | 0.0              | 7.0   | 6.0   | 6.2      | 112<br>0.34                           | 17 ° ° 39 | 13    |                   |  |
| AR BAICE                              | c.                                        | Sul -<br>fate<br>(SO <sub>d</sub> )            |      |               |                |                 |       | 0.25             |       |       |          | <u>n</u><br>0,23                      |           |       |                   |  |
| CERN RIVER NEAR BAKENSFIELD (STA. 36) | constituente                              | Bicor-<br>banate<br>(HCO <sub>3</sub> )        |      | 78<br>1.28    | 1.38           | 1,39            | 1.34  | 1.88             | 78    | 101   | 78       | 1.16                                  | 1,38      | 1.51  |                   |  |
| KERN :                                | Mineral can                               | Corban-<br>ote<br>(CO <sub>9</sub> )           |      | 0.0           | 0.0            | 0*0             | 0.0   | 0.0              | 0000  | 0000  | 0.0      | 0.00                                  | 0.00      | 0.00  |                   |  |
|                                       | Min                                       | Potoe-<br>srum<br>(K)                          |      |               |                |                 |       | 0.05             |       |       |          | 2.1                                   |           |       |                   |  |
|                                       |                                           | Sadium<br>(No)                                 |      | 37            | 15             | 0,65            | 15    | 15               | 15    | 15    | 0.65     | 20                                    | 23        | 1.09  |                   |  |
|                                       |                                           | Magne.<br>alum<br>(Mg)                         |      |               |                |                 |       | 1.9              |       |       |          | 2.7                                   |           |       |                   |  |
|                                       |                                           | Calcium<br>(Ca)                                |      | 1.320         | I.B            | 1,12            | 1,000 | 0.90             | 1,000 | 1,28  | 1,00     | 0.90                                  | 1,18      | 1.280 |                   |  |
|                                       |                                           | x                                              |      | 7,24          | 7.7            | 7.2ª            | 7.7   | 7.68             | 7.9"  | 7.88  | 7.98     | 7.8                                   | 7.78      | 7.98  |                   |  |
|                                       | Specific                                  | (micromhos<br>of 25°C)                         |      | 189           | 180            | 180             | 172   | 175              | 167   | 162   | 169      | 205                                   | 227       | 240   | broken in transit |  |
|                                       |                                           | gen<br>%Sot                                    |      | 89            | 306            | 76              | 36    | ioi              | 102   | 89    | 101      | 100                                   | £         | 96    | ken 1h            |  |
|                                       |                                           | Oreacived<br>oxygen<br>ppm %Sot                |      | 9.7           | 12,3           | O. OI           | 9*1   | 9.7              | 0.6   | 8+7   | 80<br>10 | 80                                    | 10°9      | 10.7  | o pro             |  |
|                                       |                                           | Te ai                                          |      | 23            | 877            | 12              | 3     | 199              | 72    | 62    | 77       | 82                                    | 89        | 23    | Sample            |  |
|                                       |                                           | Orschorge Temp                                 |      | 439           | 364            | 109             | 575   | 431              | 06 n  | 1,732 | 550      | 231                                   | 145       | 146   |                   |  |
|                                       |                                           | and time<br>eampled<br>P.S.T.                  | 1959 | 1/11,         | 2/3            | 3/9             | 1600  | 5/5              | 6/2   | 1/7   | 8/5      | 9/3                                   | 10/6      | 17/11 | 12/               |  |

o Field pH.

Lobaratary pH.

Sum at colcium and magnessum in opim. I not copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>+6</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. Iron (Fe), alumnum (A1), arsenic (A2), responsed here as  $\frac{0.0}{0.00}$  except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annel medins and annys, respectively. Calculated from modystes of duplicate monthly samples most by California Department at Poblic Health, Districts of Laboratories, or United Streets Poblic Health Sorrice. (LSPHS); Sen Beneditive County Flood County Districts and Streets and Streets County Flood County Districts (LSPHS); Sen Beneditive County Flood County Districts (LSPHS); Sen Beneditive County Flood County Districts (LSPHS); Sen Beneditive County Flood County Districts (LSPHS); Sen Beneditive County Plood County Districts (LSPHS); Sen Beneditive County Districts (LSPHS); Tambell Streets (LSPHS); Sen Beneditive County Districts (LSPHS); Sen Beneditive County Districts (LSPHS); Tambell Streets (LSPHS); Tambell Streets (LSPHS); Tambell Streets (LSPHS); Sen Beneditive County Districts (LSPHS); Tambell Streets Gravimetric determination.

CENTRAL VALLEY REGION (NO. 93)

|                        |                         | by 1                                                                              | 939  |            |                  |                                         | -     |                |       |       |       |                |       |       |                   |
|------------------------|-------------------------|-----------------------------------------------------------------------------------|------|------------|------------------|-----------------------------------------|-------|----------------|-------|-------|-------|----------------|-------|-------|-------------------|
|                        | -                       | Nordness Bid - Coliform Analysed es CuCO <sub>3</sub> II <sub>7</sub> MPN/md By I | 0)   | ş          | 5                | 1                                       |       |                |       |       |       |                |       |       |                   |
|                        |                         | T S                                                                               |      | and the    | Nacional<br>270. | and and and and and and and and and and |       |                |       |       |       |                |       |       |                   |
|                        | 3                       | 7                                                                                 |      | 8          | S                | _3                                      | 3     | ×              | n     | ~     | 9     | *              | NO.   | 10    | 3                 |
|                        |                         | Merdness<br>se CaCOs<br>Tatol N C<br>ppm                                          |      |            | 10               |                                         | -     | 0              | 2     |       | c     |                |       |       |                   |
|                        |                         |                                                                                   |      | 63         | ₫                | 9                                       | 53.   | 35             | 3     | 3     | 177   | -              | 12.   | 8     | 28                |
|                        | 0                       | 5                                                                                 |      | 23         | 32               | -                                       | 2.    | 12             | R     | R     | 7     | В              | 175   | 2.    | 9                 |
|                        | Totel                   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                             |      | 179        | th.              | 102                                     | LL.   | 346            | \$    | 82    | 100,  | Le.            | 122"  | 1.00  | 115*              |
|                        |                         | Other constituents                                                                |      |            |                  |                                         |       | 70 000 PQ C000 |       |       |       | PO, 15 41 3,02 |       |       |                   |
|                        |                         | (\$0.5)                                                                           |      |            |                  |                                         |       | 7              |       |       |       | 91             |       |       |                   |
|                        | Million                 | (B)                                                                               |      | 0,2        | 0,2              | 7                                       | 0 0   |                | 7-    | 립     | 0,1   | 11             | 3     | 7-    | 24                |
| 3/4                    | per mil                 | Fluo-<br>ride<br>(F)                                                              |      |            |                  |                                         |       | 200            |       |       |       | 0.02           |       |       |                   |
| AM (5TA                | equivalente per million | frote<br>(NOs)                                                                    |      |            |                  |                                         |       | 9.00           |       |       |       | 1.0            |       |       |                   |
| ISABELLA DAM (STA. 36a | 900100                  | CNO-                                                                              |      | 0,18       | 6.5<br>0.18      | 5.0                                     | 0.18  | 100            | 0°9   | 0,17  | 5.5   | 200            | 8.7   | 8.0   | 9.0               |
| ELW IS                 | 5                       | 5 ut -<br>foto<br>(\$04)                                                          |      |            |                  |                                         |       | 9:10           |       |       |       | 0.19           |       |       |                   |
| CEN RIVER BELM         | freutite.               | Bonete<br>(HCO <sub>3</sub> )                                                     |      | 8 1        | 1.39             | 1.26                                    | 1.1   | 811            | 71,23 | 72    | 1,21  | 138            | 1,010 | 10.7  | 1-11              |
| KEEN                   | Mineral constituents    | Carbon-<br>ete<br>(CO <sub>6</sub> )                                              |      | 0.0        | 0.0              | 000                                     | 0000  | 0.0            | 0.0   | 0,00  | 0.00  | 0.0            | 0000  | 000   | 000               |
|                        | Min                     | Potos.<br>(K)                                                                     |      |            |                  |                                         |       | 20.2           |       |       |       | 2,1            |       |       |                   |
|                        |                         | Sodium<br>(o M)                                                                   |      | 77<br>0*01 | 170              | 0,57                                    | 0,70  | 17 N           | 0.57  | 13    | 15    | 17             | 19    | 19    | £ 0 € 0           |
|                        |                         | Magne-<br>erom<br>(Mg)                                                            |      |            |                  |                                         |       | 2.4            |       |       |       | 9.5            |       |       |                   |
|                        |                         | (Ca)                                                                              |      | 1,260      | I.               | 0.970                                   | 1.160 | 100            | 18.   | 0.93  | 0.940 | 11             | É     | 1.120 | Ē.                |
|                        |                         | - I                                                                               |      | 7.4        | 7.1              | 7.2                                     | 7.5   | 7.6            | 700   | 7.02  | 7.2   | 7.0            | 1.5   | 707   | 7:3               |
|                        | Sparific                | conductance<br>(micromhos<br>at 25°C)                                             |      | 184        | 179              | 191                                     | 178   | 175            | 173   | 27.6  | 160   | 179            | 193   | 2.71  | i i               |
|                        |                         | 90 301                                                                            |      | 98         | 66               | 11                                      | 60    | 69             | 66    | 8     | 8     | 8              | 25    | 66    | 8                 |
|                        |                         | Dissolved<br>osygen<br>ppm %Sot                                                   |      | 20.02      | 10.01            | 10.1                                    | 2.6   | 9.1            | 9.2   | 9*3   | C * 6 | 5.5            | 6.3   | 6.9   | 10.0              |
|                        |                         |                                                                                   |      | 61         | 4                | 52                                      | 59    | 1%             | 19    | 8     | 12    | 72             | 8     | 8     | 25                |
|                        |                         | Discharge Yemp                                                                    |      | 2          | 2                | 777                                     | 67    | ~              | 3     | 1,094 | 797   | К              | 73    | 7     | ×                 |
|                        |                         | Ond lime<br>sampled<br>P S T                                                      | 1959 | 1/19       | 2/19             | 3/16                                    | 1015  | 0820           | 200   |       | 1 000 | 9,7            | Sin   | LL %  | 721<br>721<br>721 |

H. Let a

c Sum of 10 10m and magnessum in epim.

c. Sum of the found ongoestum in spin.

I see a unman. All extents has copper (or lead (Pb), management like) and (2a), and hearestent chromium (C. \*\* reported here as 0 as east) as shown at time for a unman. e Derived from conductivity is TDS curves

Annel Indian and loops responsible for many set of Apriloses manify sender needs by California Department of Poblic Meelth, Diction of Laboratories in United States Department of Apriloses Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Sender Se Gravimetri defermination

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE R-4

|                                      |                                           | Analyzed<br>by i                                          |                     | USGS |               |                    |                 |             |                  |       |          |          |                               |       |      |       |   |
|--------------------------------------|-------------------------------------------|-----------------------------------------------------------|---------------------|------|---------------|--------------------|-----------------|-------------|------------------|-------|----------|----------|-------------------------------|-------|------|-------|---|
|                                      |                                           | Hordness bid Coliformh<br>os CoCO <sub>3</sub> 11y MPN/mi |                     |      | Wedian<br>9.6 | Maccimum<br>7,000, | Minimum<br>0.06 |             |                  |       |          |          |                               |       |      |       |   |
|                                      |                                           | 1 p 1                                                     | à                   |      | 9             | 9                  | 9               | og.         | 7,*0             | п     | -7       | 2        | 51                            | н     | 3/1  | 6     |   |
|                                      |                                           | 0000<br>0000                                              | N C<br>PPM          |      | С             | 0                  | 0               | 0           | 0                | 0     | 0        | 0        | 0                             | 0     | 0    | 0     |   |
|                                      |                                           |                                                           |                     |      | 1577          | 77                 | 젂               | %           | 277              | - 23  | 56       | 33       | 977                           | 57    | 8    | 20    |   |
|                                      |                                           | Sod -                                                     | Ē                   |      | 33            | %                  | 37              | R           | Ж.               | 98    | 715      | 53       | 77                            | 947   | 1,5  | 73    |   |
|                                      | Totol                                     | aolida                                                    | mdd u               |      | 102           | 926                | 788             | 81.         | 352              | 991   | 98       | 88       | 100                           | 118   | 1250 | 127   |   |
|                                      |                                           |                                                           | Oliner constituents |      |               |                    |                 |             | Fe 0,03 PO, 0,00 |       |          |          | Pol, 0,00 0a 0,01<br>Zn 0,03d |       |      |       |   |
|                                      |                                           | Silica                                                    | (20.5)              |      |               |                    |                 |             | গ্র              |       |          |          | 17                            |       |      |       | _ |
|                                      | million                                   | 5                                                         | (8)                 |      | 0,1           | 0                  | 7.              | 0,1         | ्री              | 0,1   | 0.8      | 긺        | 0.2                           | 0,2   | 0,1  | 0,2   |   |
| (q)                                  | r millior                                 |                                                           | (F)                 |      |               |                    |                 |             | 0.2              |       |          |          | 0.1                           |       |      |       |   |
| KERN RIVER NEAR KERNYLLIE (STA. 36b) | ports per million<br>equivalents per mill | $\overline{}$                                             | (NO <sub>5</sub> )  |      |               |                    |                 |             | 0000             |       |          |          | 0000                          |       |      |       |   |
| RIVILLE                              | A nbe                                     | Chlo-                                                     | (C)                 |      | 0.20          | 0.17               | 255             | 4.2<br>0.12 | 3.0              | 3.0   | 0.11     | 0.17     | 1100                          | 0.23  | 0.28 | 0.23  |   |
| MEAR KES                             | t et                                      | Sul                                                       |                     |      |               |                    |                 |             | 0.06             |       |          |          | 0,21                          |       |      |       |   |
| RIVER                                | natituen                                  | - Bicor-                                                  | (HCO <sub>2</sub> ) |      | 1,05          | 59                 | 52              | 53          | 38               | 29    | 070      | 51,00,89 | 72                            | 73    | 79   | 1,36  |   |
| XEE                                  | Mineral constituents                      | 0                                                         | (00)                |      | 0.00          | 0.00               | 0000            | 0.00        | 0.00             | 0000  | 0.00     | 0.00     | 0000                          | 0.00  | 0.00 | 0.00  |   |
|                                      | M                                         | Potos-                                                    |                     |      |               |                    |                 |             | 0.03             |       |          |          | 1,00                          |       |      |       |   |
|                                      |                                           | Sodium                                                    |                     |      | 0,57          | 110                | 9.2<br>0.40     | 910         | 6.5              | 6.0   | 8.6      | 13       | 17                            | 0.78  | 0.83 | 0.78  |   |
|                                      |                                           | Mogne-                                                    |                     |      |               |                    |                 |             | 0.5              |       |          |          | 2.1                           |       |      |       |   |
|                                      |                                           | Coloium                                                   | (03)                |      | 0.00          | 0,8110             | 0,68            | 0.720       | 8.8              | 0.420 | 0.520    | 0.08     | 0.75                          | 06.00 | 1,00 | 1,000 |   |
|                                      |                                           | A.                                                        |                     |      | 7.1           | 7.1                | 700             | 7.          | 70,0             | 7.2   | 7.4      | 7.4      | 7.2                           | 7.7   | 7.4  | 7.3   | _ |
|                                      | Spacific                                  | Conductance<br>(micromhos                                 |                     |      | 717           | 132                | 777             | 777         | 82.6             | 68,5  | 98.1     | 127      | 168                           | 169   | 180  | 182   |   |
|                                      |                                           | p e v e                                                   | %Sat                |      | 90            | 72                 | 8               | 25          | 93               | 76    | 12       | 22       | 93                            | 95    | 8    | 102   | - |
|                                      |                                           | Ossgan                                                    | mdd                 |      | 11.11         | 11,2               | 10,2            | 10,1        | 10,1             | 9.6   | 80<br>JU | 8,2      | 8,2                           | 9.h   | 10.0 | 11.55 | - |
|                                      |                                           | Temp<br>In of                                             |                     |      | 77            | 777                | 25              | 52          | 25               | 22    | %        | 2        | 72                            | 19    | 53   | 77    |   |
|                                      |                                           | Osscharge Temp                                            |                     |      | 280           | 1,140              | 204             | 1,50        | 909              | 200   | 10<br>10 | 166      | Ħ                             | 041   | 152  | 132   |   |
|                                      |                                           | ond time<br>sompled                                       | P.S.T.              | 1959 | 1/19          | 2/19               | 3/16            | 1015        | 5//6             | 6/3   | 7/1      | 8/3      | 7,6<br>11,00                  | 10/1  | 1030 | 12/1  |   |

o Field pH.

Sum of calcium and magnesium in epm. b Labaratory pH.

own concernment and processes and the second (Ca), lead (Pb), monganese (Mn), zinc (Zn), and hexavolent chromium (Cr\*6), reported here as  $\frac{0.0}{0.00}$  except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual manual manual personal 
CENTRAL VALLEY REGION (NO. 5)

|                                         |                         | henyzed<br>by l                                             | 1    |                                         |           |          |            |       |        |       |             |          |      |                  |                             |
|-----------------------------------------|-------------------------|-------------------------------------------------------------|------|-----------------------------------------|-----------|----------|------------|-------|--------|-------|-------------|----------|------|------------------|-----------------------------|
|                                         |                         | Herdines Die Coloum Annyzed e CoCOs Ty MPH/mg by 1 Foroil H |      | 4 th 4 th 4 th 4 th 4 th 4 th 4 th 4 th | 7a.co.    | Windman. |            |       |        |       |             |          |      |                  |                             |
|                                         | 1                       | - 200                                                       |      | н                                       | 4         |          | 2          | ь     | ~      | 2     |             | м        | ~    | -                | 1                           |
|                                         |                         | Herdness<br>es CeCos<br>Yetol N.C.<br>psm. spm.             |      |                                         |           |          |            | ~     |        | -     |             | -        |      |                  |                             |
|                                         |                         |                                                             |      | 17                                      | 77        | 9        | 21         | 6     | 0.     | 60    |             | 8        | 13   | 2.2              | 1                           |
|                                         | -                       | 000                                                         |      | 0                                       | 19        | ,J       | 2.7        | 23    | 2.9    | 23    |             | 22       | H    | E                | 2                           |
|                                         | Totel                   | 00100<br>00100<br>001000                                    |      | 1.                                      | \$1<br>0. | 27.0     | 230        | ä     | 16°    | 1,4 % |             |          | 4.   | i.               | e.                          |
|                                         |                         | Other constituents                                          |      |                                         |           |          |            | 智の調   |        |       |             | 28 22 24 |      |                  |                             |
|                                         |                         | 00.0                                                        | -    |                                         |           |          |            | 777   |        |       |             | 킈        |      |                  |                             |
|                                         | 100                     | Boron Silico<br>(8) (\$10 <sub>2</sub> )                    |      | 0*0                                     | ्         | 9]       | 0.0        | 3     | 000    | 3     |             | 170      | 3    | 9                | -                           |
| (0)                                     | er mil                  | F140-                                                       |      |                                         |           |          |            | 0     |        |       |             | g[.      |      |                  |                             |
| (STA. 33                                | equivalents per million | 1001<br>(NO <sub>8</sub> )                                  |      |                                         |           |          |            | Æ.    |        |       |             | ~ T      |      |                  |                             |
| H PURK                                  | 9                       | Chio-<br>ride<br>(Ci)                                       |      | 3.2                                     | 1.2       | 0.0      | 2°0<br>0°0 | yE.   | 0.03   | 0.01  |             | 80° Z    | 7:   | 0,17             | 9,6                         |
| W NEED                                  | ē                       | Sul -<br>fale<br>(SO <sub>6</sub> )                         |      |                                         |           |          |            | 1     |        |       |             | 012      |      |                  |                             |
| KINGS KIVER BELLW HORTH PORK (STA. 330) | elifuente.              | Bicor-<br>bonete<br>(HCOs)                                  |      | 25                                      | 16        | 0°53     | 16<br>0,26 | ek    | 0,13   | 0.15  |             | 200      | 0.36 | 28 00.16         | 28                          |
| KINDS KI                                | Mineral constituents    | Corbon - (CO <sub>3</sub> )                                 |      | 0.0                                     | 0.00      | 0.0      | 0.0        | 000   | 0000   | 0.00  |             | 000      | 0.00 | 0000             | 0000                        |
|                                         | 3                       | Palos.<br>(K)                                               |      |                                         |           |          |            | 152   |        |       |             | 16       |      |                  |                             |
|                                         |                         | Sodium<br>(No)                                              |      | 0.17                                    | 1.4       | 0.10     | 2.0        | 78    | 0.07   | 0.00  |             | 7        | 3.6  | 5 0              | 5 <u>.7</u><br>0 <u>.25</u> |
|                                         |                         | # 0gne<br>(pm)<br>(Mg)                                      |      |                                         |           |          |            | 1     |        |       |             | 000      |      |                  |                             |
|                                         |                         | (Ca)                                                        |      | 0.2                                     | 0,250     | 0,19     | 0,210      | 18    | ê      | Ě     |             | 019      | 0°38 | Ė.               | ×95*                        |
|                                         |                         | A I                                                         |      | 7.0                                     | 6.7       | 2.00     | 7.0        | 6.7   | 9.9    | 9.9   |             | 7.1      | 6.9  | 6.8              | 2                           |
|                                         |                         | Conductance BH b C on 250 C)                                |      | 53.5                                    | 11.7      | 33°3     | 32.1       | 23.0  | 22.4   | 22.2  |             | 57.04    | 2.3  | 65.7             | 72.2                        |
|                                         | L,                      | 1v. 6<br>Garagen (Garage)                                   |      | 103                                     | 8         | 76       | 907        | 8     | 76     | 8     |             | 136      | 153  | 69               | 8                           |
|                                         |                         | Diesolved<br>osygen<br>ppm %Sar                             |      | п.6                                     | 12.2      | п.3      | 4-11       | 9.01  | 7.0    | 0.01  |             | 12,3     | 15.0 | ъ.s              | 12.0                        |
|                                         |                         |                                                             |      | 69                                      | 2         | 53       | 95         | 25    | 9      | 8     | fled        | K        | 50   | 35               | 49                          |
|                                         |                         | Discharge Temp                                              |      | 595                                     | 573       | 1,920    | 1,810      | 3,976 | 2,64,9 | 1,003 | Not Sampled | 1.%      | %    | 1.77             | ä                           |
|                                         |                         | Date<br>and time<br>ampled<br>F 8 9                         | 1959 | 1,72<br>1,32                            | 2/9       | 3/9      | 1200       | °%    | 00/2   | 1200  | 9/          | 00 to    | 100  | 4<br>2<br>3<br>3 | 12/1                        |

b Loboratory pH Hq bland o

c. Sum of calcium and magnesium in epm.

c. Sun of salsum and magnesum in epin.
d Iran 'Fe' aluminum A1' street (Ae), copper (Cui lead (Pb), manganese (Ma), and 'Zn', and herardent chramium (Ci' \* reparted here a 0 0 exists as shown d Iran 'Fe' aluminum A1' street (Ae). Desemined by addition of analyzed constituents Derived from conductivity on TDS curves

Gravimatric determination

h Annual and an early respectively. Calculated from analysis of digitizate monthly transplan mode by Calculance and Palacin from Department of Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from the Calculance and Palacin from th

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

|                                          |                      | Analyzed<br>by 5                                                                       | 8080 |               |                  |                 |        |                   |       |       |       |                   |      |       |      |
|------------------------------------------|----------------------|----------------------------------------------------------------------------------------|------|---------------|------------------|-----------------|--------|-------------------|-------|-------|-------|-------------------|------|-------|------|
|                                          | £                    | Hordness bid Coliform Analyzed os CaCO <sub>3</sub> Ify MPN/mi by I Total N C. Ppm ppm |      | Median<br>26. | Maxtmum<br>7,000 | Minimum<br>0,62 |        |                   |       |       |       |                   |      |       |      |
| r                                        |                      | - pid<br>Liv                                                                           |      | 5             | -                |                 | С      | С                 | u     | А     | 4     | C)                | er.  | a     | 2    |
|                                          |                      | CO3<br>N C DMC                                                                         |      |               | С                | c               | С      | С                 | С     | С     | С     | С                 | С    | 0     | С    |
|                                          |                      | Hardness<br>os CaCO <sub>3</sub><br>Total N.C.<br>ppm ppm                              |      | 82            | 33               | 19              | 95     | 64                | 16    | 13    | 7     | 4                 | GF   | 8     | 2    |
| t                                        | d.                   | t P                                                                                    | _    | X             | %                | %               | 98     | €                 | %     | 8     | 202   | 8                 | 8    | 7     | 31   |
|                                          | Toto                 | solids<br>solids<br>in ppm                                                             |      | 73            | .59              | °C,             | 100    | 98.7              | 56    | r.    | 276   | 700               | 25*  | 159   | 138  |
|                                          |                      | Other constituents                                                                     |      |               |                  |                 |        | Pe 0.09 A1 0.09 d |       |       |       | Pe 0.04 2n 0.01 9 |      |       |      |
|                                          |                      | (S)11.ca                                                                               |      |               |                  |                 |        | 17                |       |       |       | 1                 |      |       |      |
|                                          | uo                   | Boran S<br>(B)                                                                         |      | 0.1           | 0.0              | c.              | 0.1    | 0.0               | 0.0   | C.    | 0.1   | 0.0               | 0.0  | 0.0   | 0.0  |
| 34)                                      | per million          | Fluo-<br>ride<br>(F)                                                                   |      |               |                  |                 |        | 0.0               |       |       |       | 0.1               |      |       |      |
| R (STA.                                  |                      | Ni-<br>trate<br>(NO <sub>3</sub> )                                                     |      |               |                  |                 |        | 0.07              |       |       |       | 0.0               |      |       |      |
| TES WEI                                  | equivolents          | Chio-<br>ride<br>(Ci)                                                                  |      | 0.14          | 3.5              | 3.2             | 5.0    | 3.5               | 1.5   | 1.8   | 0.5   | 0.04              | 5.8  | 0.23  | 0.20 |
| OM PEOF                                  | Ē                    | Sul -<br>fats<br>(SO <sub>4</sub> )                                                    |      |               |                  |                 |        | 5.8               |       |       |       | 0.76              |      |       |      |
| MINGS RIVER BELOW PROPLES WEIR (STA. 34) | stituents            | Brear-<br>banate<br>(HCO <sub>3</sub> )                                                |      | 97.0          | 0.79             | 26              | 1.23   | 1.08              | 0.33  | 18    | 0.33  | 18                | 37   | 118   | 1.74 |
| KINOS R                                  | Mineral constituents | Corban-<br>(CO <sub>S</sub> )                                                          |      | 0.00          | 0.0              | 0.0             | 0.0    | 0.0               | 0.0   | 0.0   | 0.0   | 0.0               | 0.0  | 0.0   | 0.00 |
|                                          | M                    | Potos-<br>arum<br>(K)                                                                  |      |               |                  |                 |        | 1.5               |       |       |       | 0.9               |      |       |      |
|                                          |                      | Sodium<br>(No)                                                                         |      | 6.1           | 5.2              | 3.1             | 9.2    | 7.6               | 2.5   | 0.10  | 0.00  | 2.6               | 6.20 | 0.74  | 0.65 |
|                                          |                      | Mogne-<br>sium<br>(Mg)                                                                 |      |               |                  |                 |        | 3.4               |       |       |       | 0.2               |      |       |      |
|                                          |                      | Catcium<br>(Co)                                                                        |      | 0.76          | 0.66             | 0.38            | 1.12   | 14<br>0.70        | 0,350 | 0,270 | 0.280 | 5.2               | 0.60 | 1.600 | 1.44 |
|                                          |                      | 4 Hg                                                                                   |      | 6.5           | 6.8              | 7.1             | <br>C: | 7.5               | 7.1   | 7.1   | 7.0   | 7.0               | 7.1  | 7.7   | 7.5  |
|                                          | Coacific             | conductance pH<br>(micromhos)<br>of 25°C)                                              |      | 106           | 94.8             | 58.3            | 149    | 132               | 41.7  | 39.9  | 39.8  | 38.0              | 80.8 | 225   | 93   |
|                                          |                      |                                                                                        |      | 84            | 8                | 8.              | 8      | \$                | 8:    | 8:    | 83    | 6                 | 16   | 80    | 8    |
|                                          |                      | Dissolved<br>oxygen<br>ppm %Sa                                                         |      | 0.6           | 10.2             | 4.6             | 8.7    | 80.               | 9.6   | 8.7   | 6.5   | -7°               | -7°  | 6.6   | 6.6  |
|                                          |                      | Temp<br>in of                                                                          |      | 57            | 8                | 8               | 69     | 8                 | 89    | 8     | 92    | 69                | 19   | 8     | 23   |
|                                          |                      | Dischorge Temp                                                                         |      | 354           | 112              | 883             | 211    | 167               | 930   | 972   | 727   | 733               | 65   | 57    | 8    |
|                                          |                      | Dots<br>and time<br>sampled<br>P.S.T                                                   | 1950 | 1/13          | 2/3              | 3/9             | 1255   | 5/5               | 6/2   | 7/6   | 8/5   | 9/3               | 10/6 | 11/10 | 1500 |

a Field oH.

c Sum of calcium and magnessum in epm. b Laboratory pH.

c Sum of calcium and magnessum in spm.

d Iran (Fo), aluminum (A1), arsaric (As), coppor (Cu), lead (Pb), manganese (Mn), zinc (Zn), and becavalent chromium (C1"), reported here as 0 0 except as shown a law (Fo), aluminum (A1), arsaric (As), coppor (Cu), lead (Pb), manganese (Mn), zinc (Zn), and becavalent extensions.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

Amout median and range, respectively. Calculated from analyses and subjected manufly samples analyses and the Calculated from analyses of doublesses manufly samples analyses and the States Public Alexan Department of Production (MSP). United States Coolington Server, Quality of frage Banerio (MSS), the Calculation (MSP), Librard States Sporting Manufly (MSP), the Calculation (MSP), Librard States Sporting (MSP), the Calculation (MSP), the Calculation of Production (MSP), the Calculation (MSP), the Calculation (MSP), the Calculation of MSP) (MSP) (MSP), and the coll Research (MSP), Calculation (MSP), the Calculation of MSP) (MSP), and the collection (MSP), the Calculation of MSP) (MSP) (MSP), and the Calculation of MSP) (MSP) (MSP), and the Calculation of MSP) (MSP) (MSP) (MSP) (MSP), and the Calculation of MSP) (MSP) 
C WERAL VALLEY REGION (NO. ")

|                   | Hardness od - Co form" Analyzed<br>as CoCO <sub>3</sub> 17 MPN/ms by 1<br>ford hy<br>ppm ppm | T   |     |      |        |      |     |           |     |            |              |     |     |            |
|-------------------|----------------------------------------------------------------------------------------------|-----|-----|------|--------|------|-----|-----------|-----|------------|--------------|-----|-----|------------|
|                   | MPN/ms                                                                                       |     | L   |      |        |      |     |           |     |            |              |     |     |            |
|                   | 30-6                                                                                         |     |     |      |        |      |     |           |     |            |              |     |     |            |
|                   | Mardness<br>de CeCos<br>Tota %                                                               |     |     | -1   |        |      |     |           |     |            |              |     |     |            |
|                   |                                                                                              |     |     | -    |        |      |     |           |     |            |              |     |     |            |
|                   | 1000                                                                                         |     |     |      |        |      |     |           |     |            |              |     |     |            |
|                   | and and and and and and and and and and                                                      |     |     | Н    |        | ,ti  |     |           | 1   |            | ì            |     | 9   |            |
|                   | Other constituents                                                                           |     |     |      |        |      | 11  |           |     |            | 10           |     |     |            |
| ı                 | 0000                                                                                         |     |     |      |        |      | 1   |           |     |            | 3            |     |     |            |
| 1                 | Boron Si co                                                                                  |     | 1   |      | 7      |      | 1   |           | 1   |            | -            | -1  |     | +1         |
| 11100             | 100                                                                                          |     |     |      |        |      |     |           |     |            | 20           |     |     |            |
| ports per million | N N                                                                                          |     |     |      |        |      | - C |           |     |            | <del>ا</del> |     |     |            |
| 0                 | Chid-                                                                                        |     | 10  | .    | .; .   |      |     | 1.        | 7   |            |              |     |     | 4.         |
| 5                 | Sul-<br>fore<br>(50 <sub>4</sub> )                                                           |     |     |      |        |      | 1.  |           |     |            | la-          |     |     |            |
| Constituents in   | Broom<br>Banate<br>HCO <sub>S</sub> )                                                        |     | 46  | ٥.   | ~ l .  | - K. |     | 10        | J.  |            | 210.         | 18  |     | J.         |
| Mineral com       | Potos Corbon- 6 sum (COs) (                                                                  |     | 18  | . 0  | J.     |      |     | 4,0       | ij. |            | JA.          | . 8 | .13 |            |
| Mine              | Potos<br>(K.)                                                                                |     |     |      |        |      | 1.  |           |     |            | ٠,٠          |     |     |            |
|                   | Sodium<br>(No)                                                                               |     |     | . -: |        | ٦.   | 1.  |           | 43  |            | 107          | . 0 | 35. | ∹ .        |
|                   | Mogne<br>Picm<br>(Mg)                                                                        |     |     |      |        |      | 1.  |           |     |            | - ~          |     |     |            |
|                   | (Co)                                                                                         |     | .17 | 0.   | 1.     | ř.   | 4.  | <b> -</b> | E   |            | ų.           | 1:  | 11. | ſ5         |
|                   | a I                                                                                          |     | *1  | -    | 3      | 7.1  | 3   |           |     |            | 3            | -7  | -   | ž.         |
|                   | Conductores pH of a 25°C)                                                                    |     | -   | -    |        | r.,  | :   | 7.        | 1   |            |              |     | •   | 3          |
|                   | 501                                                                                          |     | B   |      | 3      |      | 1   | B         | 1   |            | 3            | T.  | 112 | 0          |
|                   | Dissolved<br>osygen<br>ppm %Sof                                                              | -   | 10  | 5    | 3      | ;    | 4   | Ť         | 3   |            | *            | 2   | 100 | ž          |
|                   | 1 of 0                                                                                       |     |     |      |        |      |     |           |     | 100        | 7            |     | 0   | ž          |
|                   | Dischorge Temp                                                                               |     | il. |      | 1, 04, |      | l.  | *         | 1   | To any the | 8            | 9   | 1   | à          |
|                   | Date<br>compled<br>P S T                                                                     | No. | 200 | B    | 25     | 51   | 4   | 1,30      | 1,1 | /          | 12           | 19  |     | <b>5</b> 1 |

S-II o- I - S

Social one in pass cape to the control of PD in agreement the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont eterm or by then I malyzed onstituents

A self chapterspecied of control or sext former or september of the properties of the sext in the sext of the sext in the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext of the sext

ANALYSES OF SURFACE WATER CHATRAL VALLEY REGION (NO. 5.) TABLE B-4

|                                         |                            |                                                                         |       |               |                   |                |      |                                     |             |                                          |            |                  |      |                  |      | <br> |
|-----------------------------------------|----------------------------|-------------------------------------------------------------------------|-------|---------------|-------------------|----------------|------|-------------------------------------|-------------|------------------------------------------|------------|------------------|------|------------------|------|------|
|                                         |                            | Anolyzed<br>by 1                                                        | nscs  |               |                   |                |      |                                     |             |                                          |            |                  |      |                  |      |      |
|                                         | -                          | Hordness bid - Caliform os CoCO <sub>3</sub> ity MPN/ml Total N.C. nppm |       | Median<br>23. | Meximum<br>2,400. | Minimum<br>2.3 |      |                                     |             |                                          |            |                  |      |                  |      |      |
|                                         | 1                          | n ppm                                                                   |       | 3             | N N               | 9              | 9    | 15                                  | 2           | 82                                       | 100        |                  | 3    | 8                | ×    |      |
|                                         |                            | N COS                                                                   |       | n.            | 0                 | co             | .0   | 0                                   | 0           | 0                                        | 0          | 0                | 0    | 0                | 0    |      |
|                                         |                            | Hordness<br>os CoCO <sub>3</sub><br>Totol N.C.<br>ppm ppm               |       | =             | 4                 | 100            | 23   | 69                                  | 82          | 92                                       | 3          | 92               | 81   | 1/2              | 77   |      |
|                                         | Par                        | t e o d                                                                 |       | 20            | 2                 | \$             | 87   | Ħ                                   | M.          | ğ                                        | ž.         | Ħ                | Ħ    | 87               | 8    |      |
|                                         | Total                      | solide num                                                              |       | 146°          | 1336              | 1777           | 1196 | 130                                 | 150c        | 1416                                     | 1080       | 147              | 134° | 123 <sup>e</sup> | 120° |      |
|                                         |                            | Other constituents                                                      |       |               |                   |                |      | Pe 0.22 Ch 0.03<br>At 0.23 Pot 0.25 |             |                                          |            | Fe 0.14 POL 0.20 |      |                  |      |      |
|                                         |                            | (Slice)                                                                 |       |               |                   |                |      | 9                                   |             |                                          |            | 8                |      |                  |      |      |
|                                         | 60                         | £                                                                       |       | 0.2           | 1                 | 7              | 710  | 7:                                  | 경           | 7.0                                      | 0:0        | 0:0              | 0,2  | 0,1              | 0:0  |      |
| 1.50                                    | per million                | Fluo-<br>ride<br>(F)                                                    |       |               |                   |                |      | 0,01                                |             |                                          |            | 0.1              |      |                  |      |      |
| 1                                       | ports par<br>equivolents p | rots<br>(NO <sub>3</sub> )                                              |       |               |                   |                |      | 0.0                                 |             |                                          |            | 0,02             |      |                  |      |      |
| VISIA C                                 | d oviope                   | Chlo-<br>ride<br>(Cl)                                                   |       | 84.0<br>0.48  | 0.34              | 80.50          | 0.31 | 12                                  | 16          | 14                                       | 10<br>0.28 | 32               | 0.39 | 13               | 9.8  |      |
| WITH RE                                 | ē                          | Sul -<br>fots<br>(SO <sub>4</sub> )                                     |       |               |                   |                |      | 0.35                                |             |                                          |            | 0,40<br>0,40     |      |                  |      |      |
| LOUGH                                   | constituents               | Bicar-<br>bonate<br>(HCO <sub>3</sub> )                                 |       | 257           | 97.1              | 11.84          | 1.3  | 1.43                                | 1.69        | 87:01                                    | 1.28       | 1.67             | 1.67 | 1.61             | 1.59 |      |
| LIND TY LOUGH NOTE RIO VISTA ( TT. 115) | Minerol con                | Corbon-                                                                 |       | 383           | 100               | 000            | 000  | )B:                                 | 000         | 00.0                                     | 8<br> -0   | 000              | . 8  | 8                | . 8  |      |
|                                         | Mın                        | Potas-<br>fium<br>(K)                                                   |       |               |                   |                |      | 0.00                                |             |                                          |            | 0.00             |      |                  |      |      |
|                                         |                            | Sodium<br>(No)                                                          |       | 118           | 0.78              | 2              | 0.61 | 15<br>0.65                          | 1.8<br>0.78 | 0.74                                     | 170        | 17.0             | 0.74 | 177              | 174  |      |
|                                         |                            | Magns-<br>sium<br>(Mg)                                                  |       |               |                   |                |      | 0.03                                |             |                                          |            | 3.2              |      |                  |      |      |
|                                         |                            | Calcium<br>(Ca)                                                         |       | -             | ř .               | Ì              | 10.1 | 0.70                                | ř.          | -                                        | gr         | 37<br>00:00      | Ŀ    | E-17-1           | È    |      |
|                                         |                            | Ĭ.                                                                      |       | :             | 1                 | -              | -    | 2                                   | (:)         | 3                                        | 4.7        | 7.               | (.3  | 22               | 2    |      |
|                                         |                            | conductance pH (micrombos) at 25°C)                                     |       | Orle          |                   | 77             | 190  | 199                                 | 140         | 434                                      | 1.78       | 221              | 88   | 305              | 197  |      |
|                                         |                            | gan<br>%Sot                                                             |       | 3.            |                   | 8              |      | 3.                                  |             | 8                                        | 8          | 6                | 3    | a)               | 70   |      |
|                                         |                            | Oinso<br>oxy<br>ppm                                                     |       |               | 3                 |                | 9.6  | :                                   | 0.0         | 4.0                                      | 2          | 0,0              |      | 0.6              | 5.6  |      |
|                                         |                            | Temp<br>in of                                                           |       |               | 4                 | 3              | 70   | 2                                   | 3           | 2                                        | 5          | 12               | 3    | 3.               | 9,   |      |
|                                         |                            | Orschorge Temp                                                          | 19807 |               |                   |                |      |                                     |             |                                          |            |                  |      |                  |      |      |
|                                         |                            | Date<br>and time<br>sampled<br>P.S.T                                    | 1777  |               |                   |                |      | D 7.1                               |             | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |            | 78               |      | 2/11             | 12/7 |      |

b Labaratory pH.

Sum of colcrum and magnitissum in apm. In a compare (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haxavalent chromium (Cr +6), reparted here as 0.00 except as shown. Inon (Fe), aluminum (Al), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haxavalent chromium (Cr +6), reparted here as 0.00 except as shown. Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents.

Derived from conductivity vs TDS curves.

Amond median and range, respectively. Calculated from analyses of depictors mouthly scraptes modely by Calculated forming to Department of Public Housing, or United States Public Housing States (1999s), San Bernardina Comry Flood Mannell analyses made by United States Calculated States (1999s), San Bernardina Comry Flood Committee of the Calculated States (1999s), San Bernardina Comry Flood Committee of States (1999s), San States (1999s), San States and Reveal (LADPP), Cry of Las Angeles, Department of Public Housing (LADPP), Cry of Las Angeles, Department of Public Reveals (LADPP), Cry of Lass Angeles, San States (LADPP), Cry of Lass Angeles,

PENTIOL VALLEY REGIL W (M. . . .

| -                                   |                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       |         | _    | -    |          |     |      |     |        |     |      |       |
|-------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|---------|------|------|----------|-----|------|-----|--------|-----|------|-------|
|                                     |                         | Anary<br>by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3       |       |         |      |      |          |     |      |     |        |     |      |       |
|                                     |                         | Mordings   No. Co. form   Analyses   No. Co. form   Analyses   No. Co. Co. Form   No. |         | 74 .  | Nea.man |      |      |          |     |      |     |        |     |      |       |
|                                     | 3                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 8     |         |      |      |          |     | Ų    |     | 10     | 5.  |      | *     |
|                                     |                         | 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | *     | *       |      |      | -        |     |      |     |        |     | -    |       |
|                                     |                         | Paro Paro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | à     | 1       |      |      |          |     |      | 0   |        | Y   | -    | 4     |
|                                     | 0                       | 5 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 4     | 7       | 3    |      |          |     |      |     |        | -   | 5    | 0     |
|                                     | Tatai                   | 60100<br>80100<br>80100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 22.00 | 211/4   | 1460 | 1    | Ä        |     | 3    | -   |        | 8   | 1000 | a     |
|                                     |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |       |         |      |      | 78 -19 V |     |      |     | 8: 4 V |     |      |       |
|                                     |                         | (\$.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |         |      |      | =        |     |      |     |        |     |      |       |
|                                     | 1100                    | Baron Silico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 2     | 0,1     | 3    | 0    | 3        | 3   | 3    | 1   | 31     |     | 3    | 1     |
| 6                                   | anillian<br>ie se       | Flyo-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |       |         |      |      | 48       |     |      |     | 300    |     |      |       |
| LIFTE FOR TO LOUGH IT TENNESDE ( A) | equivalente per million | frate<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |       |         |      |      | 100      |     |      |     | 18     |     |      |       |
| TENDATING                           | 3.350                   | Chio-<br>ride<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 2.5   | 0,1     | 10 C | 10.3 | 10.      | 28  | 8    | 18  | 1      | J.  | ,15  | 1:    |
| DH III                              | ē                       | Sut -<br>fore<br>(50 <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |         |      |      | 9.6      |     |      |     | -      |     |      |       |
| 10 100                              | constituents            | Bongte<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 1.51  | 1.28    | 3 -1 | 1.00 | 28:      | 8/3 | 813  | 18  | 큐.     | 4.  | 1    | 2     |
| FILE FOR                            | Mineral cor             | Corbon-<br>(CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 18.   | 5.      | 18.0 | 0.0  | 18       | 8   | 13   | = 8 | 18     | -[- | 18   |       |
| 17                                  | M                       | Polas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |       |         |      |      | 4.       |     |      |     | 100    |     |      |       |
|                                     |                         | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | ,E    | 8 6.    | 0.0  | 1    | 1        | 9   | 2 H. | 48  | 18     | £   | E    | = = = |
|                                     |                         | angone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |         |      |      | 7 6      |     |      |     | 213    |     |      |       |
|                                     |                         | Colcum Magner<br>(Ca) sum<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       |         | E    |      |          | E   | E    | B   | 18.    | L   | ;    | P     |
| ij                                  |                         | X<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 3     |         |      |      | =        | -   | 7.   |     |        | 1   |      | 3     |
|                                     | Spacific                | conductonce<br>micrombos<br>of 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |       | é       | 8    | 4    | 1        | 7   |      | Lon | ı      | ,   | g.   | ,     |
| 1                                   |                         | % Sot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |       |         | 9    | -    |          | r   |      | Ę   | 1      | 0   |      |       |
|                                     |                         | Dissolved<br>osygen<br>ppm % Sof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       | 100     | 7    |      |          |     | Ţ    |     |        |     |      |       |
|                                     |                         | dwa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |       | ì       |      |      | 4        |     |      |     |        |     |      |       |
|                                     |                         | Oscopyge Temp Dissolved in of a sygen 9,0501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tr. scl |       |         |      |      |          |     |      |     |        |     |      |       |
|                                     |                         | ond time<br>sampled<br>p S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600     | 200   |         | 13   |      | 33       | 31  |      | 30  | 13     | Į A | 53   | 13    |

a sevo

From the first As over the last Polymogores Well store for the heart lend heart of the appetred here so for each of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

A service of the control of the control of the Colomon Department (P. Her Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Colomon Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co

TABLE B-4
ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

|                                           |                   |             | Anolyzed<br>by i                                                       | SDSA |             |             |                 |                   |                    |       |            |       |                    |             |            |      |  |   |
|-------------------------------------------|-------------------|-------------|------------------------------------------------------------------------|------|-------------|-------------|-----------------|-------------------|--------------------|-------|------------|-------|--------------------|-------------|------------|------|--|---|
|                                           |                   | _           | Hardness bid - Caliform" os CaCO <sub>3</sub> Ify MPN/mI Total N C apm |      | Median      | D. C.       | Maximum<br>230. | Minimum<br><0.045 |                    |       |            |       |                    |             |            |      |  |   |
|                                           |                   | - in-       | - piq<br>- in                                                          |      |             |             | С               | 8                 |                    | =     |            | 0     | ŀ                  | 13          | ~          | -    |  |   |
|                                           |                   |             | SCO.                                                                   |      |             |             | С               | 0                 | С                  | С     | c          | c     | с                  | 0           | 0          | 6    |  |   |
|                                           |                   |             | os CaCO <sub>3</sub> Totai N C                                         |      |             |             | 35              | 9                 | 35                 | -17   | 32         | 38    | 92.                | 51          | 36         | 38   |  |   |
|                                           |                   | Per         | sod -                                                                  |      |             |             | 19              | 17                | 19                 | 2     | 5,         | 5     | 7,                 | 73          | 2          | 75   |  |   |
|                                           |                   | Total       | solved sod -                                                           |      |             |             | 79"             | 81.               | 731                | %     | 98-1       | 826   | 965                | 115,        | 93,        | 85.0 |  |   |
|                                           |                   |             | Other constituents                                                     |      |             |             |                 |                   | Fe 0.03 POb 0.05 d |       |            |       | A1 0.07 POL 0.15 d |             |            |      |  |   |
|                                           |                   | ŀ           | Sinco<br>(SiO <sub>2</sub> )                                           |      |             |             |                 |                   | 8                  |       | 36         |       | 38                 |             |            |      |  |   |
|                                           |                   | 1001        | Boron<br>(B)                                                           |      |             |             | 0               | 0.0               | 0.0                | 0:0   | 0:0        | 0:0   | 0:0                | 0:0         | 0.0        | 0.0  |  |   |
| 18)                                       | million           | per million | Fluo-<br>ride<br>(F)                                                   |      |             |             |                 |                   | 0.0                |       | 0.00       |       | 0.0                |             |            |      |  |   |
| Œ (STA,                                   | ports per million | equivolents | trote<br>(NO <sub>3</sub> )                                            |      |             |             |                 |                   | 4.0                |       | 0.0        |       | 0.5                |             |            |      |  |   |
| STA LAN                                   | ď                 | 041000      | Chlo-<br>ride<br>(CI)                                                  |      |             |             | 2.5             | 0.03              | 0.07               | 3.0   | 0.03       | 0.03  | 0.03               | 4.8<br>0.14 | 0.03       | 0.03 |  |   |
| SOVE SHA                                  | ,                 |             | Sul -<br>fate<br>(SO <sub>4</sub> )                                    |      |             |             |                 |                   | 0.05               |       | 0.00       |       | 0.0                |             |            |      |  |   |
| RIVER AS                                  | 416.000           | STITUENTS   | Bicar-<br>bonate<br>(HCO <sub>3</sub> )                                |      |             |             | 14.0            | 52                | 6,80<br>0.80       | 1,00  | 54<br>0.89 | 53    | 5.k<br>0.89        | 1.15        | 54<br>0.89 | 5 th |  |   |
| MCCLOUD RIVER ABOVE SHASTA LAKE (STA. 18) | Money of the same | IL GOL      | Corbon-<br>ofe<br>(CO <sub>3</sub> )                                   |      |             |             | 0.0             | 0.00              | 0.0                | 0.0   | 0.0        | 0.0   | 0.0                | 0.00        | 0.0        | 0.0  |  |   |
| -                                         | Mon               | illiano     | Potas-<br>skum<br>(K)                                                  |      |             |             |                 |                   | 0.0                |       | 1.5        |       | 0.03               |             |            |      |  |   |
|                                           |                   | Ì           | (No)                                                                   |      |             |             | 3.6             | 3.1               | 0.17               | 5.6   | 6.8        | 5.7   | 5.4                | 8.6         | 5.3        | 5.5  |  |   |
|                                           |                   | Ī           | Mogns-<br>sum<br>(Mg)                                                  |      |             |             |                 |                   | 3.6                |       | 3.6        |       | 3.5                |             |            |      |  |   |
|                                           |                   |             | Colcium Mogns-<br>(Ca) suum<br>(Mg)                                    |      |             |             | 0.70            | 0.80              | 8.0                | 0.88° | 8.8        | 0.760 | 8.4                | 1.02        | 0.72°      | 0.76 |  |   |
|                                           |                   |             | H.                                                                     |      |             |             | 7.5             | 7.3               | 7.3                | 7.3   | 7.7        | 4.    | 7.1                | 7.          | 7.5        | 7.5  |  |   |
|                                           |                   | Specific    | conductance<br>(m.crombos<br>at 25°C)                                  |      |             |             | 88.4            | 7.06              | 88.5               | 108   | 91.0       | 98.2  | 9.96               | 129         | 93.2       | 7.46 |  |   |
|                                           |                   | -           | gen (n                                                                 |      |             |             | 86              | 8                 | %.                 | 102   | 8          | 8     | 8                  | ま           | 8          | 8    |  | _ |
|                                           |                   |             | Disso                                                                  |      |             |             | 11.5            | 13.4              | 11.0               | 10.8  | 6.6        | 10.1  | 10.8               | 10.3        | 11.5       | 11.9 |  |   |
|                                           |                   |             | Temp<br>in or                                                          |      | pelde       | apled       | 14              | 3                 | 51                 | - 22  | 57         | 5.4   | 51                 | 96          | 9          | 24   |  |   |
|                                           |                   |             | Dischorge Temp                                                         |      | Not Sampled | Not Sampled | 2,720           | 2,350             | 1.790              | 1,440 | 1,190      | 1,130 | 1,080              | 1,070       | 1,030      | 86   |  |   |
|                                           |                   |             | sompted<br>P.S.T.                                                      | 1959 | 1/          | 5/          | 3/2             | 14/7<br>0830      | 5/5                | 0060  | 7/13       | 8/10  | 0680               | 10/15       | 11/9       | 1335 |  |   |

o Freld pH.

b Laboratory pH

c. Jun of calcum and anginesium in sep... d. fron (Fe), aluminum (A1), arsence (A2), capper (CD), lead (Pb), manganese (Mn), zunc (Zn), and hexavalent chromium (Cr<sup>16</sup>), reparted here as 0.00 except as shown. c Sum of calcium and magnessum in epm.

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

Mineral body var mode by United States Goldspicel Survey, Quality of Maner Branch USCSS), United States Department of the Internal Quality of Maner Branch USCSS), United States of States and States (SMCCO), Reported States of States and States of States (SMCCO), Advised States of States (SMCCO), Advised States of States of States of States (SMCCO), Department of Internal Control States (SMCCO), Department of States (SMCCO), Department of States (SMCCO), Department of States (SMCCO), Department of States (SMCCO), Department of States (SMCCO), Department of States (SMCCO), Department of SMCCO), Department of SM Annual median and range, sespectively. Calculated from analyses of dualicate manifity samples made by California Department of Public Health, Division of Labaratories, or United States Public Health, Service.

MERCED RIVER HELOW EXCHEQUER DAM (STA. 324) CENTRAL VALLEY REGION (NO. 5)

Andigzed 1000 Hordens Du Co.formh An os CoCo. Total M. Jeson woh, my Maximum 7 2 2 7 Total Per-1 < 10 74 0 12 PO, 0 20 d PO 0 70 0 0 1 3 constituents Other Baron (B) ports per million Fluoc, 8 Chio-0 0 Sul . fate (SO<sub>6</sub>) 000 Mineral constituents in 11. 0.00 0.03 4 6 Polos-Calcium Magne Sadium (Ca) 100 (Na) 8,0 2.1 SRS. 7.19 I d Discharge Temp Dissolved conductoring in cfs in 0F Gasgen (microphose 6 microphose 6 ppm 90,0301 8 36 Oote and time p S T

and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

re ite ere : ex epi > = e

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE B-14

|                                       |                         | Analyzed<br>by 1                                                      |                      | USGS |               |                   |                |       |                                       |       |               |             |                    |      |       |       |  |        |
|---------------------------------------|-------------------------|-----------------------------------------------------------------------|----------------------|------|---------------|-------------------|----------------|-------|---------------------------------------|-------|---------------|-------------|--------------------|------|-------|-------|--|--------|
|                                       |                         | Hardnass bid - Coliform Analyzed as CoCO <sub>3</sub> 15y MPN/ml by I |                      |      | Median<br>23. | Maximum<br>7,000. | Minimum<br>2.3 |       |                                       |       |               |             |                    |      |       |       |  |        |
|                                       |                         | 100                                                                   |                      |      | %             | Ci.               | 0.             | 0     | 15                                    | 8     | 0             | 35          | -4                 | 01   | 9     | ν.    |  |        |
|                                       |                         | 0000<br>0000                                                          | D E dd               |      | 0             | 0                 | 0              | 0     | 0                                     | 0     | 0             | 0           | 0                  | С    | 0     | 0     |  |        |
|                                       |                         | Hard<br>as C                                                          | Totol N C<br>ppm ppm |      | 42            | 78                | 98             | 99    | 18                                    | 92    | 99            | 3           | 109                | 8:   | 8     | 8     |  |        |
|                                       |                         | od-1                                                                  |                      |      | 37            | 94                | 99             | 77    | 39                                    | 54    | 53            | 1-1         | 12                 | 4    | 28    | 45    |  |        |
|                                       | Tatal                   | -sipe<br>pevios                                                       | Edd u                |      | 143           | 175°              | 9616           | 150   | 1775                                  | 171°  | 165           | 164°        | 248                | 214  | 222°  | 203   |  |        |
|                                       |                         | appear of the second                                                  | CITES COLUMN         |      |               |                   |                |       | Fe 0.1k Al 0.07 d<br>POL 0.30 Zn 0.01 |       | Tot. Alk. 117 |             | POL 0.25 A1 0.01 d |      |       |       |  |        |
|                                       |                         | Silico                                                                | (2)05)               |      |               |                   |                |       | 8                                     |       |               |             | 32                 |      |       |       |  |        |
|                                       | uo.                     |                                                                       | (E)                  |      | 0.0           | 0.0               | 0.0            | 0.0   | 0.0                                   | 0.0   | 0.0           | 0.2         | 0.1                | 0.0  | 0.0   | 0.0   |  |        |
| (0                                    | millian<br>er mil       | Fluo-                                                                 |                      |      |               |                   |                |       | 0.0                                   |       |               |             | 0.1                |      |       |       |  |        |
| (STA, 3                               | equivalents per million | - (N                                                                  |                      |      |               |                   |                |       | 0.04                                  |       |               |             | 0.03               |      |       |       |  |        |
| TEVINSON                              | oviupe                  | Chio-                                                                 | (C)                  |      | 0.25          | 0.51              | 30             | 86.58 | 3.51                                  | 18    | 19 0.54       | 19          | 38                 | 9.70 | 23    | 19    |  |        |
| WEAR ST                               | Ē                       | Sul-                                                                  | (\$0\$)              |      |               |                   |                |       | 0.35                                  |       |               |             | 0.23               |      |       |       |  |        |
| MERCED RIVER WEAR STEVINSON (STA. 32) | stituents               | Bicar                                                                 |                      |      | 102           | 123               | 140<br>2.29    | 1.61  | 116                                   | 25.00 | 1.16          | 114         | 162<br>2.66        | 147  | 149   | 2.31  |  |        |
| MERCE                                 | Mineral constituents    | Corban                                                                | (CO3)                |      | 0.0           | 0.0               | 0:00           | 0.0   | 0.0                                   | 0.0   | 1.4<br>0.47   | 0.00        | 0.0                | 0.0  | 0.0   | 0.00  |  |        |
|                                       | W                       | Potos-                                                                | 3                    |      |               |                   |                |       | 0.08                                  |       |               |             | 2.8                |      |       |       |  |        |
|                                       |                         | Sodium                                                                | (0 N)                |      | 0.83          | 31.35             | 36             | 20,1  | 25                                    | 28    | 1.18          | 1.27        | 1.87               | 34   | 36    | 34    |  |        |
|                                       |                         | Mogne.                                                                | (Mg)                 |      |               |                   |                |       | 8.1                                   |       |               |             | 8.4                |      |       |       |  |        |
|                                       |                         | Calcium                                                               | (00)                 |      | 1.40          | 1.56              | 1.72           | 1.3%  | 0.95                                  | 1.520 | 1.32          | 1.FG        | 1.35               | 1.8  | 1.840 | 1.84  |  |        |
|                                       |                         |                                                                       |                      |      | 9.9           |                   | 7.7            | 7.6   | 7.4                                   | 7.3   | -3.3          | , .         | 4.                 | 7.3  | 7.5   | 7.5   |  | $\neg$ |
|                                       | Specific                | (micromhos PH                                                         |                      |      | 222           | 272               | 329            | 247   | 592                                   | 566   | 526           | 552         | 385                | 335  | 345   | 316   |  |        |
|                                       |                         | 77                                                                    | %Sat                 |      | <sub>60</sub> | 66                | 16             | 16    | 10k                                   | 93    | *             | 102         | 101                | 100  | 101   | 102   |  |        |
|                                       |                         | Disso                                                                 | mdd                  |      | 9.8           | 9.5               | 0.6            | 9.8   | 9.5                                   | 8.0   | 60            | 00<br>CV    | -7<br>-00          | 9.1  | 10.0  | 11.11 |  |        |
|                                       |                         | Temp<br>In oF                                                         |                      |      | 58            | 55                | 3              | \$    | 8                                     | 7     | 7             | 5           | 48                 | 69   | - 6   | 53    |  |        |
|                                       |                         | Oischarge Temp                                                        |                      |      | 280           | 157               | 157            | 192   | 223                                   | 172   | 16            | %           | 1                  | 108  | 109   | 131   |  |        |
|                                       |                         | and time<br>sompted                                                   | P S.T                | 1959 | 1/12          | 2/2               | 3/9            | 1,6   | 5/4                                   | 1050  | 0830          | 8/4<br>1225 | 9/10               | 1345 | 11/5  | 12/10 |  |        |

o Field pH

b Leboratory pH.

Down or consumer (Gr. \*6), present (Rs), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavelent chromium (Gr.\*6), reported here as \$\frac{0}{0.00}\$ except as shown. c Sum of calcium and magnesium in epm.

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents. q Grovimetric determination

Mineral tool) year mode by Unived Stores Capalysis Survey, Quality of Weer Branch USSSS), Unived Stores Department of the Interest, Burster, Burste h. Annual median and range, respectively. Calculated from analyses of dupticate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health, Service.

ANALYSES OF SURFACE WATER CENTRAL VALLET REGION (NO. 5) TABLE B-b

State Total par Hordness bd - California solds and as CaCo proposed as CaCo proposed as CaCo proposed as part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the par 2 570 100 40 8 2 0 7 11 1286 117 Part Sp 11 d At 5 15 7n 51 Other (5,0,0) Fivo- Boron (B) ports par million MILL CREEK NEAR LOS MORTHOS (STA. AM) N. 1rota (NO<sub>3</sub>) 180 5.5 Chio-rids (CI) 200 11 Mineral constituents in S 25 Brear-bongte Corbon-ots (CO<sub>3</sub>) 0.0 0.0 0.0 0.00 0.0 0.00 Potos 8:um (K) 1.5 3.1 Sodium (No) 8.3 Moghs 8:0m (Mg) 3.8 2000 4.00 200 H Dissolved conductorce phonorage (micrombos phonorage) 224 œ 8 99 8 8 8 schorgs Tamp Date and time sampled P S T

alent transmit (Cr. Leposted here is 000

along the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of is it. is and it is out a some source of those Department of Public Medith Occasion of Laboratories is United States Public Medition.

CENTRAL VALLEY REGION (NO. 5)

|                                                  | _                                            | by l                                                                          | USBR  |      |      |      |              |      |      |      |      |      |      |      |
|--------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|-------|------|------|------|--------------|------|------|------|------|------|------|------|
|                                                  | 4                                            | Hardiness bid - Coliform Analyzed os CoCOS in ppm MPM/ml by i ppm ppm ppm ppm |       |      |      |      |              |      |      |      |      |      |      |      |
| -                                                | į.                                           | P M Co                                                                        |       |      |      |      |              |      |      |      | _    |      |      |      |
| 1                                                | 12                                           | S O E                                                                         |       |      |      |      |              |      |      |      |      |      |      |      |
|                                                  |                                              | os CoCO <sub>S</sub> Totol N.C.                                               |       |      |      |      |              |      |      |      |      |      |      |      |
|                                                  | P S                                          | Sod -                                                                         |       | 17   | 11   | 11   | 77.7         | 52   | 8    | 15   | 35   | 8    | 7    | 15   |
|                                                  | Total                                        | solids sod -                                                                  |       | 128  | 5.5  | 88   | 88           | 112  | 136  | 135  | 152  | 100  | 16   | 8    |
|                                                  |                                              | Other constituents                                                            |       |      |      |      |              |      |      |      |      |      |      |      |
|                                                  |                                              | Sinca<br>(SiO <sub>2</sub> )                                                  |       |      |      |      |              |      |      |      |      |      |      |      |
|                                                  | 101                                          | Boron (B)                                                                     |       |      |      |      |              |      |      |      |      |      |      |      |
| TA. 23b                                          | million<br>ser mill                          | Fluc- Boron Silica<br>ride (B) (SiO <sub>2</sub> )                            |       |      | _    |      |              |      |      |      |      |      |      |      |
| IVER (S                                          | ports per million<br>equivalents per million | rrote<br>(NO <sub>S</sub> )                                                   |       |      |      |      |              |      |      |      |      |      |      |      |
| UNDVES R                                         | o ninba                                      | Chio-<br>ride<br>(CI)                                                         |       | 3.6  | 8.1  | 8.8  | 2.1          | 188  | 23   | 7    | 17   | 4.3  | 5.7  | 5.0  |
| TOW COS                                          | 5                                            | Sut -<br>fote<br>(SO <sub>4</sub> )                                           |       |      |      |      |              |      |      |      |      |      |      |      |
| RIVER E                                          | stituent                                     | Bicor-<br>bonate<br>(HCO <sub>3</sub> )                                       |       |      |      |      |              |      |      |      |      |      |      |      |
| MOKELUNANE RIVER BELOW COSUMNES RIVER (STA. 235) | Minaral constituents in                      | Corbon-<br>ate<br>(CO <sub>5</sub> )                                          |       |      |      |      |              |      |      |      |      |      |      |      |
| MOK                                              | Min                                          | Potos-<br>stum<br>(K)                                                         |       |      |      |      |              |      |      |      |      |      |      |      |
|                                                  |                                              | Sodium<br>(Na)                                                                |       | 4.6  | 2.3  | 3.0  | 3.0          | 0.0  | 177  | 9    | 17   | 6.7  | 6.9  | 9*1  |
|                                                  |                                              | Colcsum Mogne-<br>(Co) ssum<br>(Mg)                                           |       |      |      |      |              |      |      |      |      |      |      |      |
|                                                  |                                              | Colcaum<br>(Co)                                                               |       |      |      |      |              |      |      |      |      |      |      |      |
|                                                  |                                              | I a                                                                           |       |      |      |      |              |      |      |      |      |      |      |      |
|                                                  | Spanis                                       | (micromhos pH<br>at 25°C)                                                     |       | 147  | 8    | 7    | 80           | 159  | 916  | 183  | 213  | 115  | 110  | 130  |
|                                                  |                                              | Dissolved<br>osygen<br>ppm %Sot                                               |       |      |      |      |              |      |      |      |      |      |      |      |
|                                                  |                                              | Disso                                                                         |       |      |      |      |              |      |      |      |      |      |      |      |
|                                                  |                                              | Te or                                                                         |       |      | 98   | 98   | - 64         |      | 22   | 2    | 1    | 69   | 95   |      |
|                                                  |                                              | Discharge Tamp Dissolved in cfs in oF ppm 9/6501                              | Tidel |      |      |      |              |      |      |      |      |      |      |      |
|                                                  |                                              | Dote<br>and time<br>sampled<br>P.S.T                                          | 1959  | 1/13 | 3/19 | 1125 | c/18<br>1135 | 6/15 | 7/13 | 8/11 | 9/17 | 1315 | 11/9 | 1140 |

Laboratory pH a Field pH

Sum of calcium and magnessium in epm.

Iran (Fe), olumnium (A.), orser. (As), copper (Cu), load (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci<sup>1,3</sup>), reported here as 0.00 except as shown. Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Amod median and roses respectively. Colad land from analyses of depictors examily samples mostly to Coldmin Operations of Depictors and Coldmin Operations of Laboratories, or United Stores Doble Health Savice.

Manual Coldmin Stores Goological Savery, Dody of Manual Savette Coldmin Stores Coldmin Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Save Bereadine Colomb Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Savice (IDPRS), Sa

CENTRAL VALLEY REGION (NO. 54

|                                                 |                         | Accepted<br>by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | £     |     |     |      |     |     |      |    |      |          |       | -          |
|-------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|------|-----|-----|------|----|------|----------|-------|------------|
|                                                 |                         | Californ Mank/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |     |     |      |     |     |      |    |      |          |       |            |
|                                                 | 3                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |     |     |      |     |     |      |    |      |          |       |            |
|                                                 |                         | 10/140 cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |     |     |      |     |     |      |    |      |          |       |            |
|                                                 | -                       | - pog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | ď   | -   | 4    | 2   | Y   |      |    | 10   | K        |       | 8          |
|                                                 | 70107                   | 60146<br>60146<br>60168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 8   | 3   | 10.0 | 8.  | 164 | 8    | k  | 176  | <i>b</i> | 2     | 1          |
|                                                 |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |     |     |      |     |     |      |    |      |          |       |            |
|                                                 | 1                       | (\$0.0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |      |     |     |      |    |      |          |       |            |
| . 23e .                                         | equivalents per million | (4) (9) (9) (9) (9) (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -     |     |     |      |     |     |      |    |      | -        |       |            |
| UCR (STA                                        | yolents per mill        | 11019<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |     |     |      |     |     |      |    |      |          |       |            |
| STANA SL                                        | 0 200                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 7.8 | 7.8 | 7 8  | 2   | 23  | 4    | 3  | 9    | 7.8      | :1    | =          |
| MUNITINGE RIVER BYLOW GROWGIANA SLAGS (STA. 23e | ut blue                 | 100 - Sul<br>1010<br>19) (5C <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |     |     |      |     |     |      |    |      |          |       |            |
| IVR BY                                          | ne file                 | Bicor<br>bono<br>(HCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |     |     |      |     |     |      |    |      |          |       |            |
| LINGE RIV                                       | Mineral constituents in | (Colcium Mogne Sodum Polos. Corbon Bricor-<br>(Co) (Mg) (Ro) (Ro) (COg) (HCOg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |      |     |     |      |    |      |          |       |            |
| A W. In St.                                     | 3                       | Potos-<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |     |     |      |     |     |      |    |      |          |       |            |
|                                                 |                         | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 3   |     | > 5  | 2   |     | 2    |    | 16   | 4        |       |            |
|                                                 |                         | Mogne<br>econ<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |     |     |      |     |     |      |    |      |          |       |            |
|                                                 |                         | Colcium<br>(Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |     |     |      |     |     |      |    |      |          |       |            |
|                                                 | Specific                | Discorge Temp Dissolved Condecodes PH on cfs in of casgan (micromos pH posts) on cfs in company of conference of content of conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference of casgan conference |       | 188 |     | 119  | (s) | ē   | 36.6 | 8  | 258  | 189      | 555   | 3          |
|                                                 |                         | Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |     |     |      |     |     |      |    |      |          |       |            |
|                                                 |                         | E 0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |     | œ   |      | 4   |     | -    | F  | 2    | £        | 95    | 5          |
|                                                 |                         | Dischorg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TIda. |     |     |      |     |     |      |    |      |          |       |            |
|                                                 |                         | ond time<br>sempled<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1969  | 125 | 100 | 1000 | 35  | 113 | 2000 | 83 | 1/14 | 1145     | 211.0 | T C<br>D C |

A control of the state of section of section of section Depresent Position of the section of the

ANALYSES OF SURFACE WATER

CEMPRAL VALLEY REGION (NO. 5)

| Γ                                            | _            | 9                                                                   |      |                                                 |                 |                 |              |                    |        |      |       |                                       |      |      |       |  |
|----------------------------------------------|--------------|---------------------------------------------------------------------|------|-------------------------------------------------|-----------------|-----------------|--------------|--------------------|--------|------|-------|---------------------------------------|------|------|-------|--|
|                                              |              | Anolyzed<br>by 1                                                    | 0303 |                                                 |                 |                 |              |                    |        |      |       |                                       |      |      |       |  |
|                                              | -            | Hordness bid - Coliform os CoCO <sub>S</sub> IIIy MPN/mi Total N C. |      | Median<br>0.62                                  | Maximum<br>500. | Minimum<br>0.06 |              |                    |        |      |       |                                       |      |      |       |  |
| ŀ                                            | 1            | - AG                                                                |      |                                                 | 8               | 00              | С            | 2                  | 15     | 0    | 10    | -                                     | ~    | ۳.   | -     |  |
| Ī                                            |              | CO S<br>PPM C                                                       |      | -                                               | 98              | 0               | 5            | 0                  | o.     | 0    | 0     | -                                     | 0    | ٥    | o.    |  |
|                                              |              | Pordi<br>Total<br>ppm                                               |      | 8                                               | 38              | 36              | 8            | 16                 | 19     | 16   | 16    | 19                                    | 15   | 15   | 4     |  |
|                                              | Per          | god -                                                               |      | 18                                              | 11              | 7.              | 15           | %                  | 33     | 70   | %     | 8                                     | 33   | 5    | %     |  |
|                                              | Total        | solids<br>m podd u                                                  |      | 384                                             | 816             | £.              | 346          | 35 1               | 38     | 38°  | 36    |                                       | 9,9  | 316  | 35"   |  |
|                                              |              | Other constituents                                                  |      | Pe 0.11 Zn 0.32 d<br>Cu 0.05 At 0.32<br>Po 0.01 |                 |                 |              | Zn 0.01 POh 0.00 d |        |      |       | 7e 0.03 PO, 0.00 d<br>Cu 0.01 Zn 0.03 |      |      |       |  |
|                                              |              | Silica<br>(SiO <sub>2</sub> )                                       |      | 8.6                                             |                 |                 |              | 6                  |        |      |       | 13                                    |      |      |       |  |
|                                              | lion         | Baran<br>(B)                                                        |      | 0.0                                             | 0.1             | 61              | 0.0          | 0.0                | 0:0    | 81   | 0.1   | 0.0                                   | 0.0  | 0.0  | 0,0   |  |
| 23a)                                         | per million  | Fluo-<br>ride<br>(F)                                                |      | 0.0                                             |                 |                 |              | 0.0                |        |      |       | 0.0                                   |      |      |       |  |
| A (STA.                                      |              | N:-<br>trate<br>(NO <sub>3</sub> )                                  |      | 0.0                                             |                 |                 |              | 0.00               |        |      |       | 0.0                                   |      |      |       |  |
| MOKELUMME RIVER NEAR LANCHA PLANA (STA. 23ª) | equivalents  | Chla-<br>ride<br>(Ci)                                               |      | 3.0                                             | 0.11            | 1.4             | 0.07         | 1.5                | 3.5    | 3.0  | 0.04  | 3.0                                   | 3.0  | 3.5  | 0.08  |  |
| SAR LANG                                     | Ē            | Sul -<br>fate<br>(SO <sub>4</sub> )                                 |      | 9.6                                             |                 |                 | 0,0          | 3.8                |        |      |       | 0.4                                   |      |      |       |  |
| RIVER M                                      | comstituents | Bicor -<br>bonate<br>(HCO <sub>3</sub> )                            |      | 16<br>0.26                                      | 0.25            | 0.33            | 18           | 80.3               | 8 0.33 | 0.31 | 38    | 0.36                                  | 1.8  | 16   | 0.25  |  |
| STUDENT                                      | Mineral con  | Corban-<br>ola<br>(CO <sub>3</sub> )                                |      | 0.0                                             | 0.0             | 0.0             | 0.0          | 0.0                | 0 0    | 0.0  | 0.0   | 0.0                                   | 0.0  | 0.0  | 0.0   |  |
| MO                                           | N.           | Potas-<br>sium<br>(K)                                               |      | 0.2                                             |                 |                 |              | 1.1                |        |      |       | 0.02                                  |      |      |       |  |
|                                              |              | Sodium<br>(No)                                                      |      | 0.00                                            | 3.6             | 0.10            | 0.07         | 2.8                | 0.11   | 0.10 | 2.5   | 0.12                                  | 0.10 | 0.11 | 0.10  |  |
|                                              |              | Magna-<br>stum<br>(Mg)                                              |      | 0.17                                            |                 |                 |              | 0.0                |        |      |       | 0.10                                  |      |      |       |  |
|                                              |              | Calcium<br>(Ca)                                                     |      | 9.9                                             | 0.760           | 0.31            | 0.40         | 5.6                | 0.36   | 0.30 | 0.350 | 9.5                                   | 0.30 | 0.30 | 0.280 |  |
|                                              |              | ī.                                                                  |      | 6.8                                             | 6.5             | 6.8             | 6.8          | 9.9                | 6.9    | 6.7  | 6.8   | 6.8                                   | 7.1  | 5.   | 7.7   |  |
|                                              | Spacific     | conductance<br>(micrambos<br>at 25°C)                               |      | 56.3                                            | 102             | 1,6,1           | 0.94         | 43.1               | k7.5   | k7.8 | 85.5  | 45.7                                  | 8,64 | 39.5 | 1,0,1 |  |
|                                              |              | lved<br>gan<br>%Sat                                                 |      | 303                                             | 6               | 16              | %            | 98                 | 100    | 101  | 6     | 98                                    | %    | %    | 8     |  |
|                                              |              | Diesalved<br>oxygen<br>ppm %Sat                                     |      | 11.0                                            | 11.3            | 10.9            | 10.5         | 10.7               | 10.9   | 11.0 | 9.6   | 9.6                                   | 6.6  | 10.1 | 10.0  |  |
|                                              |              |                                                                     |      | 5 4                                             | 25              | 51              | 55           | 53                 | 53     | 53   | 66    | 8                                     | 66   | 95   | 51    |  |
|                                              |              | Dischorge Tamp                                                      |      | 79                                              | 1111            | 069             | 162          | 699                | 635    | 069  | 712   | 318                                   | 108  | 61   | 89    |  |
|                                              |              | Dote<br>ond time<br>sompled<br>P.S.T                                | 1959 | 1/14 0940                                       | 2/11            | 3/10            | 4/15<br>1410 | 5/15               | 6/5    | 1/3  | 8/12  | 9/1                                   | 10/8 | 1015 | 12/1  |  |

a Field pH

b Labaratary pH.

 Sum of cole; un and magnessum in sym.
 I food (Pb), manageness (Ah), respect (Cu), lead (Pb), managenese (Mh), zinc (Zn), and hozovalent chramium (Cr<sup>+5</sup>), reported here as 00 axcept as shown. c Sum of colcium and magnesium in epm.

a Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

Annot incitor and engat, respectively. Calculated from and yeas of significate monthly samples models by Calculated Department of Poblic Health, Division of Laboratories, or United Stress Public Health Service.

Mannot inculting CECTO, Instituted Stress, Quality of New Expend (1907), Lands Stress Common of Mannot Stress (1904); Lands Stress Common of Mannot Stress (1904); Lands Stress Common of Mannot Stress (1904); Lands Stress Common of Mannot Stress (1904); Lands Stress Common of Mannot Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lands Stress (1904); Lan

CENTRAL VALLEY REGION (NO. 5)

Annyzed HOLDNESS TW. Co form? A. Told N.C. Spin MANAGES E . Mar But Total per dis solved sod solds .7 82 constituents 110 C B Other (B) (5:0<sub>9</sub>) ports ger million F (uo-50.0 MORCLANGE RIVER AT MODDIMIDIZE (9TA. 24 No. - 00.0 100 Chio (Chio 5ul fare (SO<sub>6</sub>) 113 - 10 Minarol constituents in Banate banate (HCO<sub>4</sub>) 28 18 80 G 2 3 Carban-ofs (CO<sub>3</sub>) .00 Potos. 8:um (K) 58 8.00 100 35 o.F. Mogne Brum (Mc) 0.16 0.08 7.2 H Dissolved conductores pH (micromhos pH of 25°C) Discharge Temp Date and time sampled P S T

rep sted here is ex e 7 ds s er

A second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the

ANALYSES OF SURFACE WATER TABLE B-4

CENTRAL VALLEY REGION (NO. ..)

|                                          |                                              | Anolyzed<br>by 1                                                                   | nsos  |               |                   |                  |      |                   |       |      |             |      |      |             |       |
|------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------|-------|---------------|-------------------|------------------|------|-------------------|-------|------|-------------|------|------|-------------|-------|
|                                          | -                                            | Hordness bid - Coliform Analyzed os CaCO <sub>3</sub> Ily MPN/ml by I Total NC ppm |       | Median<br>23. | Maximum<br>>7 000 | Minimum          |      |                   |       |      |             |      |      |             |       |
| -                                        | 1                                            | - PDG                                                                              |       | 8             | 8                 | 70               | Æ    |                   | 2     | 8    | 2           | 10   | R    | 8           | 32    |
|                                          | -                                            | N C O S                                                                            |       | 3             | 14                | 5:               | 19   | Ş.                | -7.   | 2    | 19          | 57   | 11   | 63          | 69    |
|                                          |                                              | Hardness<br>os CaCOs<br>os CaCOs<br>ppm Ppm                                        |       |               | 12                | 242              | 135  | 121               | 98    | ă    | 131         | 135  | 100  | 186         | 178   |
|                                          | 9                                            | cent<br>108 -                                                                      |       | Ţ.            | Ç                 | 7                | Cý   | 45                | 9     | 5    | 67          | 95   | 55   | 5.<br>Cr    | %     |
|                                          | Totol                                        | solved<br>solved<br>in ppm                                                         |       | 376°          | 134°              | 351 <sup>e</sup> | 778° | 273 <sup>f</sup>  | 164   | 280  | 483°        | 325  | 544° | 1941g       | 188   |
|                                          |                                              | Other constituents                                                                 |       |               |                   |                  |      | Fe 0.05 Cu 5 12 d |       |      |             | PO   |      |             |       |
|                                          |                                              | Sios)                                                                              |       |               |                   |                  |      | 15                |       |      |             | 139  |      |             |       |
|                                          | 100                                          | Boran Silica<br>(B) (SiO <sub>2</sub> )                                            |       | 31            | -1                | 0.0              | 8    | 0                 | 0.1   | 7    | 0.0         | 0.3  | 0.2  | 7           | 0.0   |
| July I                                   | million<br>er mill                           | Flug-<br>ride<br>(F)                                                               |       |               |                   |                  |      | 0.01              |       |      |             | 0.0  |      |             |       |
| (STA.                                    | ports per million<br>equivalents per million | frote (NO <sub>3</sub> )                                                           |       |               |                   |                  |      | 0.0               |       |      |             | 0.0  |      |             |       |
| T FERRY                                  | DAIRD                                        | Chio-<br>ride<br>(CI)                                                              |       | 110           | 3,50              | 25.74            | 65   | 72                | 31    | 76   | 192         | 3.72 | 21.2 | 3.99        | 160   |
| TON COU                                  | Ē                                            | Sul -<br>fore<br>(SO <sub>4</sub> )                                                |       |               |                   |                  |      | 38.               |       |      |             | 34   |      |             |       |
| AT CLIF                                  | stribuents                                   | Bicor-<br>banate<br>(HCO <sub>3</sub> )                                            |       | 11.88         | 2.11              | 1110             | 86   | 1111              | 1.14  | 1.75 | 1.34        | 1.59 | 101  | 2.46        | 2.33  |
| OLD RIVER AT CLIFTON COURT FERRY (STA IL | Mineral constituents                         | Carbon-<br>ote<br>(CO <sub>\$</sub> )                                              |       | 0.0           | 0.00              | 0.0              | 0.0  | 0.0               | 0.0   | 0.0  | 0.0         | 0.00 | 0.0  | 0.0         | 0.00  |
| J0.                                      | Mine                                         | Potas-<br>Stum<br>(X)                                                              |       |               |                   |                  |      | 0.11              |       |      |             | 0.12 |      |             |       |
|                                          |                                              | Sodeum<br>(No)                                                                     |       | 3.04          | 3.87              | 89 %             | 1,91 | 89 60.5           | 77.1  | 2.44 | 121         | 3.27 | 2,18 | 46<br>60.10 | 103   |
|                                          |                                              | Magne-<br>slum<br>(Mg)                                                             |       |               |                   |                  |      | 1.02              |       |      |             | 1.24 |      |             |       |
|                                          |                                              | Calcium<br>(Ca)                                                                    |       | 181           | 307.              | 2.84°            | 2.00 | 1.10              | 1.720 | 2.31 | 3.636       | 1.20 | 2.00 | 3.78        | 3.56° |
|                                          |                                              | Ŧ.                                                                                 |       | 67            |                   | ~                | 1.7  | e.                | 5.    | .t.  | 2           | 7.3  | 7.3  | rt<br>60    | 7.7   |
|                                          | Specific                                     | (m.cramhos pH<br>at 25°C)                                                          |       | ğ             | -                 | 617              | 789  | 1478              | 589   | 767  | 850         | 608  | 624  | 811         | 829   |
|                                          |                                              | gen (                                                                              |       | ď.            | è                 | g.               | 8    | 80                | 80    | 70   | 28          | 76   | 98   | 11.8        | 104   |
|                                          |                                              | Dissolved<br>axygen<br>ppm %Sol                                                    |       |               | 100               | 2                | 00°  | 7.5               | 7.5   | 7    | 6.9         | 8.9  | 8,1  | 12.2        | 11.9  |
|                                          |                                              | Temp<br>In of                                                                      |       |               |                   |                  |      | 02                | 75    | 2    | 8           | 8    | .99  | 5.5         | 9     |
|                                          |                                              | Dischorge Temp                                                                     | 71381 |               |                   |                  |      |                   |       |      |             |      |      |             |       |
|                                          |                                              | Date<br>somptime<br>P S.T                                                          | 9 4 ( |               |                   | 44               |      | 5/13              | 1300  | 125  | 8/9<br>1447 | 9/8  | 10/5 | 11/2        | 1600  |

b Labaratory pH a Freld pH.

c Sym of calcium and magnesium in epm.

c. Sum of colorium and magnesium in spin.

d. Iron (Fe), aluminum (A1), grisenic (A2), copper (Cu), Iead (Pb), manganese (Mn), 2,nnc (Zn), and hexavalent chromium (Cr<sup>-6</sup>), reparted here as  $\frac{0.0}{0.00}$  except as shown. Derived from conductivity vs TDS curves.

Determined by addition of anolyzed canstituents.

g Gravimetric determination.

h. Annual medion and straight representative. Calculated from emplysas of digitican monthly strangles made by California Department of Poblic Health, Division of Lebonosius, or United Strates Public Health Service.

Manual analyses mode by United Strates Carological Servery, Charley of Western Benedy USES, Health Strates Carological Servery, Charley of Western Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Strates Charles Str

#### ANALYSES OF SURFACE WATER FKTRA ALLY -- IN P. --TABLE PLA

|                               |                         | 10   10   10   10   10   10   10   10      | 1     |   |   |   |   |    |    |      |    |   |        |       |    |    |
|-------------------------------|-------------------------|--------------------------------------------|-------|---|---|---|---|----|----|------|----|---|--------|-------|----|----|
|                               | ,                       | 100                                        |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               | 3                       | P. L.                                      |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               |                         | 100                                        |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               |                         | Totol<br>PDM                               |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               | 4                       | 200 S C C C C C C C C C C C C C C C C C C  |       | ř |   |   |   |    |    |      |    |   | -      | 2     | F  |    |
|                               | Tata                    | 9004                                       |       |   | _ | _ | _ | -  |    |      |    | - |        | T.    | -  | -  |
|                               |                         | Other constituents                         |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               |                         | Silico<br>(5.0 <sub>2</sub> )              |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               | 1001                    | Fluo-Boron Silico                          |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
| ď                             | equivolents per milion  | Fluo-                                      |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               | ports pe                | trate<br>(NO <sub>3</sub> )                |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
| TRAC.                         | 9                       | Chiq-<br>ride<br>(CI)                      |       | 1 |   | - | d |    | 16 |      | d  |   |        | Œ.    | d  |    |
| HOLLAND                       | ć                       | Sul -<br>fare<br>[10 <sub>e</sub> ]        |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
| OLD RIVES - SOLLAND TRAC' / A | atifuenti               | Bonate<br>(HCOs)                           |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
| OLD RI                        | Mineral constituents in | Colcum Wagne Sadum Polos Corban Brook Sul- |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               | 2                       | Potos x                                    |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               |                         | Sodium<br>(No)                             |       | 4 |   |   |   |    |    |      |    | 旦 |        |       |    | 1  |
|                               |                         | s om<br>(Mg)                               |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               |                         | Colcium                                    |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               | Specific                | onductorical<br>or 25°C)                   | -     |   |   |   |   | î  | 1  | 14   |    | 7 | 4      |       | 0  | 47 |
|                               |                         | Discrotge Temp Dissalved conductored p.H.  |       |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               |                         | e c<br>G                                   |       |   |   |   | 8 |    | 8  |      | 7  |   |        |       | -  | 2  |
|                               |                         |                                            | 10010 |   |   |   |   |    |    |      |    |   |        |       |    |    |
|                               |                         | Date<br>and time<br>sampled<br>P S T       | 1     |   |   |   |   | 28 |    | 7 13 | 18 |   | alone. | 10.00 | 91 |    |

H .

 $S = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} +$ 

A control of the part of the part of the control of the Department of Part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of

AN

| ATER    | _       |
|---------|---------|
| 3       | ٠.      |
| CE      | 98      |
| SURFA   | REGION  |
| PP      | VALLEY  |
| JALYSES | CENTRAL |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                       |                                                                         | _     |                |        |                |       |                                                                        |            |       |       |                                          |       |       |            |   | - 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|-------|----------------|--------|----------------|-------|------------------------------------------------------------------------|------------|-------|-------|------------------------------------------|-------|-------|------------|---|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Anoiyzad<br>by i                                                        | USGS  |                |        |                |       |                                                                        |            |       |       |                                          |       |       |            |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                       | Hordness bid Coliform as CoCO <sub>3</sub> 11y MPN/mil Tatal N.C. n ppm |       | hedian<br>230. | 7,000. | Minimum<br>4.2 |       |                                                                        |            |       |       |                                          |       |       |            |   |     |
| ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                       | - pid<br>- bba                                                          |       | 5              | 0      | 2              | 9     | 8                                                                      | 3          | 57    | 0,7   |                                          | 0,7   | 57    | 3.7        |   |     |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | PPM<br>PPM<br>PPM                                                       |       | ñ              | 7.5    | 2              | 4     | 0                                                                      | 0          | 39    | 33    | n                                        | 7     | 5     | or .       |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Total<br>Ppm                                                            |       | 125            | 342    | ř              | 3     | 8                                                                      | 7/4        | 7     | 96    | 172                                      | 35    | 8     | 56         |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Per                     | tog-                                                                    |       | 3              | 9      | 74             | 25    | 8                                                                      | 39         | 3     | 7     | Z.                                       | 8     | 39    | 4          |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Totol                   | solved<br>solids<br>in ppm                                              |       | 2006           | 3116   | 200e           | 1406  | 132 <sup>f</sup>                                                       | 1440       | 302e  | 334°  | 1257                                     | 2190  | 107   | 1926       |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Other constituents                                                      |       |                |        |                |       | Fe <u>0.15</u> Cu <u>0.03</u> d<br>A1 <u>0.13</u> FO <sub>4</sub> 0.20 |            |       |       | Fe 0.03 FO <sub>4</sub> 3.5 <sup>d</sup> |       |       |            |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | (Sinco<br>(Sinco                                                        |       |                |        |                |       | 77                                                                     |            |       |       | 킈                                        |       |       |            |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iron                    | Boron (B)                                                               |       | 7              | 7.0    | 0.2            | 0,1   | 0.1                                                                    | 7*0        | 7]    | 0     | 0.2                                      | 0,2   | 7     | 0.1        |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | per million             | Fluo-<br>ride<br>(F)                                                    |       |                |        |                |       | 0.01                                                                   |            |       |       | 0.0                                      |       |       |            |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | equivolents per million | Ni-<br>trota<br>(NO <sub>3</sub> )                                      |       |                |        |                |       | 0.0                                                                    |            |       |       | 0.04                                     |       |       |            |   |     |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | oviupa                  | Chlo-<br>ride<br>(Cl)                                                   |       | 1.69           | 2.03   | 1.86           | 0.70  | 20                                                                     | 0,08       | 3.55  | 3.61  | 145                                      | 1.69  | 78.0  | 1.10       |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ē                       | Sul -<br>fote<br>(SO <sub>4</sub> )                                     |       |                |        |                |       | 18                                                                     |            |       |       | 0.69                                     |       |       |            |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stifuenti               | Brcor-<br>bonote<br>(HCO <sub>3</sub> )                                 |       | 1.23           | 1.43   | 30             | 7.1   | 130                                                                    | 1,49       | 1.49  | 1,29  | 3.18                                     | 101   | 101   | 105        | _ |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mineral constituents    | Corbon-<br>ote<br>(CO <sub>3</sub> )                                    |       | 000            | 000    | 000            | 000   | 000                                                                    | 000        | 0000  | 000   | 00.0                                     | 0.0   | 0.0   | 0000       |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mın                     | Potos-<br>sium<br>(K)                                                   |       |                |        |                |       | 0.05                                                                   |            |       |       | 2.4                                      |       |       |            |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Sodium<br>(No)                                                          |       | 1.83           | 2,44   | 1.91           | 2/3   | 18                                                                     | 22<br>0.96 | 3.65  | 3.18  | 100                                      | 1.87  | 36    | 32         |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Mogne-<br>sum<br>(Mg)                                                   |       |                |        |                |       | 6.9                                                                    |            |       |       | 1.54                                     |       |       |            |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Colcium Mogna-<br>(Co) sium<br>(Mg)                                     |       | 2,500          | 2.84   | 2.64           | 1.60° | 15                                                                     | 1.480      | 2,220 | 1,960 | 1.98                                     | 1,88° | 1.76€ | 1.900      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | "I                                                                      |       | 7.2            | 7.3    | 7.5            | 7.3   | 7.3                                                                    | 7.3        | 7.4   | 7.3   | 7.3                                      | 7.3   | 7.5   | 7.3        |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | conductonce<br>(micromhos of 25°C)                                      |       | 1,62           | 536    | 164            | 253   | 208                                                                    | 5776       | 169   | 573   | 801                                      | 379   | 289   | 331        |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | lved<br>gen<br>%                                                        |       | 25             | 8      | 82             | 68    | 98                                                                     | 77         | 76    | 56    | 16                                       | 85    | 35    |            |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Dissolved<br>oxygen<br>ppm %Sat                                         |       | 10.1           | 10.1   | 5.2            | 6.9   | 8,1                                                                    | 8.0        | 8.1   | 7.7   | 7.5                                      | 8.0   | 7*6   |            |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                         |       | 2              | 05     | 9              | 9     | 89                                                                     | 29         | 72    | 28    | 26                                       | 99    | 92    | 8          |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Oischorge Temp<br>in cfs in 9F                                          | Tidal |                |        |                |       |                                                                        |            |       |       |                                          |       |       |            |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ond time<br>sompled<br>P.S.T                                            | 1060  | 1/12           | 2/9    | 3/12           | 4/2   | 5/12                                                                   | 6/9        | 7/2   | 8/9   | 9/11                                     | 10/6  | 11/6  | 12/11 0955 |   |     |

b Loborotory pH. o Field pH.

c Sum of colcium and magnessum in spm.

Sum of colcium and magnessum in apm.

Lan (Fe), olumnum (A1), arsenic (As), copper (Cu), lead (PB), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr\*<sup>6</sup>), reparted here as  $\frac{0.0}{0.00}$  except as shown. Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

h. Amal median and roaps, respectively. Calculated from coalyses of deplicate recently samples made by California Department of Public Health, Division of Lebaratories, or Univel States Build Health Service and by University and by University California Build Health Service (USPR), Lined States Department of Service (USPR), Lined States Department of Service (USPR), Lined States Public Health Service (USPR), See Beneating Coarry Flood Coarry Flood Coarry Service (USPR), Carly of Las Augustia, Department of Service (USPR), Carly of Las Augustia, Department of Service (USPR), Carly of Las Augustia, Responsible to the Department of Service (USPR), Carly of Las Augustia, Responsible to the Department of Service (USPR), Carly of Las Augustia, Responsible to the USPR), Carly of Las Augustia, Responsible to the USPR, Carly of Last Service (USPR), Carly of Last Augustia, Responsible to the USPR), Carly of Last Augustia, Responsible to the USPR, Carly of Last Aug

ANALYSES OF SURFACE WATER PENTRAL VALLEY REGER & (NO. TABLE B-4

|                      | Mordass sd- Co form Analyzed                |                        | 1     |       |      |      |      |           |      |       |       | _                                |       |      |              |  |
|----------------------|---------------------------------------------|------------------------|-------|-------|------|------|------|-----------|------|-------|-------|----------------------------------|-------|------|--------------|--|
|                      | MPH/MM                                      |                        |       | 1     | F    | 1    |      |           |      |       |       |                                  |       |      |              |  |
|                      | 30-                                         | 000                    |       |       |      | 0    | 8    | 0         |      |       | 2     |                                  | 1     | Q    | 0            |  |
|                      | 0000                                        | Tatqi h<br>opm opm     |       |       | -    | 2    |      | d         |      |       | =     | i                                |       |      | 10           |  |
|                      | Horo<br>Ose C                               | Tatq                   |       |       | -    | 3    | 1    | 0         |      | 5     | 2     | 51                               | £     | 9    | 8            |  |
|                      | Par<br>Can                                  | 5                      |       |       |      |      | 8    |           | 7    |       | 3     |                                  | 8     | ş    | 0            |  |
| -                    | Solved Carr                                 | 600                    |       | ž     | 9    | 4    | -    | 3         | 1880 | ×     | 3     | -d                               | 28.   | 325° | 9<br>1.<br>4 |  |
|                      |                                             | Other constituents     |       |       |      |      |      | 4 7 TO 12 |      |       |       | Fe06 A104<br>FO <sub>b</sub> 0.1 |       |      |              |  |
|                      | 00118                                       | (2:05)                 |       |       |      |      |      | 57        |      |       |       | 130                              |       |      |              |  |
| 100                  | Baron                                       | (8) (5:04)             |       | 10    | 3    | 4    | 1    | 3         | 3    | 3     | 0.2   | 0.1                              | 0.2   | ð    | 3            |  |
| million<br>million   | 100-                                        | r.de<br>(F)            |       |       |      |      |      | 10        |      |       |       | 0.2                              |       |      |              |  |
| gotts per million    | ž                                           | (NO <sub>5</sub> )     |       |       |      |      |      | 10.0      |      |       |       | 1.1                              |       |      |              |  |
| G.                   | Chio                                        | *(C)                   |       | 19:   | 2/0  | 2000 | 1.35 | 10°0      | 800  | 27.74 | 00:   | 81 2                             | 1.89  | 25   | 3.5          |  |
| c                    |                                             | (SO <sub>e</sub> )     |       |       |      |      |      | 94.0      |      |       |       | 700                              |       |      |              |  |
| strtuents            | Bicor-                                      | (HCO <sub>3</sub> )    |       | 1191  | 1:8  | 1.67 | 1.34 | 2 2 2     | 1.41 | 25    | 1.3   | 31.                              | 1.67  | 108  | 2.20         |  |
| Mineral constituents | Carbon-                                     | (K) (CO <sub>3</sub> ) |       | 0.0   | 010  | 0.78 | = 8  | 9.00      | 0.0  | 0,00  | 0.00  | 0.00                             | 0.0   | .13  | 0.0          |  |
| ž                    | P0108-                                      | #(X)                   |       |       |      |      |      | 18        |      |       |       | 1.2                              |       |      |              |  |
|                      | Sodium                                      | (N 0)                  |       | 19    | 9/3  | 2.70 | 1.30 | 0.87      | 1:09 | 2.73  | 55.65 | 20:                              | 201   | 1.74 | 3.65         |  |
|                      | dogoe.                                      | (Mg)                   |       |       |      |      |      | 0.62      |      |       |       | 1.30                             |       |      |              |  |
|                      | Calcium                                     | (Ca) frum<br>(Mg)      |       | 13    | N.   | 8.   | 1    | 98.       | F    | F     | E     | 0.0                              | 1     | P    | -7           |  |
|                      | H                                           |                        |       | 2     | ç;   |      | 7    | -5        | -:   | -     | =     | -                                | -     | 3    | .:           |  |
|                      | Dissolved conductors all a congestors all a | 01 25°C)               |       | 9.0   | 929  | 76.0 | 989  | 233       | 11.  | 2.    | 1,050 | 54                               | 2     | 8    | Ž            |  |
|                      | 9 5                                         | 105 %                  |       | 62    | 81   | 8    | 69   | 8         | 2    | 6     | 82    | 61                               | 00    | 83   | ÷.           |  |
|                      | 0.000                                       | 105 % mad              |       | 4.5   | 7.6  | 5.0  | 1.00 | 1         |      | 1     | 6.9   | 2.0                              | 9.    | 6.0  | 9.70         |  |
|                      | Jo of                                       |                        |       | 35    | 0    | 8    | 9    | 2         | Ē.   | e.    | 92    | 2                                | 0     | 9.   | 6            |  |
|                      | Discharge Tamp                              |                        | Tidai |       |      |      |      |           |      |       |       |                                  |       |      |              |  |
|                      | Date<br>and time                            | P S T                  | 6667  | 14.90 | 2/10 | 1000 |      | 1 12      | 6,10 | own.  | 1992  | 9 i q<br>00 80                   | 9 7 7 | 7    | 30           |  |

is a consistent of the companies of the companies the section of herecalest channels (CF) reported here as year to see an element of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the companies of the compa

A Annal meditor of the responsibility and standard and as models made by Californa Department of Pull Health Totals of the restrict the restrict the restrict that the restrict the

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGIUM (NO. 2) TABLE B-4

|   | _                       | lyzed<br>y i                         |                       | Lulu. | _               |         |                |               |                                  |       |               |       |                                                     |       |       |       |  |
|---|-------------------------|--------------------------------------|-----------------------|-------|-----------------|---------|----------------|---------------|----------------------------------|-------|---------------|-------|-----------------------------------------------------|-------|-------|-------|--|
| - | -                       | os CoCO <sub>3</sub> ity MPN/mi by i | +                     | 3     | q               | ã .     | um             |               |                                  |       |               |       |                                                     |       |       |       |  |
|   |                         | MPN/                                 |                       |       | Nedkan<br>1,30. | P, COL. | Kinimum<br>4.1 |               |                                  |       |               |       |                                                     |       |       |       |  |
|   | - 10.1                  | Pid -                                |                       |       | 12              | ٥       | 9              | 3             | 011                              | 29    | 3             | 9     | 70                                                  | 5     | 3     | 5     |  |
|   |                         | dness                                | Tatal N.C.<br>ppm ppm |       | 2               | 70      | 52             | 8             | 12                               | 8     | 8             | Х     | 123                                                 | 76    | 79    | 22    |  |
| - |                         | P 8                                  | Tata<br>ppm           |       | 147             | 77/7    | オー             | 45.           | 220                              | 35.   | 728           | 16,   | 298                                                 | 254   | 174   | 50    |  |
| - | ů.                      | tues p                               | E                     |       | 12              | 7.      | 7              | 3             | 7.                               | 25    | × ×           | Z     | 5                                                   | 25    | 27    | 3     |  |
| L | Tato                    | solved<br>solids                     | e e                   |       | 270°            | 1,40°   | 3806           | 537°          | 563                              | 001e  | cle           | 4443° | 673                                                 | 97770 | 95077 | \$00e |  |
|   |                         | Other constituents                   |                       |       |                 |         |                | Tot. wik. 100 | PU, <u>U.50</u> AN <u>U.50</u> d |       | To*. Alk. 192 |       | PO, <u>0.45</u> A1 <u>0.09</u> d<br>Zn <u>0.604</u> |       |       |       |  |
|   |                         | Silico                               | (2010)                |       |                 |         |                |               | a                                |       |               |       | গ্ৰ                                                 |       |       |       |  |
|   | lion                    | Boran Silica                         | (8)                   |       | 7*0             | 7.0     | 3              | 4.0           | 7-7                              | 75    | 6.9           | 7     | 3                                                   | 7-0   | 0.3   | 7-0   |  |
|   | 191 IO                  | Fluo-                                |                       |       |                 |         |                |               | 7000                             |       |               |       | 000                                                 |       |       |       |  |
|   | equivalents per million | - 12                                 |                       |       |                 |         |                |               | 5.1                              |       |               |       | 0.00                                                |       |       |       |  |
|   | d on one                | Chio-                                | (C)                   |       | 3.08            | 3.64    | 3.00           | 172           | 176                              | 199   | 5.98          | 152   | 6.00                                                | 5.70  | 77.00 | 152   |  |
|   | Ē                       | Sul -                                | (504)                 |       |                 |         |                |               | 1:69                             |       |               |       | 74                                                  |       |       |       |  |
|   | atituents               | Bicar-                               | (HCO3)                |       | 1.97            | 137     | 11.93          | 154           | 3.02                             | 3.18  | 3.16          | 360   | 3.49                                                | 3,52  | 159   | 2.69  |  |
|   | Mineral constituents    | Corban-                              | (00)                  |       | 0.00            | 00.00   | 0,00           | 07.40         | 00.00                            | 000   | 0,07          | 00.00 | 00.00                                               | 00.00 | 0.0   | 00.0  |  |
|   | ž                       | Potos-                               | (X                    |       |                 |         |                |               | 5.4                              |       |               |       | 7.2<br>0.18                                         |       |       |       |  |
|   |                         | Sodium                               | (MQ)                  |       | 3.09            | 94,09   | 3.76           | 102           | 5.00                             | 5.31  | 130           | 98    | 134                                                 | 129   | 7500  | 108   |  |
|   |                         | Magne-                               | (Mg)                  |       |                 |         |                |               | .3                               |       |               |       | 32,02                                               |       |       |       |  |
|   |                         | alcium                               | (00)                  |       | 2.94c           | 3.48c   | 3,08€          | 4.43c         | 2.64                             | 5.04  | 5.160         | 3.000 | 3.34                                                | 90.0  | 3.88° | 4.12° |  |
|   |                         | o x                                  |                       |       | 7.07            | 7-7     | 7.3            | 8.1           | 5.6                              | 8.1   | 7.9           | 7.9   | 4.4                                                 | 7.9   | 7.9   | 7.6   |  |
|   | Spacific                | Conductance<br>(micromhos            |                       |       | 699             | 763     | 929            | 956           | 596                              | 1,070 | 1,100         | 788   | 1,180                                               | 1,110 | 828   | 890   |  |
|   |                         | lve d                                | %Sot                  |       | 8               | 66      | 7              | 170           | 77                               | 100   | 82            | 98    | 82                                                  | 46    | 10%   | 98    |  |
|   |                         | Dissolved                            | шфф                   |       | 8,3             | 10.5    | 7.0            | 16.0          | 6.9                              | 9.2   | 7.0           | 6.5   | F*9                                                 | 8.9   | 11.11 | 10,3  |  |
|   |                         | Temp<br>In of                        |                       |       | 95              | 20      | 62             | 99            | 20                               | 99    | 75            | 8     | 23                                                  | 89    | 22    | 97    |  |
|   |                         | Dischorge Temp                       |                       | Tidal |                 |         |                |               |                                  |       |               |       |                                                     |       |       |       |  |
|   |                         | Ond time                             | P.S.T                 | 1959  | 1/13            | 2/10    | 3/12           | 1200          | 5/13                             | 6/9   | 7/2           | 8/10  | 9/11                                                | 10/8  | 11/6  | 12/11 |  |

a Freld pH

Laborotory pH.

Sum of colours and magnessum in repm.

Ion (Fe), oluminum (A), orsenic (As), copper (Cu), Iead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>+6</sup>), reparted here as  $\frac{0.0}{0.00}$  except as shown. Derived from conductivity vs TDS curves. Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annot inclin and rapp, respectively. Calculated from analyses of duplicate monthly samples mode by Calciania Department of Public Health, Division of Leboritaries, or United States Society Public Health Sevice.

Journal paralyses mode by United States Goodback and Sevices (1994): Las Angeles Department of Maria States Sevices (1994): Las Angeles Sevices (1994): Las Angeles Department of Maria and Person of Reclamation (1994): United States Public Health Sevices (1994): Las Angeles Department of Maria and Person (1994): Las Angeles Department of Maria and Person (1994): Las Angeles Department of Maria and Person (1994): Las Angeles Department of Maria and Person (1994): Las Angeles Department of Public Health (1994): An Calciania Department of Maria and Person (1994): An Calciania Department of Maria and Person (1994): An Calciania Department of Maria and Person (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania Department of Maria (1994): An Calciania 
ANALYSES OF SURFACE WATER

CENTRAL VALLET REGION (NO. 5)

|              |               | Anniyzed<br>br 1                                                                                    | 253  |      |                |      |       |                   |      |             |            |                   |       |         |       |
|--------------|---------------|-----------------------------------------------------------------------------------------------------|------|------|----------------|------|-------|-------------------|------|-------------|------------|-------------------|-------|---------|-------|
|              |               | Marchasa a.a. Collorm Analyzed os CoCO <sub>3</sub> 12 MPN/ms as 1 as 1 as 1 as 1 as 1 as 1 as 1 as |      |      |                |      |       |                   |      |             |            |                   |       |         |       |
|              | 7 100         |                                                                                                     |      |      |                |      |       |                   |      |             |            | 9                 |       |         | 4     |
|              |               | Merdanse<br>os CoCOs                                                                                |      | -    | 0              | 8    | Ь     |                   |      |             | è          | 0                 | 3     |         |       |
|              |               |                                                                                                     |      | 12   | 3              | 00   | 3     | 8                 | 97   | 8           | 8          | 8                 | 8     | ٤       | P     |
|              | Pari          | 0000                                                                                                |      | 8.   | я              | Ħ    | 85    | 8                 | Ħ    | ΣX          |            | 4.                | R     | Tr      | 9     |
|              | Torei         | 801vs d<br>801vs d                                                                                  |      | 60   | 1,90           | 122  | 142   |                   | JC.  | 179         | 179        | 1784              | 100   | 185     | 184   |
|              |               | Other constituents                                                                                  |      |      |                |      |       | Po 0.07 At 0.08 4 |      |             |            | Fe 0.03 AL 0.02 6 |       |         |       |
|              |               | (2015)<br>(2015)                                                                                    |      | 12   | 54             | 54   | 7     | 2                 | a    | 54          | 77         | 되                 | 8     | 25      |       |
|              | lon           | Boron (B)                                                                                           |      | 0.1  | 27             | 0.2  | 6.3   | 6.3               | 4.0  | 9,0         | 4.0        | 0.5               | 5.9   | 57      | 77    |
| million      | par million   | Fluo-<br>(F)                                                                                        |      | 0.01 | 000            | 0.0  | 0.0   | 0.1               | 0.0  | 0.0         | 0.0        | 0 8               | 0.0   | 0 8     |       |
| perts per    | equivolents p | trota<br>(NOs)                                                                                      |      | 0.08 | 0.0            | 0.0  | 0.0   | 1.5               | 0.0  | 0.0         | 0.7        | 0.00              | 0.0   | 0.0     |       |
| •            | e guive       | Chio-                                                                                               |      | 6.5  | 00.08<br>00.08 | 0.21 | 7 7 7 | 0.39              | 0.39 | 0.39        | 15         | 0.51              | 800   | 19 0.54 | 0.51  |
| 9            |               | Sul -<br>fota<br>(\$0.00)                                                                           |      | 3.8  | 0.00           | 60.0 | 0.00  | 0.10              | 6.0  | 0.33        | 9.0        | 0.00              | 0.00  | 0.0     |       |
| and the same | 1100011       | Brear-<br>bonets<br>(HCO <sub>3</sub> )                                                             |      | 0.70 | 38             | 1.43 | 1.59  | 1.87              | 1.8  | 1.67        | 1.8        | 1.93              | 1000  | 1.97    | 2.8   |
| Manage       |               | Carbon-<br>gts<br>(CO <sub>3</sub> )                                                                |      | 0.0  | 0.0            | 0.0  | 0.0   | 0.0               | 0.0  | 0.0         | 0.0        | 0.00              | 0.0   | 0.0     | 0.00  |
| - 74         | U M           | Potos-<br>(X)                                                                                       |      | 0.03 | 0.03           | 0.03 | 0.03  | 0.00              | 0.0  | 0.05        | 2.1        | 0.03              | 0.0   | 0.07    |       |
|              |               | Sodium<br>(No)                                                                                      |      | 6.5  | 0.52           | 0.52 | 0.57  | 0.65              | 17.0 | 118<br>0.78 | 19<br>0.83 | 80.0              | 70.   | 8       | 0.87  |
|              |               | 8 cgne.                                                                                             |      | 40   | 0.65           | 6.7  | 9.5   | 1.8               | 0.92 | 10<br>0.85  | 100        | 700               | 0.8   | 0.83    |       |
|              |               | Calcium<br>(Ca)                                                                                     |      | 0.3  | 0.55           | 0.60 | 0.60  | 0.60              | 0.70 | 0.73        | 0.70       | 0.75              | 0.80  | 0.75    | 1.    |
|              |               | " I                                                                                                 |      | 7.2  | 7.2"           | 7.0b | 7.5ª  | 7.86              | 8.5  | 8.2         | 7.3        | 7.34              | 7.50  | 7.3     | 7.3   |
|              | Spacific      | Conductorca<br>(micromhos<br>at 25°C)                                                               |      | 104  | 165            | 100  | 192   | 227               | 223  | 82          | 823        | 2 39              | £     | 7g.     | 238   |
|              |               |                                                                                                     |      | 16   | 98             | 110  | 104   | 104               | 100  | 83          | 66         | 8                 | 8.    | 6       | 3     |
|              |               | Orasolved<br>Onygen<br>ppm %50                                                                      |      | i    | 1.17           | 4.1  | 10.1  | 10.0              | 0.6  | 7.6         | 9.8        | 6.7               | 5.6   | 9.3     | ** 6  |
|              |               | 4 0 E                                                                                               |      | 3    | 8              | 52   | 63    | 3                 | 2    | 2           | 6          | 3                 | 61    | 9,      | 57    |
|              |               | Dischorge Tamp                                                                                      |      |      | 杰              | St.  | 7.6   | 2.5               | 9.0  | 0.2         | 0.1        | 1.2               | 6.0   | 2.5     | 5.5   |
|              |               | and time<br>samplad<br>p S T                                                                        | 1959 | 1,76 | 2/1            | 2/11 | 1,715 | 5/15              | 0/16 | 0460        | 8/12       | 9/1               | 10001 | 11/13   | 10,10 |

b Loboratory pH o Field pH

c. Sum of colcium and magnesium in epm.

c. Same to become non-suppression in spin.
d. Iron Fe, a blumman (A1), or secure, (A2), copper (Cu), lead (Pb), manganese (An), and hexardent chromium (Ci \*\*) reported here as 0 0 except as shown a large feet of shown. Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents Grevimetric determination

Annual megina rad responsability Calculated from analysis of Applicate monthly samples neglety. Calculated from an annual samples medical properties of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the

ANALYSES OF SURFACE WATER TABLE B-4

CEMPRAL VALLEY REGION (NO. 5)

|                                  |                 | 1000                    | by i                          |          | 8060 |      |             |             |      |         |                    |      |               |               |                                                        |             |       |      |  |   |   |
|----------------------------------|-----------------|-------------------------|-------------------------------|----------|------|------|-------------|-------------|------|---------|--------------------|------|---------------|---------------|--------------------------------------------------------|-------------|-------|------|--|---|---|
|                                  |                 | 4                       | os CaCOs 11y MPN/mi           |          |      |      |             |             |      |         |                    |      |               |               |                                                        |             |       |      |  |   |   |
| ŀ                                |                 | 5                       | , ka                          | Ì        |      |      |             |             |      |         | 100                |      |               |               | 5                                                      |             |       |      |  |   |   |
|                                  |                 |                         | \$ CO 2                       | mdo      |      |      |             |             | 0    |         | 0                  | С    | С             | С             | c                                                      | С           | 0     | 0    |  |   |   |
|                                  |                 | -                       | Da Co                         | mdo mdo  |      |      |             |             | 23   |         | 46                 | 102  | 110           | 9             | ®                                                      | 108         | 101   | 76   |  |   |   |
|                                  |                 | Per-                    | sod -                         |          |      |      |             |             | 32   |         | 38                 | 24   | 13            | 63            | 89                                                     | 3           | 37    | 77   |  |   | 4 |
|                                  | ,               | Total                   | solved sod -                  |          |      |      |             |             | 122  |         | 193                | 235  | 243           | 88            | 243                                                    | 246         | 211   | 222  |  |   |   |
|                                  |                 |                         | Other constituents            |          |      |      |             |             |      |         | Fe 0.07 POL 0.15 d |      | Tot. Alk. 210 | Tot. Alk. 175 | Fe 0.05 Al 0.27 d<br>Zn 0.02 Pol 0.15<br>Tot. Alk. 198 |             |       |      |  |   |   |
|                                  |                 |                         | 001100                        | 2        |      |      |             |             | 13   |         | ×                  | 25   | 130           | 25            | 2                                                      | 23          | 18    | 134  |  |   |   |
|                                  | 1               | ion                     | Baran Silico                  | · · ·    |      |      |             |             | 0.0  |         | 0.3                | 0.2  | 0:0           | 0.2           | 0.3                                                    | 0.2         | 0.2   | 0.1  |  |   |   |
|                                  | million         | , mil                   | Fivo-                         |          |      | _    |             |             | 0.0  |         | 0.0                | 0.0  | 0.0           | 0.0           | 0.0                                                    | 0.0         | 0.0   | 0.0  |  |   |   |
|                                  | parts per m     | equivalents per million | N                             |          |      |      |             |             | 0.2  |         | 0.7                | 0.02 | 0.0           | 0.00          | 0.0                                                    | 9.0         | 0.00  | 0.0  |  |   |   |
| PIT RIVER MEAR BIERER (STA. 17e) | bod             | equivol                 | Chio-                         | -        |      |      |             |             | 3.5  |         | 0.83               | 8.0  | 9.0           | 14 0.39       | 0.65                                                   | 0.20        | 0.34  | 0.39 |  |   |   |
| WEAR BIR                         |                 |                         | Sul -                         |          |      |      |             |             | 0.35 |         | 0.27               | 95.0 | 13            | 0.12          | 0.31                                                   | 0.83        | 19    | 16   |  |   |   |
| RIVER                            | 1000            | nstillen                | Bicor -                       | (HCO3)   |      |      |             |             | 1.31 |         | 2.69               | 2.9  | 2.92          | 2.00          | 8 1.1                                                  | 173<br>2.84 | 2.79  | 2.82 |  | _ |   |
| PIT                              | Manage language | oo ibasi                | Carbon-                       | (CO3)    |      |      |             |             | 0.0  |         | 0.0                | 0.0  | 0.53          | %<br>0.87     | 1.77                                                   | 0.00        | 0.00  | 0.00 |  |   |   |
|                                  | 1               | - Marie                 | Potos-                        | ξ        |      |      |             |             | 0.07 |         | 0.12               | 6.6  | 6.3           | 7.6           | 0.23                                                   | 6.5         | 5.2   | 0.19 |  |   |   |
|                                  |                 |                         | Sodium                        | (0.0)    |      |      |             |             | 14   |         | 1.22               | 37   | 1.78          | 2.39          | 8 8.                                                   | 38          | 30    | 33   |  |   |   |
|                                  |                 |                         | Calcium Magne                 | (Mg)     |      |      |             |             | 5.0  |         | 9.5                | 0.89 | 9.7           | 0,10          | 2.6                                                    | 0.96        | 0.93  | 8.9  |  |   |   |
|                                  |                 |                         | Colcium                       | 9        |      |      |             |             | 13   |         | 1:10               | 23   | 1.40          | 16<br>0.80    | 0.70                                                   | 1.20        | 23    | 1.15 |  |   |   |
|                                  |                 |                         | e F                           |          |      |      |             |             | 7.   |         | 7.7                | - S  | 6.3           | 8.3           | 6.2                                                    | 0.0         | 7.9   | 7.7  |  |   |   |
|                                  |                 | Specific                | canductance pH (micramhas pH) |          |      |      |             |             | 155  |         | 562                | 336  | 359           | 339           | 383                                                    | 334         | 312   | 335  |  |   |   |
|                                  |                 |                         | p                             | %Sot     |      |      |             |             | 8    |         | 92                 | 8    | 107           | 116           | 174                                                    | 110         | 42    | 6    |  |   |   |
|                                  |                 |                         | Dissolved                     | pom %Sat |      |      |             |             | 9.6  |         | 8.0                | 7.3  | 9.1           | 10.3          | 14.6                                                   | 10.6        | 9.01  | 12.0 |  |   |   |
|                                  |                 |                         | Temp<br>In oF                 | -        |      |      | palde       | parda       | 94   | Sampled | 95                 | 69   | 92            | 1,            | F                                                      | 19          | 92    | 33   |  |   |   |
|                                  |                 |                         | Discharge Temp                |          |      |      | Not Sampled | Not Sampled | 530  | Not Sam | 30                 | 11   | 10            | 0.2           | 0.2                                                    | 0.3         | 25    | 89   |  |   |   |
|                                  |                 |                         | ond time                      | P.S.T    |      | 1959 | 1/          | 8/          | 3/5  | h/      | 5/7                | 1450 | 1/16          | 8/12          | 9/9                                                    | 10/14       | 11/12 | 12/9 |  |   |   |

a Fretd pH.

b Laboratary pH

c. Sum of colorium and magnesium in apm. defend (Pb), manganese (Mn), sinc (Za), and hoxavolant chromium (Ci<sup>-1</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. d Iran (Fe), aluminum (A1), assenic (A2), capper (Co), lead (Pb), manganese (Mn), sinc (Za) c Sum of colcium and magnesium in apm.

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents. g Gravimetric determination

Annual median and amaga respectively. Calculated from mody-test of displacements and the Calculated from mody-test of displacements and displacement of the belief Distract of Libert States Poblace Health Straces (LiSPRS), San Bernodian Campy Flood Annual States Controlled Straces (LiSPRS), San Bernodian Campy Flood Campy Distract and Strace (LiSPRS), San Bernodian Campy Flood Campy Plant and LiSPRS), San Bernodian Campy Flood Annual Straces (LiSPRS), San Bernodian Campy Flood Campy Plant Annual LiSPRS), San Bernodian Campy Flood Annual LiSPRS, San Bernodian Campy Flood Annual Straces (LiSPRS), San Bernodian Campy Flood Annual Straces (LiSPRS), San Bernodian Campy Flood Annual LiSPRS, San Bernodian Campy Flood Annual LiSPRS, San Bernodian Campy Flood Annual Responses (LiSPRS), San Bernodian Campy Flood Annual LiSPRS, San Bernodian Campy Flood Ann

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO -1 TABLE B-4

|                                 |                         | 0.9 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    |                         |         |      |      |                  |               |      |          |                                         |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------|---------|------|------|------------------|---------------|------|----------|-----------------------------------------|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | 4                       | so as CaClip and Managered as CaClip and Managered as CaClip and Managered as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as Sent as  |      | Median                  | 1       | 8    |      |                  |               |      |          |                                         |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | 3                       | 0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                         | T       |      |      |                  |               | х    | 7        | i                                       | 9     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                         | 7 C 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                         |         |      |      |                  |               |      |          |                                         |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                         | Total<br>Pera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                         | •       | P    | å    | Υ.               | 8             | ×    | 4        | 4                                       | 18    | 8            | ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ĺ                               | 9                       | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                         | 7       | ž    | ĕ.   |                  | 1             | 5    | >        |                                         | 26    | 5            | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 | Total                   | Spanor con contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the con |      |                         | 100     | -    | 25   | É                | -0            | 110  | 2        |                                         | 8     | 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                         | Other continuents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                         |         |      |      | Poly of the line |               |      |          | · 2 · · · · · · · · · · · · · · · · · · |       | 9-x 8 p   Ro |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                         | 0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                         |         |      |      |                  | 1             |      |          | 21                                      |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | E 0 0                   | Baron Silico<br>(B) SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                         | 1       |      | 91   |                  | 0             | 3    | c        | R                                       | 0     | 31           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | mulian<br>mulion        | 0.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                         |         |      |      | -18              | - 100         |      |          | 18                                      |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A, 17e)                         | equivalents per mil     | N.<br>trote<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                         |         |      |      | 0.1              | 3 -           |      |          | 18                                      |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ANNY (RT                        | DAINE &                 | Chio<br>ride<br>(Ci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                         | 200     | 0 0  | 2/2  | 6.0              | 010           | 5.2  | 5.9      | 9 K                                     | 01    | 6            | 9 7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MPASP C                         | ē                       | Sur<br>fare<br>(SO <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                         |         |      |      |                  | 2 2           |      |          | 0 10                                    |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PIP RIVER MEAN CAMMY (RTA. 17+) | streutra                | Bicar bonate (HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                         | 2 25    | ale: | 2 16 | 2 70             | 3.15          | 135  | 156      | 36                                      | 510   | 16.8         | 2 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 1 |
| 4                               | Mineral constituents in | Corban-<br>(CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                         | 38      | 0.0  | 0.00 | 0110             | 0.00          | 975  | 010<br>H | 000                                     | G. 6  | 0.30         | s 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | 2                       | Potos<br>8:cm<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                         |         |      |      | 5.0              | 7.0           |      |          | F                                       |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                         | Sodium Potos<br>(Na) sium<br>(K.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                         | 2 3     | 86.  | 2/3  | **               | 38            | 1.33 | F -      | 800                                     | 11.15 | 20.0         | o F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                         | adgne<br>ergm<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                         |         |      |      | 110              | 100           |      |          | B. 3                                    |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                         | Colcium Magne<br>(Ca) sium<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                         | 1 5,318 | 340  | 1.64 | 8 2              | 24            | 1.68 | E.E.     | 18                                      | 1.9   | 8            | 1 768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                 |                         | T a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                         | 7.7     | 4.8  | 7.0  | 1.0              | 4.8           | 7.9  | 60       | 1.                                      | 7.    | 7            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 | Specifie                | organ 76591 at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                         | 5%      | 218  | 556  | 301              | į             | 235  | 192      | 2                                       | 41    | 116          | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                               |                         | os %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | pun                     | 82      | ž.   | é    | F                | æ             | 28   | 5        | 95                                      | 48    | ь            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 |                         | Disco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Snowte                  | 9. 1    | e. 6 | 0.0  | 0 -              | 0 -           | 7 3  | 45<br>45 | 1.8                                     | 9.9   |              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 | Ī                       | Temp<br>to of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | To pa                   | 3       | 9    | S    | 9                | 2             | 48   | ř        | Ž                                       | g,    | 3            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 |                         | Discharge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Mot Sampled - Snowbound | 8       | 139  | 9-   | ş                | 40            | 0    | 5.5      | #<br> }                                 |       | ĸ.           | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 |                         | ond time<br>sompled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.61 | ÷                       | 2/4     | 1405 | 1700 | 1,77             | h, là<br>1600 | 300  | 8 / FE   | 2 6                                     | *1/01 | 11 12        | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of

And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

PENTRAL, VALLEY REGION (NO. . )

|                                   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _    | -                          | _                          |                |                    |                    |         |      |       |                                 |             |       |        |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------|----------------------------|----------------|--------------------|--------------------|---------|------|-------|---------------------------------|-------------|-------|--------|--|--|
|                                   | Anolyzed<br>by i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8080 |                            |                            |                |                    |                    |         |      |       |                                 |             |       |        |  |  |
|                                   | Hardness bud Caliform Analyzed as CaCO <sub>3</sub> 11y MPN/mi by i Catolin Dpm by in |      | Median                     |                            | Maximum<br>130 | Minimum<br>on nits |                    |         |      |       |                                 |             |       |        |  |  |
|                                   | - pid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                            |                            | S.             | 3                  | 0                  | 15      |      | -     | -10                             |             | 5     | g.     |  |  |
| Г                                 | S C C S C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                            |                            | С              | C.                 | С                  | С       | С    | С     | С                               |             | С     | 0      |  |  |
|                                   | Hardness<br>os CaCOs<br>Tatol N C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                            |                            | ď.             | 7                  | 5.5                | 53      | 4    | 95    | 95                              |             | 45    | 69     |  |  |
|                                   | Sod -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                            |                            | 70             | 2                  | 7.                 | 16      | 35   | 2     | 7                               |             | 3     | 30     |  |  |
| Total                             | solved sod - ships solved solved in ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                            |                            | 100            | 133                | 104                | 4<br>60 | 115  | 116   | 117                             |             | 118   | 177°   |  |  |
|                                   | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                            |                            |                |                    | Fe 0.09 POb 0.10 d |         |      |       | PO <sub>0, 0.15</sub> A1 0.01 d |             |       |        |  |  |
|                                   | Silica<br>(SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -    |                            |                            |                |                    | 20                 |         |      |       | -8-                             |             |       |        |  |  |
| ug.                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                            |                            | c              |                    |                    | 21      | 3    | []    | 0.                              |             | c.    | 6.9    |  |  |
| per milion                        | Fluo-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ļ    |                            |                            |                |                    | 6 C                |         |      |       | 0 0                             |             |       |        |  |  |
| ports per million                 | trote<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                            |                            |                |                    | 4.0                |         |      |       | 0.05                            |             | _     |        |  |  |
| neral canstituents in equivalents | Chlo-<br>ride<br>(Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                            |                            | 0.10           | 3.5                | 3.5                | 1.5     | 0.1  | 0.13  | 0.13                            |             | 0.13  | 5.5    |  |  |
| ē                                 | Sul -<br>fots<br>(504)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                            |                            |                |                    | 8.4                |         |      |       | 0.00                            |             |       |        |  |  |
| stituents                         | Bicar-<br>bonate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                            |                            | 2 2            | 1.28               | 8 1.3              | 1.03    | 1.49 | 1.46  | 8                               |             | 8     | 1.48   |  |  |
| Mineral canstituents              | Potas- Carbon-<br>sum ote<br>(K) (CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                            |                            | c   6          | :15                | 0.0                | 0.0     | 0 0  | 0.00  | 0.0                             |             | 0.0   | 0.0    |  |  |
| M                                 | Potos-<br>Sium<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                            |                            |                |                    | 1.6                |         |      |       | 0.06                            |             |       |        |  |  |
|                                   | Sadium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                            |                            | 8.6            | 7.9                | 8.2                | 7.4     | 0.61 | 0.52  | 0.52                            |             | 0.52  | 0.52   |  |  |
|                                   | Mogne-<br>Sum<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                            |                            |                |                    | 6.4                |         |      |       | 6.9                             |             |       |        |  |  |
|                                   | (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                            |                            | 1.16           | 1.089              | 23                 | 0.86    | 1.12 | 1.12  | 0.55                            |             | 1,08  | 1.24   |  |  |
|                                   | e H o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                            |                            | 2.5            | 9.7                | 7.5                | 7:1     | 7.7  | 8.1   | 0,                              |             | 7.5   | 7.5    |  |  |
|                                   | Specific<br>conductance<br>(micramhos<br>of 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                            |                            | 150            | 143                | 138                | 113     | 153  | 155   | 154                             |             | 157   | 169    |  |  |
|                                   | wad<br>an<br>%Sat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | saible                     | asible                     | 9              | 86                 | 16                 | 5       | 76   | 8     | 8                               |             | 66    | 8      |  |  |
|                                   | Dissolved<br>oxygen<br>ppm %Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | Inacce                     | Inaccè                     | 4.11           | 10.3               | 10.0               | 10.1    | 8.8  | 6     | 0.6                             |             | 10.9  | 11.9   |  |  |
|                                   | Te or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | P                          | - pe                       | 9              | 999                | 55                 | - 5     | 38   | 99    | 59                              | pe          | 169   | 193    |  |  |
|                                   | Dischorge Temp Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Not Sampled - Inaccessible | Not Sampled - Inaccessible | 1,960          | b, Tho             | 2,870              | 2,680   | 780  | 3,780 | 10,460                          | Not Sampled | 1,080 | η, 030 |  |  |
|                                   | Dote<br>and time<br>sampled<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1959 |                            | 5.71                       | 3/5            | 1315               | 5/5                | 6/3     | 7/16 | 8/12  | 9/6                             | 10/         | 11/11 | 12/9   |  |  |

a Field pH.

b Laboratory pH.

c. Sum of calcum and magnessum in epin. del. copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Cr -3), reparted here as \$\frac{0}{0.00}\$ except as shown. d Iran (Fe), aluminum (Al), arranic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Cr -3), reparted here as \$\frac{0}{0.00}\$ except as shown. c Sum of calcium and magnesium in epm

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents. g Gravimetric determination.

h Annal melin and reap, respectively, Calculated from analyses of diplicate monthly samples made by California Department of Public Health, Division of Laboranuss, or United States Department of Annal analyses and by United States Calculated Stat

ANALYSES OF SURFACE WATER CPRCRAL VALLEY REGION (NO. 5) TABLE B-4

|                                   |                | Andigzed<br>by 1                            |                     | 8084 |             |             |             |             |                   |        |              |            |                    |       |      |          |
|-----------------------------------|----------------|---------------------------------------------|---------------------|------|-------------|-------------|-------------|-------------|-------------------|--------|--------------|------------|--------------------|-------|------|----------|
|                                   |                | Herdness ed - Colfernia                     |                     |      | Perdian.    | Paritmen.   | Wintens     | 8           |                   |        |              |            |                    |       |      |          |
|                                   | ,              | 20.00                                       |                     |      |             |             |             |             | Ci.               |        |              |            | 3                  |       |      |          |
|                                   |                | 0000                                        | 200                 |      |             |             |             |             | -                 | n      | -            |            |                    |       |      |          |
|                                   |                | New O                                       | 000                 |      |             | 3           | 2           | 10          | 5                 | 1      | -            | \$         | ξ                  | 3     | 3    | <u>0</u> |
|                                   |                | 1005                                        |                     |      |             | 10          | 5           | 6           | 1,                | 3      | ×            | 8.         | 9                  | N.    | A.C. | 4        |
|                                   | Total          | 00 00 00 00 00 00 00 00 00 00 00 00 00      | 60                  |      |             | 8           | 3           | 8           | 3                 |        | 1117         | 2          | 3344               | =     |      | *6       |
|                                   |                | Other constituents                          |                     |      |             |             |             |             | Pr 0.0% 81 = 16 d |        |              |            | 70 m 7h a 3 m 7h d |       |      | E C K    |
| 1                                 |                | 0000                                        | 12010               |      |             | x.          | 4           | =           |                   |        | 9            | 9          | 9                  |       | of.  | 4        |
|                                   | 100            | Baron Silica                                | (0)                 |      |             | 0.0         | 0.1         | 0.0         | 0.1               | 0      | 0.0          | 3          | 3                  | 31    | 71   | čl       |
| million                           | Der m          |                                             |                     |      |             | 0.0         | 0.0         | 0.0         | 0.0               |        | 0.0          | 0.0        | 0 0                | 0.0   | 1    | 38       |
| and white and the state of milion | e ourvoiente o |                                             |                     |      |             | 2/8         | 9.0         | 0.3         | 9.0               |        | 511.5        | 800        | 4.0                | 2 K   |      | *        |
| 00                                | GAING          | Chlo-                                       | (C)                 |      |             | 9:0         | 0.08        | 0.03        | 0.03              | 0.0    | 0.0          | 40         | 0.2                | 1.5   |      | şê:      |
| N.W.                              | 0)             | Sol<br>900                                  | (50,                |      |             | 0.00        | 3.8         | 0.03        | 0.0               |        | 0.0          | 6.0        | 5.0                | 0.0   | 31   | 0.00     |
|                                   | constituents   | Bicar                                       | (MCO <sub>3</sub> ) |      |             | 69          | 65          | 63          | 1.18              | 1.28   | 8 🖺          | 8 12       | 811                | KE    |      | £[       |
|                                   | Mineral car    | Carbon -                                    | (CO3)               |      |             | 0.0         | 0.0         | 0.0         | 0.0               | 0.0    | 0.0          | 0.0        | 0.0                | 0.0   | 0.0  | 0.00     |
|                                   | Ž,             | Potos-                                      | 3                   |      |             | 0.00        | 30.0        | 2.4<br>0.06 | 2.4               |        | 0.10         | 6.17       | 4.4                | 3.1   | -#   | 4.10     |
| Ì                                 |                | Sodica                                      |                     |      |             | 5.2         | 6.6<br>85.0 | 8.8         | 6.8               | 8.4    | 0.0          | 11<br>0.48 | 3.52               | 9.4   | 1    | 10       |
|                                   |                | ecop.                                       | (946)               |      |             | 6.5<br>0.37 | 5.4<br>0.44 | 96.0        | 0.36              |        | 9.50         | 5.5        | 2.5                | 0.39  | 1    | 2/2      |
|                                   |                | Calcium                                     |                     |      |             | 0.55        | 8.6         | 0.0         | 0.60              | 1.30   | 1.45<br>0.70 | 0.75       | 15                 | 13    | +    | 0.57     |
| -                                 |                | e<br>I<br>G                                 |                     |      |             | 7.6         | 6.3         | 7:3         | 8.1               | 7.9    | 8.1          | 7.7        | 9.0                | 7.9   | 5.7  | ~<br> -  |
|                                   |                | conductonce pH<br>(micromhos pH<br>or 25°C) |                     |      |             | 112         | 112         | 101         | 11.6              | 131    | 1,18         | 162        | 172                | 133   |      | 8        |
|                                   |                | 9 49                                        | % 501               |      |             | 48          | 40          | á           | 8                 | 8      | 22           | 82         | F                  |       |      | 5        |
|                                   |                | Dissolved                                   | mdd                 |      |             | 12.2        | 4.6         | 11.0        | 9.9               | 5.5    | 7.3          | E          | 4.8                | 2     |      | 2        |
|                                   |                | de o c                                      |                     |      | pald        | 400         | 2           | 5           | 57                | 3      | 18           | ž          |                    |       |      |          |
|                                   |                | Osecharge Yemp                              |                     |      | Not Sampled | 32          | 22          | 6.6         | 8                 | 104    | 3.5          | 162        | 97                 |       | 1    | -        |
|                                   |                | ond 1:me                                    | P S T               | 1969 | 1/          | 06.1        | 3/8         | 9711        | 1215              | Cities | 7/16         | 813        | 9/10               | 10/15 | 1111 | 1.       |

#### ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE 3-4

|                                              | -                                                                    |                     |       |       |       |        |               |                                              |              |              |               |                  |       |      |              |  |
|----------------------------------------------|----------------------------------------------------------------------|---------------------|-------|-------|-------|--------|---------------|----------------------------------------------|--------------|--------------|---------------|------------------|-------|------|--------------|--|
|                                              | Hordness bud Courtermh Anolyzed os CoCO <sub>3</sub> 11y MPN/mi by i |                     | \$55. |       |       |        |               |                                              |              |              |               |                  |       |      |              |  |
|                                              | MPN/mi                                                               |                     |       | at at | T     | inimum |               |                                              |              |              |               |                  |       |      |              |  |
| 3                                            | p A                                                                  |                     |       |       | -     | m      | 2             | ¢                                            | g            | 7.           |               | er,              | -     | _22  | C1           |  |
|                                              | 100°                                                                 | bba                 |       | 33    | t.    | 11     | Y.            | 10                                           | -27          |              | 80            | 0.7              | 9     | er.  |              |  |
|                                              |                                                                      | bbm ppm             |       | 20    | -1    | ę.     | 9,1           | å                                            | 977          | 377          | 17.0          | 11.8             | 162   | 150  | 153          |  |
|                                              | sod -                                                                |                     |       | 61    | 7     | -      | 5             | - 12                                         | 11           | 12           | 13            | #                | 13    | 17   | 16           |  |
| Totol                                        | solved<br>solved<br>solos                                            |                     |       | 158e  | 114,  | Į      | 8.            | 1781                                         | 181          | 182e         | 179°          | 1851             | 1916  | 182° | 191e         |  |
|                                              | Other constituents                                                   |                     |       |       |       |        | Tot. Alk. 171 | Tot. Alv. 172<br>Al 0.10<br>POL 0.00 an 0.01 |              |              | Tot. Alk. 178 | PO1 0.05 Al 0.08 |       |      |              |  |
|                                              | Silico                                                               | 1                   |       |       |       |        |               | 21                                           |              |              |               | 119              |       |      | -            |  |
| lion                                         | Boron Silico                                                         |                     |       |       | 2     | 9      | 3             | 7                                            | 0,2          | °            | 5             | 0,2              | 0.2   | 引    | 0            |  |
| million<br>per mil                           | Fluo-                                                                | Ē                   |       |       |       |        |               | 0000                                         |              |              |               | 0.2              |       |      |              |  |
| ports per million<br>equivolents per million | - N<br>- Trote                                                       |                     |       |       |       |        |               | 0.0                                          |              |              |               | 0.2              |       |      |              |  |
| e quivo                                      | Chio-                                                                | (3)                 |       | 118   | 0.23  | 8 6    | 피를            | 6.8                                          | 3,5          | 0.11<br>0.11 | 5.0<br>11.0   | 8*17             | 10    | 5.2  | 7.8          |  |
| č                                            | Sul -                                                                |                     |       |       |       |        |               | 18<br>0,37                                   |              |              |               | 1T 0°53          |       |      |              |  |
| stituent                                     | Brcor-<br>bonote                                                     | (HCO <sub>3</sub> ) |       | M2    | 7.02  | 8 2    | 2,66          | 160                                          | 176          | 2,90         | 16lu<br>2,69  | 2*90             | 3,03  | 2,93 | 3,06         |  |
| Mineral constituents                         | Corbon-                                                              |                     |       | 200   | 0000  | 0000   | 02.20         | 0.20                                         | 0.00         | 0.0          | 7             | 0.0              | 0.0   | 0 0  | 0.0          |  |
| Min                                          | Potos-                                                               | Z.                  |       |       |       |        |               | 0.0                                          |              |              |               | 2.0<br>0.05      |       |      |              |  |
|                                              | Sodium<br>(No)                                                       |                     |       | 3,71  | P.7   | 1.00   | 510           | 0,0                                          | 0,38         | 770          | 0.00          | 9.0              | 0,18  | 10   | 13           |  |
|                                              | Mogne-                                                               | (bw)                |       |       |       |        |               | 25.02                                        |              |              |               | 13               |       |      |              |  |
|                                              | Colcium<br>(Co)                                                      |                     |       |       | 3,120 | 3,670  | 3,16          | 0,00                                         | 2.960        | 2,920        | 2,96          | 37               | 3.24  | 3,00 | 3.06         |  |
|                                              | , H                                                                  |                     |       | 7.3   | 0,    | 7.0    | 7*3           | 8,5                                          | 7.9          | 7.2          | 7.7           | 7.9              | 7.9   | 7.9  | 7.1          |  |
| Spacefic                                     | (micromhos<br>on 25°C)                                               |                     |       | 263   | ć.    | 7      | 336           | 702                                          | 305          | 303          | 297           | 303              | 3118  | 203  | 318          |  |
|                                              |                                                                      | 70.507              |       | 57    | ž     | 115    | Į.            | 121                                          | 86           | 15           | 36            | 100              | 8     | 26   | 80           |  |
|                                              | Disso                                                                | E DDW               |       | 0.01  | 10    | 11.2   | 10,3          | 12.6                                         | O* CT        | 9*3          | ri<br>,       | 6*6              | 5*5   | 10.3 | 10.3         |  |
|                                              | Te of of or                                                          |                     |       | 22    | 18    | i      | 0.            | 83                                           | 8            | 23           | 75            | 29               | 28    | 15   | 1-           |  |
|                                              | Dischorge Temp                                                       |                     |       | 10    | el    | 걺      | 53            | 82                                           | 63           | 25           | 33            | 28               | Ħ     | 2    | 12           |  |
|                                              | ond time<br>sompled                                                  |                     |       | 3/6   | %     | 3/9    | 1,/1          | 5/11                                         | 6/11<br>0915 | 0070         | 1020          | 9/19             | 10/11 | 1700 | 12/L<br>0955 |  |

b Loborotory pH.

a Field pH

suff of tocicum one anginatum in them. (G.\*5), reported (CD), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (G.\*5), reported here as  $\frac{0.0}{0.00}$  except as shown. c Sum of colcium and magnesium in apm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

Grovimetric determination.

Amen inclination and rough, respectively. Celculated from analyses of districter monthly samples mode by California Department of Poblic Mealth, Duration of Laboratories, or United States Fabric Health Sames (USPHS), San Beneadino County Flood Cannol Durated States California of States and States (Sames (MOD), Last Aspects and Post and Modern and Recorded (MOSPHS), United States Fabric Health Sames (USPHS), San Beneadino County Flood Cannol Durated (Sames of Sames (MOD), Last Aspects Department of Modern and Recorded (MOSPHS), Carry of Last Aspects Department of Sames (MOSPHS), Carry of Last Aspects Department of Sames (MOSPHS), Carry of Last Aspects Department of Sames (MOSPHS), Carry of Last Aspects Department of Sames (MOSPHS), Carry of Last Aspects (MOSPHS), Terminal Laboratories, the CTILL for California Department of Mosphes (MOSPHS), Terminal Laboratories, the CTILL for California Department of Mosphes (MOSPHS), Carry of Last Aspects (MOSPHS), Terminal Laboratories, the CTILL for California Department of Mosphes (MOSPHS), Terminal Laboratories, the CTILL for California Department of Mosphes (MOSPHS), Terminal Laboratories, the CTILL for California Department of Mosphes (MOSPHS), Terminal Laboratories, the CTILL for California Department of Mosphes (MOSPHS), Terminal Laboratories, the CTILL for California Department of Mosphes (MOSPHS), Terminal Laboratories, the CTILL for California Department of Mosphes (MOSPHS), Terminal Laboratories, the CTILL for California Department of Mosphes (MOSPHS), Terminal Laboratories, the CTILL for California Department of Mosphes (MOSPHS), Terminal Laboratories, the CTILL for California Department of Mosphes (MOSPHS), Terminal Laboratories, the CTILL for California Department of MOSPHS (MOSPHS), Terminal Laboratories, the CTILL for CALIfornia Department of MOSPHS (MOSPHS), Terminal Laboratories, the CTILL for CALIfornia Department of MOSPHS (MOSPHS), Terminal Laboratories, the CTILL for CALIfornia Department of MOSPHS (MOSPHS), Terminal Laboratories, the CTILL for CALIforn

TABLE B-4 ANALYSES OF SURFACE WATER

THIS E VILLEY REGION (NT. 1)

|                              |                                           | 70.000                                                        |                |       |
|------------------------------|-------------------------------------------|---------------------------------------------------------------|----------------|-------|
|                              |                                           |                                                               |                |       |
|                              | ,                                         | 3                                                             |                |       |
|                              |                                           | 20 00 10 10 10 10 10 10 10 10 10 10 10 10                     |                |       |
|                              |                                           | 8 1 6                                                         |                |       |
|                              | - 1                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       |                |       |
|                              | 10,0                                      | 3 2 4                                                         | 0.2   1   1    |       |
|                              |                                           | sheet tractions                                               | V (1 s)        |       |
|                              |                                           | 0.0                                                           |                |       |
|                              | Trust                                     | B 020                                                         |                |       |
| -                            | Per mi                                    | 90.0                                                          |                |       |
| ÷                            | ports per million equivolents per million | Note<br>Note<br>Note                                          |                |       |
| / 1111                       | 90                                        | Chi<br>ride<br>(C :                                           |                |       |
| TOUR                         | ę                                         | Sul<br>fare<br>isus                                           | rate f         |       |
| GURANK CREEK PROTRIES ( ). 1 | aloaulii.                                 | Bicar<br>bonate<br>Miles                                      | 386.           |       |
| (d.DRAM)                     | Mineral constituents                      | Carbon                                                        |                |       |
|                              | 2                                         | Potos<br>(x)                                                  | 51 A- 11 58 30 |       |
|                              |                                           | Naj.                                                          |                |       |
|                              |                                           | 26.5                                                          | # # # # # #    |       |
|                              |                                           | 000 P                                                         |                |       |
|                              |                                           | Ho                                                            | 2 .            |       |
|                              | Spelific                                  | Dissolved onductories<br>osygen (micromos)<br>ppm   Set   2.5 | 7 5 3 -        |       |
|                              |                                           | 504                                                           |                |       |
|                              |                                           | Disto                                                         |                |       |
|                              |                                           | e c                                                           | 1 3 3 5 1      |       |
|                              |                                           | Oschorge amp Ossolved ombounder                               |                | F F # |
|                              | Dota                                      | 000 1-me<br>00mpied                                           | 11650-6121     |       |

CENTRAL VALLEY REGION (No. 5)

| _                 |                         |                                                                     | -        | _                |                   |                 |      |                   |       |       |       |                                         |             |       |       |      |
|-------------------|-------------------------|---------------------------------------------------------------------|----------|------------------|-------------------|-----------------|------|-------------------|-------|-------|-------|-----------------------------------------|-------------|-------|-------|------|
|                   |                         | Anelysed<br>by 1                                                    | USGE     |                  |                   |                 |      |                   |       |       |       |                                         |             |       |       |      |
|                   |                         | Hardness bid - Conform Analysed os CoCO <sub>3</sub> hy MPN/mi by i |          | Median<br>23.    | Meximm<br>>7,000. | Minimum<br>0.62 |      |                   |       |       |       |                                         |             |       |       |      |
| ľ                 | Tor                     | - Page 1                                                            |          | 8                | m                 | 9               | 8    | 8                 | 22    | 8     | 70    |                                         | 52          | 8     | 27    |      |
|                   |                         | 8 0 N C E                                                           |          | 971              | 86                | 7               | 27   | 6                 | 5     | Ж     | 93    | 51                                      | 15          | я     | 8     | <br> |
|                   |                         | Totol                                                               |          | 187              | 18                | 172             | ıπ   | 70                | 92    | 112   | 164   | 140                                     | 8           | 8     | 127   |      |
|                   | Per                     | #04<br>- En                                                         | _        | #                | 20                | 8               | 7,   | Ж.                | 8     | 28    | \$    | 8                                       | 52          | 775   | 7     |      |
|                   | Total                   | solios<br>solios<br>mede ul                                         |          | <sup>4</sup> 604 | 197               | 424°            | 248  | 140 <sup>f</sup>  | 148°  | 332°  | 685   | 1,28 <sup>f</sup>                       | 238€        | 30fe  | 2300  |      |
|                   |                         | Other constituents                                                  |          |                  |                   |                 |      | Fe 0.36 Cu 0.05 d |       |       |       | Fe 0.06 Al 0.12<br>PO <sub>L</sub> 0.15 |             |       |       |      |
|                   |                         | (Sinca<br>(Sinca                                                    | -        |                  |                   |                 |      | 16                |       |       |       | 139                                     |             |       | -     | -    |
|                   | ion                     | Boron (B)                                                           |          | 5                | 5.0               | 0.7             | 0,2  | 0.1               | 0.1   | 0.2   | 0.2   | 0.3                                     | 0.2         | 0.1   | 0,2   |      |
| million.          | ar milli                | Fluo-<br>rids<br>(F)                                                | $\vdash$ |                  |                   |                 |      | 0.2               |       |       |       | 0,2                                     |             |       |       |      |
| ports per million | squivolents per million | troie<br>(NO <sub>3</sub> )                                         |          |                  |                   |                 |      | 0.0               |       |       |       | 2.2                                     |             |       |       |      |
| 00                | oviupa                  | Chlo-<br>ride<br>(Ci)                                               |          | 5.71             | 3.38              | 2:99            | 1.52 | 0,59              | 02.0  | 3.05  | 8.32  | 168                                     | 5.8         | 1.33  | 2.09  |      |
|                   | ē                       | Sul -<br>fore<br>(SO <sub>4</sub> )                                 |          |                  |                   |                 |      | 20<br>44.0        |       |       |       | 35                                      |             |       |       |      |
| E ted stade       | atifuents               | Bicor-<br>bonote<br>(HCO <sub>3</sub> )                             |          | 118              | 2.08              | 120             | 1.44 | 1.21              | 1.43  | 1.52  | 1:41  | 1.77                                    | 103         | 106   | 1.95  |      |
|                   | Mineral constituents    | Corbon-<br>ate<br>(CO <sub>3</sub> )                                |          | 000              | 000               | 0.00            | 0.0  | 0.00              | 0.0   | 0.0   | 0.0   | 0,0                                     | 0.00        | 0.0   | 0.0   |      |
|                   | Min                     | Potos.<br>(K)                                                       |          |                  |                   |                 |      | 2.6<br>0.07       |       |       |       | 5.8                                     |             |       |       |      |
|                   |                         | Sodium<br>(No)                                                      |          | 2.91             | 3.87              | 3.48            | 36   | 19<br>0.83        | 8.0   | 3.13  | 77.4  | 101                                     | 250<br>2.18 | 33    | 91:1  |      |
|                   |                         | Magne-<br>sum<br>(Mg)                                               |          |                  |                   |                 |      | 7.9               |       |       |       | 1,60                                    |             |       |       |      |
|                   |                         | Colcum Magne-                                                       |          | 3.74°            | 188               | 3.44            | 2.28 | 0.75              | 1.520 | 2.230 | 3.28° | 1.20                                    | 1.98°       | 1.96° | 2.540 |      |
|                   |                         | Ī                                                                   |          | 7.2              | 7.2               | 7.2             | 7.7  | 7.2               | 7.2   | 7.3   | 7.2   | 7.2                                     | 7.3         | 7.3   | 7.2   |      |
|                   | Specific                | (micromhos pH n<br>at 25°C)                                         |          | 177              | 807               | 737             | 124  | 220               | 257   | 577   | 1,190 | 169                                     | 415         | 355   | 505   |      |
|                   |                         | gen (r                                                              |          | E                | 8                 | đ               | 70   | 0.2               | 1.9   | 97    | 96    | iš.                                     | 28          | 83    | - 52  |      |
|                   |                         | Ossolved<br>oxygen<br>ppm %Saf                                      |          | 8.2              | 9.2               | 8.3             | F.9  | 6.3               | 0.9   | 7.2   | 7.0   | 8.9                                     | 7.5         | 8.5   | 0.6   |      |
| t                 | _                       |                                                                     | +        | 55               | 64                | 61              | 49   | 2                 | 2     | 22    | 62    | 8                                       |             | 92    | 9     | <br> |
|                   |                         | Orschorge Temp                                                      | Tidal    |                  |                   |                 |      |                   |       |       |       |                                         |             |       |       |      |
|                   |                         | and time<br>sampled<br>P.S.T                                        | 1959     | 1/13             | 2/10              | 3/11            | 4/3  | 5/12              | 6/10  | 1/2   | 8/10  | 9/8<br>0730                             | 10/6        | 1030  | 12/8  |      |

a Field pH.

Sum of calcium and magnessum in Apm. Hen (Fe), aluminum (AI), areanze (A2), capper (Ca), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chramium (Cr<sup>+5</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. c Sum of calcium and magnessum in epm. b Laboratory pH.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Gravimetric determination.

Amed medies and orings, respectively, Calculated from analyses of suplicate monthly samples most by Calculation Department of Poblic Health, Dustian of Laboratories, or United States Department of the International Control District Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Contro

CENTRAL VALLEY REGION (NO. 5)

|                         | Annyzed<br>by i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | acen |                |                   |          |      |       |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|-------------------|----------|------|-------|
|                         | 41. (41. Par. Horoness 8 8 Ce form Ans. pred 80. de 20.       | Herding<br>1 C | 1 Max I man       | Return 2 |      |       |
|                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                | *                 |          | 4    | 4     |
|                         | 000 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                |                   |          |      |       |
|                         | Pordiess<br>Parel In C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 1              | 3                 |          | 2    |       |
|                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 2              | 2                 | 1        | X    | 2     |
| Total                   | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 8              | 38                | *d       | 6.   | 101   |
|                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                | 70 0.04 POLO 0.00 |          |      |       |
|                         | S 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                | 18                |          |      |       |
| 100                     | Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | -              | 0                 | E        | 33   |       |
| porte per milion        | Fluo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                | 0.00              |          |      |       |
| education's per million | 100 S (5) (5) (5) (5) (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                | 000               |          |      |       |
| Danie D                 | CNIO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 0.0            | 200               | 0.12     | 2.4  | 0     |
| ē                       | 5 ul<br>fore<br>(50 <sub>a</sub> l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                | 3.4               |          |      |       |
| el-tuente               | Bicar-<br>bonote<br>(MCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 1.00           | 63                | 188      | 74   | 179   |
| Mineral constituents in | Colcum Mogne Sodum Patos, Corban Bucar (Co. 18 mm (Mg) (Mg) (Mg) (Mg) (Mg) (Mg) (Mg) (Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 90.0           | 0.0               | 0.0      | 0.   | IF.   |
| Min                     | Paros-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                | 1.5               |          |      |       |
|                         | Sodium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 6.5<br>0 2H    | 6.3               | 0.27     | 8.0  | B.7   |
|                         | Mogne<br>S con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                | 8.6<br>0.3H       |          |      |       |
|                         | (Ca)c um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | O. WHIC        | - 05.0            | 187      | -    | 1 08  |
|                         | O X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 4              | -                 | ř        | -    | 7 3   |
| -                       | onduction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | =              | 116               | 2        | 138  | 139   |
|                         | % Sot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 8              | 6                 | 3        | 10   | ь     |
|                         | Desco<br>Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 1 3            | 10.1              | 0        | 10.8 | 5.    |
|                         | Eo e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | sf 1 3         | 5.0               | 8        | 7    | 1     |
|                         | n cis, in of basoived conductoring of a cist in of ppm of 250 cit 250 ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 1 ,800         | 4,100             | 100      | 1.57 | h,560 |
|                         | * 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.69 | 191            | 4/1               | 6/12     | SE   | 100   |

of the second of the second Astrophysical for the second and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second c. Sum of colcium and magnessum in spin.

Determine: by a tron of analyzed constituents.

A service of those research or other through the result (before Department of Bolic Men). Outlies of the desires Politice in service of Service Control of the service of Service Control of the service of Service Control of the service of Service Control of the service of Service Control of Service Control of Service of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Service Control of Serv g. Grovimetric defer indition

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 4)

|                  |                        | Anolyzed<br>by i                                                            | المثأن                   |                |                  |                 |                  |            |            |                 |                 |                 |                            |                 |                            |                 |                 |
|------------------|------------------------|-----------------------------------------------------------------------------|--------------------------|----------------|------------------|-----------------|------------------|------------|------------|-----------------|-----------------|-----------------|----------------------------|-----------------|----------------------------|-----------------|-----------------|
|                  | _                      | Hordness bid - Coliform Ar<br>os CoCO <sub>3</sub> ity MPN/mi<br>Total N.C. |                          |                |                  |                 |                  |            |            |                 |                 |                 |                            |                 |                            |                 |                 |
| -                | į                      | d - Coli                                                                    |                          |                |                  | _               |                  |            |            |                 |                 |                 |                            |                 |                            |                 |                 |
| ŀ                | 2                      | N C.                                                                        |                          |                | <                |                 | С                | <b>-</b>   | 0.         | Q.              | 0.              | С               | 0                          | С               | С                          | С               | С               |
|                  |                        | Hordn<br>os Col                                                             |                          |                | 77 (5            | ç,              | 1.7              | 30         | 917        | 95              | 4               | 617             | 177                        | ž               | 77.77                      | 45              | 145             |
|                  | d.                     | rod -                                                                       |                          | 56             | 8                | 6               | 53               | œ.         | 66         | 53              | 3               | 2               | 8                          | 100             | К                          | 55              | χ.              |
|                  | Totol                  | spilos<br>spilos<br>in pom                                                  |                          | 110            | H                | 8               | 6                | 63         | 93         | 104             | 103             | 6               | 8                          | Æ               | 9                          | 16              | 6               |
|                  |                        | Other constituents                                                          |                          | Ne 0,04 % 0.11 | No. 0.03 7n 0.17 | Pe 0.03 7n 0.15 | Zn 0.105 Cu 0.03 | Zn 0.19    | 7n 0.12    | Pe 0.03 Cu 0.01 | Pe 0 03 Nu 0.03 | Pe 0 01 Zn 0 11 | Zn 0.10 Fe 0.00<br>Cu 0.00 | 7n 0.07 Fe 0.00 | 2n 0.07 Fe 0.00<br>Cu 0.00 | Pe 0.01 Zn 0.07 | Pe 0 03 Zn 0 07 |
|                  |                        | (\$10.0)                                                                    |                          | 200            | 33               | 33              | 2012             | 16         | 2          | 27              | 32              | 8               | 13                         | 8               | 8                          | 8               | 18              |
|                  | Iton                   | Boron<br>(B)                                                                |                          | 0:0            | c                | 0.1             | 0.0              |            | 0.1        | 0.0             | 0.0             | 0.0             | 0.0                        | c               | 0                          | 0.0             | 8               |
|                  | per million            | Fluo-<br>ride<br>(F)                                                        |                          | 0.2            | 0.2              | 0.0             | 0.0              |            | 0.1        | 0.0             | 0.1             | 0.0             | 0.0                        | 000             | 0.0                        | 0.0             | 0.0             |
| (STA, 12c)       | ports per<br>votents p | N:-<br>trote<br>(NO <sub>3</sub> )                                          |                          | 0.0            | 0.0              | 0.3             | 0.0              | 1.7        | 0.0        | 0.0             | 0.0             | 0.0             | 0.0                        | 0 0             | 0.0                        | 0.0             | 0.0             |
| TEND (STA        | ports pe               | Chlo-<br>ride<br>(CI)                                                       |                          | 0.11           | 0.1              | 0.11            | 3.0              | 2.0        | 0.06       | 3.0             | 3.0             | 3.8             | 3.2                        | 8.0<br>0.08     | 3.3                        | 0.00            | 0.07            |
| Ę                | E                      | Sul -<br>fote<br>(SO <sub>4</sub> )                                         |                          | 0.21           | 0.25             | 0.23            | 0.57             | 0.21       | 14         | 0.29            | 0.33            | 5.2             | 5.2                        | 0.00            | 0.08                       | 5.2             | 0.00            |
| SACRAMENTO RIVER | cometituents           | Bicor-<br>bonote<br>(HCO <sub>3</sub> )                                     |                          | 69             | 1.10             | 8.00            | 58               | 28<br>0.45 | 54<br>0.89 | 1.08            | 1.05            | 1.03            | 1.00                       | 1.02            | 1.02                       | 1.05            | 1.08            |
| SACRAM           | Minarol com            | Corbon-<br>ote<br>(CO <sub>3</sub> )                                        |                          | 0.00           | 0.0              | 0.0             | 0.00             | 0.0        | 0.0        | 0.0             | 0.0             | 0.0             | 0.0                        | 0.0             | 0.00                       | 0.0             | 0.0             |
|                  | Min                    | Potos-<br>sium<br>(K)                                                       |                          | 3.6            | 1.8              | 1.6             | 1.4              | 0.03       | 0.03       | 0.03            | 0.03            | 0.03            | 1.4                        | 1.4             | 1.9                        | 0.05            | 1.7             |
|                  |                        | Sodium<br>(No)                                                              |                          | 8.4            | 8.6              | 0.31            | 6.9              | 3.2        | 6.7        | 0.31            | 7.8             | 6.8             | 6.8                        | 6.6             | 0.31                       | 7.4             | 0.32            |
|                  |                        | Mogne-<br>sium<br>(Mg)                                                      |                          | 86             | 5.8<br>0.48      | 5.8<br>0.18     | 0.39             |            | 5.1        | 5.7             | 5.8             | 4.6             | 9.4.6                      | 0,40            | 0.33                       | 4.3             | 4.3             |
|                  |                        | Colcium<br>(Co)                                                             |                          | 0.60           | 0.60             | 0.50            | 0.55             | 0.60       | 0.50       | 13              | 12              | 12              | 0.50                       | 0.50            | 0.55                       | 0.55            | 0.55            |
|                  | 1                      | E E                                                                         |                          | 4.             | 7.2              | 6.8             | 7.0              | 6.2        | 6.9        | 6.7             | 6.9             | 6.              | 4.8                        | 7.7             | 7.8                        | 7.6             | 7.7             |
|                  | 1                      | conductance<br>(micromhos<br>of 25°C)                                       |                          | 139            | 136              | 120             | 121              | 73.2       | 118        | 136             | 134             | 125             | 118                        | 116             | 117                        | 122             | 119             |
|                  |                        | Dissolved<br>oxygen<br>ppm %Sot                                             |                          |                |                  |                 |                  |            |            |                 |                 |                 |                            |                 |                            |                 |                 |
|                  |                        | Ter Ter                                                                     | 9.                       | - 0            | 0                | 0               | 0                | 0          | 0          | 9               | 8               | 0               | 0                          | S.              | .0                         | 8               | 00              |
|                  |                        | Dischorge Temp                                                              | tverage<br>Daily<br>Mean | 11,600         | 16,000           | 24,700          | 11,360           | 65,300     | 28,500     | 8,440           | 6,790           | 5,300           | 8,980                      | 8,390           | 8,160                      | 8,500           | 0496            |
|                  |                        | Dote<br>ond time<br>sompled<br>P.S.T                                        | 1959                     | 1/1-11         | 1/12-25          | 1/26-31         | 2/1-15           | 2/16       | 2/17-28    | 3/1-15          | 3/16-31         | η/1-16          | 4/17-30                    | 5/1-16          | 5/18-31                    | 6/1-12          | 6/13-30         |

b Loborotory pH. o Field off

Sum of colcium and magnesium in apm.

Sum of calcium and magnesium in spm. Iron (Fe), oluminum (A1), assanic (A2), capper (Cu), lead (Pb), manganesa (Mn), zinc (Zn), and hexavalent chramium (Cr<sup>+6</sup>), reparted here as  $\frac{6.0}{0.0}$  except as shawn.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

h Amal median and reapt, respectively. Calculated from analyses of deplicate monthly samples made by California Department of Poblic Health, Division of Leboratories, or United States Public Health States Department of the Internet of American Charles States Constituted States Calculated States Calc

CPRIMAL VALLEY SEGIOR (NO. 1)

|                                              |                         | Antigzed<br>by t                                                       |     |         |       |            |          |            |        |          |      |       |             |                                         |       |        |      |
|----------------------------------------------|-------------------------|------------------------------------------------------------------------|-----|---------|-------|------------|----------|------------|--------|----------|------|-------|-------------|-----------------------------------------|-------|--------|------|
|                                              | 3                       | Mordness and Coform? Analyzed os CaCCs 17 Mary 194 May 194 Coform pay. |     |         |       |            |          |            |        |          |      |       |             |                                         |       |        |      |
|                                              |                         | Mordness<br>oe CeCC <sub>3</sub><br>7010 NC                            |     |         |       |            |          |            |        |          |      |       |             |                                         |       |        |      |
|                                              |                         | 1010<br>00 0 mgg                                                       |     |         |       |            |          |            |        |          |      |       |             |                                         | -     |        |      |
|                                              | 9                       | 505                                                                    |     |         | 1     | Н          |          |            |        |          |      |       | E,          |                                         | ×     | 0      |      |
|                                              | Tote                    | 401460 800<br>80108 800<br>10 DBM                                      |     |         | -     | *          |          | 9          |        |          |      |       |             | 7                                       | 8     | 4      |      |
|                                              |                         | Other constituents                                                     |     |         | 7 5 7 | N 0 4 1 70 |          | Fr (10 mm) |        |          | 11   | 7     |             | Pe n 0.36                               | 1     | 10     |      |
|                                              |                         | S11.Co<br>(S.O <sub>2</sub> )                                          |     |         | 13    | : [3       |          |            | ul     | Л        | 1    | 4     | H           | J                                       |       | -      |      |
|                                              | 101                     | 80rom 8<br>(8)                                                         |     |         |       |            | _        | î          |        |          | 1    |       | 3           | 1                                       | 2     |        |      |
| Pat 1                                        | per mill                | F100-                                                                  |     | al"     | 1     | k          | 1.00     | 10         | 10     |          | 10   | 100   | 10          | 1                                       | 1     | -18    | -10  |
| SACRAMINED RIVER AT BEID (FILE, 19 - not ned | equivolents per million | Note<br>(NOs)                                                          |     | :F      | 200   | 8 6        | 200      | 10.0       | 8 000  | -        | -  S | 1 1 2 | 3 6.        | 1 1 0                                   | F     | -13    | - 0  |
| Compa.                                       | 04.00                   | Chio                                                                   |     | 1       | . 0   | 2.0        | 200      | 8 8        | 110    | Ale ale  | 7. 4 | a 20  | 2.0         | 3.2                                     | :[    | 36     | 16   |
| AT BPTICE                                    | u 1                     | Sul-<br>fore<br>(SO <sub>4</sub> )                                     |     | 1F      | 3.2   | 9.0        | 7.13     | 0.28       | 10 K   | 7.0      | 0.21 | -7. C | 5.6         | 100                                     | 0.00  | - 6    | : F  |
| O RIVER                                      | atifuenti.              | Bicor-<br>bonote<br>(HCO <sub>3</sub> )                                |     | -14     | 77    | -2         | 200      | 191        | 88     | 2 de C   | 1 10 | 8 2   | 17          | 1 1                                     | 17.21 | 2 18   | 1    |
| ACRAMPIN                                     | Mineral constituents    | Corbon-<br>ote<br>(CU <sub>3</sub> )                                   |     | 16      | 1     | 3          | 0.00     | 0.0        | 8.0    | D 0      | 8    | 1800  | 00 0        | 8                                       | 0.00  | 800    | 7    |
| or .                                         | Min                     | Potos-<br>(x)                                                          |     | 1.4     | 1     | 0.00       | 0.00     | 77         | 200    | 1 Co. 10 | 18   | 0.03  | 0 0         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 100   | 25.0   | -8   |
|                                              |                         | Sodium<br>(No)                                                         |     | 7.2     | 7.0   |            | 6.9      | 9.35       | 7.0    | 6.1      | 7.8  | 5.0   | 2.0<br>AF 0 | 0 0 0                                   | 7 10  | 700    | -50  |
|                                              |                         | Mogne<br>e.um<br>(Mg)                                                  |     | 19      | 36    | , K        | 100      | 1          | A      | 3.6      | - 5  | 140   | -5          | 0                                       | -10   | Į.     | 15   |
|                                              |                         | Coleum<br>(Co)                                                         |     | 10      | al-   | 2          | 10.0     | R          | 1      | 19       | 1100 | = 100 |             | 11                                      | 1     | 5.64   | -    |
|                                              |                         |                                                                        |     | -       | 7.7   | 7.2        | -7       | -          | CL.    | ;_       | H    | Ĵ.    |             |                                         | -     |        |      |
|                                              | Specific                | conductance pH (m.cromboe of 25°C)                                     |     | ĩ       | 111   | 11.        | -7       | _          | 2      | Š        | À    | 1     | -           | -7                                      | 1.    | 3      | 3    |
|                                              |                         | Dissolved<br>Oxygen<br>ppm %So                                         |     |         |       |            |          |            |        |          |      |       |             |                                         |       |        |      |
|                                              |                         | E0 .                                                                   |     |         |       |            |          |            |        |          |      |       |             |                                         |       |        | 0    |
|                                              |                         | Dischorge Yemp                                                         |     | -       | 11    | 9          | - 1, koo | 10.100     | 7.100  | N-Coo    | - 1  | 10    | 30          | 4                                       | 1     | -      | 0.4. |
|                                              |                         | nond time<br>sompled<br>P S T                                          | 183 | 71,4,47 | u-yu. | 10.10      |          | Street,    | 1.1100 | 1        | Ĩ    |       |             |                                         | 0.000 | th-One | 16-  |

F . H

A A second segment of the first of the end of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first o

CENTRAL VALLEY REGION (NO. 5)

ANALYSES OF SURFACE WATER

|                                              | Anolyzad<br>by i                                      |                            | USGS |               |                   |                |       |            |  |
|----------------------------------------------|-------------------------------------------------------|----------------------------|------|---------------|-------------------|----------------|-------|------------|--|
|                                              | Hordness bid- Coliformh Analyzad                      |                            |      | Median<br>23. | Maximum<br>62.    | Minimum<br>2.3 |       |            |  |
| ,                                            | 1 p c                                                 | E dd u                     |      | ٥.            |                   | C.             | 00    | 12         |  |
|                                              | 0000                                                  | Total N.C.<br>ppm ppm      |      | 0             | 0                 | 0              | С     | С          |  |
|                                              | Hord<br>os C                                          | Total                      |      | 9             | 96                | 9              | 8     | 199        |  |
|                                              | Per-                                                  | Ē                          |      | 33            | 51                | 2              | 56    | 80         |  |
| I dig                                        | Solved Sod -                                          | in ppm                     |      | 93.           | 104               | 1000           | 109   | 1150       |  |
|                                              |                                                       | Other constituents         |      |               | Pe 0.01 PO4 0.5 d |                |       |            |  |
|                                              | S. I.C.                                               | (20.5)                     |      |               | 8                 |                |       |            |  |
| 100                                          | Boron                                                 | (B) (S) (B)                |      | 0.0           | 0.0               | 0.1            | 0.0   | 6.1        |  |
| million                                      | -001                                                  | (F)                        |      |               | 0.0               |                |       |            |  |
| arol constituents in equivolents not million | N - N                                                 | (NO <sub>3</sub> )         |      |               | 0.0               |                |       |            |  |
| a lo                                         | Chio-                                                 | (CC)                       |      | 9.0           | 3.5               | 5.5            | 5.5   | 6.13       |  |
| =                                            | - Ins                                                 | fata<br>(SO <sub>4</sub> ) |      |               | 0.23              |                |       |            |  |
| stituents                                    | Bicar-                                                | (HCO <sub>3</sub> )        |      | 64<br>1.05    | 1.15              | 1.21           | 1.41  | 84<br>1.38 |  |
| Mineral constituents                         | Carban-                                               | (K) (CO <sub>3</sub> )     |      | 0.0           | 0.00              | 0.00           | 0.00  | 0.0        |  |
| Min                                          | Potos-                                                | (×)                        |      |               | 2.2               |                |       |            |  |
|                                              | Sodium                                                | (NO)                       |      | 6.2           | 7.4               | 8.6            | 9.6   | 9.7        |  |
|                                              | Magne                                                 | (Mg)                       |      |               | 5.1               |                |       |            |  |
|                                              | Calcium                                               | (Co) sum<br>(Mg)           |      | 0.9           | 0.70              | 1.20           | 1.20  | 1.28       |  |
|                                              |                                                       |                            |      | 7.10          | 7.7               | 7.40           | 7.5ª  | 7.         |  |
|                                              | Specific                                              | at 25°C                    |      | 117           | 127               | 140            | 153   | 157        |  |
|                                              | D 0 4                                                 | % Sot                      |      | 6             | 36                |                | %     | %          |  |
|                                              | Disso                                                 | mdd                        |      | 6.3           | 9.6               |                | 10.2  | 10.7       |  |
|                                              | Temp<br>D off                                         |                            |      | 59            | 8                 | 63             | 25    | 53         |  |
|                                              | C scharge Temp Dissolved conductance pH (micrombos pH |                            |      | 10,200        | 6,220             | 5,010          | 4,380 | 4,080      |  |
| -                                            | 000 ame                                               |                            | 1959 | 8/11          | 9/8               | 10/13          | 11/10 | 12/2       |  |

b Laboratory pH

c sum of colcum and impression in repin decided (Pb), managenese (Idn), and (Ibn), and herevalent chromom (Cr\*5), reported here as 0.00 except as shown. c. Sum of colcium and magnessium in epm

e Derived from conductivity vs TDS curves.

1 Determined by addition of analyzed constituents. 9 Gravimetric determination

h Annal malan and mags, reservinely. Calculated from end sex of depircue monthly samples made by Caldonia Department of Poblic Health, Durston of Laboratories, or Dursed Stores Pools Health, Service,
Marcol consistent of the Stores Consistent Control Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Consistent Co

ANALYSES OF SURFACE WATER W.P. L. V. LLY . EGI M (NO. TABLE B-4

|              | 3                                        |                       |     |       |       |         |      |         |       |       |      |     |       |     |     |
|--------------|------------------------------------------|-----------------------|-----|-------|-------|---------|------|---------|-------|-------|------|-----|-------|-----|-----|
|              | os CoCOs promised by 1                   | 11                    |     |       |       |         |      |         |       |       |      |     |       |     |     |
|              | Ph/m                                     |                       |     |       |       |         |      |         |       |       |      |     |       |     |     |
| 1            | 332                                      | -                     |     |       |       |         |      |         |       |       |      |     |       |     |     |
|              | 00 V                                     |                       | à   |       |       |         |      |         |       |       |      |     |       |     |     |
|              |                                          |                       |     | Ā     |       | ×       |      |         | 2     | 2     |      |     |       |     | 7   |
| d            | 1505                                     |                       |     | 0     | 5     |         | -    |         |       |       |      | ŀ   | 1     |     |     |
| Totel        | 80:00 c                                  | Ÿ                     |     | 907   | -     |         | ¥    | 2       | 3     | 3     | 1,   | 1   | 3     | N   | 0   |
|              | Other constituents                       | 3                     | 200 | 177   | 200   |         | 200  | 1       | 1     | 277   | . 0  |     | 0. 4  | 1   | 1   |
|              | (SiO <sub>2</sub> )                      | a                     |     | al    |       | 8       |      | ú       | d     | H     | 79   | 9   | 4     | 3   | d   |
| lion         | 6                                        | 9                     | 9   | 3     | -:    |         | 3    | d       |       | 1     |      | -3( | -     |     | 4   |
| per million  | F 140-                                   | 35                    | 16  | 北     | 塘     | 1.      | al:  | 1       | 1     | 100   | 1/8  |     | 10.0  | 0   | *   |
| voients p    | frote<br>(NO <sub>5</sub> )              | 7.                    | 1   | 1     | 1     | -13     | 1    | 1       | -13   | :     | 146  | 7   | .[.   |     | 18  |
| etreioviupe  | Chio-                                    | 35:                   |     | 0.17  | 113   | 1       | 12   | F       | -(;   |       | 18   | 1   |       | :   | 1.5 |
| e i          | 101 - 101 (502)                          | 34.                   | 1.  |       | · la  |         | 1    |         | 15    | 8.1.  | 37-  |     | JE    | 1.  | 46  |
| constituents | Bicar -<br>bonate<br>(HCO <sub>3</sub> ) | 1                     | +   | -13   |       | 39.     |      | J.      | a F   | 1.    | 1:   | F   |       |     | -1- |
| al cons      | Carbon-<br>CCU <sub>3</sub> )            | 3.                    | 15. | IR.   | 100   | 183     | 15.  | ß       | 1/3   | 18    |      |     | 16    | 18  | 18  |
| Minarol      | P 0108                                   | 1.                    | 1   | : 15  | - 4   | .13     | . .  | :       | gk    | 18    |      | ,F. | 49.   | 44  | :15 |
|              | Sodium<br>(No)                           | 10                    | 1.  | 1,    | 1.    | 10      | 1    | 1       | .1.   | 1.    | ٠.   | ۹.  | 1.    | 北   | 2   |
| 1            | Magne: S<br>8:0m<br>(Mg)                 | +.                    | +   | 19    | 13    | . .     | -19  | E       | ţ.D.  | -) 7  | 2 9  | 3 - | 1/1   | -10 | 12  |
|              | Calcium (Ca)                             | 1.                    | 1   | - 1-  | -18   | 9       | . 5  | 1       |       | 10    |      | 1   | E.    | E   | 1   |
| ī            | I.                                       | -                     | 1   |       | -     | 9       | -    | 1       | 2     | 5     | 7    |     |       |     | -   |
| Soscatic     | conductance<br>m.crombos<br>at 25°C)     | 3                     | i i | -     |       | 1       | 3    | ٤.      | 107   | - 500 | 4    | :   |       |     |     |
|              | Dissoived<br>osygen<br>pom 9/650         |                       |     |       |       |         |      |         |       |       |      |     |       |     |     |
|              | Discharge Temp                           | Average<br>Dally News | 1   | 0,678 | 900-6 | 0 . 0 . | 0010 | 1.1.1.1 | -7    | 4     |      | ļ   | 9     | 5   | 0.1 |
|              | ond 1-me<br>sompled                      |                       |     |       |       |         | ¥    | 3/1-:-  | 3-17- |       | 5.00 |     | 11000 | 9 = |     |

ie Pij ing nese (Mn 2 ii /2 iii d hea salent hii ii C i reported ere as ii e

A set of consentration of consentrations are also as the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration of the consentration o 

ANALYSES OF SURFACE WATER

|              | Anolyzed<br>by i                                                                         |   |       |       |         |            |          |            |                    |         |         |         |            |          |                      |         |
|--------------|------------------------------------------------------------------------------------------|---|-------|-------|---------|------------|----------|------------|--------------------|---------|---------|---------|------------|----------|----------------------|---------|
| -            | Agranasa bid - Catrorm <sup>n</sup> A as CoCO <sub>3</sub> 11y MPN/mil A Total N.C. nppm |   |       |       |         |            |          |            |                    |         |         |         |            |          |                      |         |
| - 10         | - bid<br>- bid<br>- bid<br>- bid                                                         | - |       |       |         |            |          |            |                    |         |         |         |            |          |                      |         |
|              | N C.                                                                                     |   |       |       | ٤       | 5          | c        | 0          | ь                  | ۵.      | 5       | C       | н          | c        | :                    | 2       |
|              |                                                                                          |   |       | ē     |         | -          | 52       | -3-        | 5                  | 8       | 5       | u'      | 0          | -        | -                    | 3       |
| d.           | T P S                                                                                    |   |       | -     |         | 10         | - F      | 7<br>5     | 17.                | 52      | 17 Ju   | 29      | 27 110     | 112 22   |                      | E E     |
| Toto         | solved<br>solved<br>in ppm                                                               |   |       | 'w    | 100     | 3          | 2        | 2          | 10                 | 100     | 7       | 106     | ä          | Ħ        | à                    | Si .    |
|              | Other constituents                                                                       |   | 1     | -     | Po      | ~ <u>-</u> | Fe 0.20  | Fe 0       | E -                | Fe 7,00 | 5       | Pe 10   | Fe 0.0     | 00°      | Fe U <sub>4</sub> 70 | 2       |
|              | Silico<br>(SiO <sub>2</sub> )                                                            |   | 1     |       | £       | eg         | 27       | 2          | 2                  | 8       |         |         | ¥.         | Ä        | ÷.                   |         |
| lion         | Boron<br>(B)                                                                             |   | -     |       | -       | 5          | 3        | 0          | 3                  | 3       | 0       | 3       | 3          | 3        | -                    | 3       |
| per million  | Fluo-<br>ride<br>(F)                                                                     |   | ·.E.  |       | 3 6     | 100        | 0.01     | -          | 0.00               | 0.0     | - E     | 000     | 2000       | - 10     |                      | >[5]    |
| ports per    | rrate<br>(NO <sub>3</sub> )                                                              |   | 1     | - -   | 7       | 77         | 0.5      | 0.8        | 0.1                | 0.7     | 16.     | 1       | 0.00       | - C      | -10                  | -       |
| o dinbe      | Chlo-<br>ride<br>(CI)                                                                    |   | 9.5   | 200   | 7.5     | 2,5        | 2.0      | 8.5<br>0.0 | 2.7<br>0.74        | 0 TI    | 0.1     | 0.15    | 2.0        | - F      | 56                   | 5.0     |
| Ē            | Sul -<br>fote<br>(SO <sub>4</sub> )                                                      |   | :[6   | 3.0   | 3.0     | 0.0        | 0.0      | 0.0        | 200                | 000     | 25      | 0.12    | 25         | 5 F      | -1-                  | 7.0     |
| constituents | Bicor-<br>bonate<br>(HCO <sub>3</sub> )                                                  |   | ·E    | 1.15  | 3E      | 5E         | 1,10     | 13         | 2/2                | 7K      | 313     | 13      | 76<br>1.25 | 8 E      | 1.74                 | 1811    |
| Minsral com  | Carbon-<br>ote<br>(CO <sub>3</sub> )                                                     |   | C.C.  | 0.0   | 0 8     | - 2        | 0.00     | 000        | 0.0                | 0.0     | 000     | 0.00    | 500        | 3/8      | 100                  | 0.0     |
| Min          | Petes-<br>frum<br>(K)                                                                    |   | ãŀ.   | 200   |         | 5/6:       |          | 1.0<br>0.0 | - 10               | 1.7     |         | 200     | v. C       | 1 P      | 16.                  | - 1     |
|              | Sodium<br>(NO)                                                                           |   | :6    | 2.7   | 0.33    | 7.7        | 7.2      | 7.4        | 7.h                | 8.5     | 200     | 9.3     | 7.5        |          | . E                  | 26      |
|              | Magne-<br>sum<br>(Mg)                                                                    |   | 5.2   | 2/2   | 16      | 7 (1)      | 5,1      | 0.34       | TE:                | 2.0     | æ       | 3/6     | 0.52       | 7        | 215                  | 5.7     |
|              | Calcium<br>(Ca)                                                                          |   | -6    |       | ΞĮ.     | 25.5       | 1100     | 12         | 27.60              | 12      | 200     | 0.0     | 12         | 1.50     | : [:                 | 276     |
|              | , F                                                                                      |   | 7     | 7     |         | 2          | 2.       | 7.2        | 8.1                | 7.5     | 5.      | 7.5     | 7.1        | ů,       | 7:1                  | 7       |
|              | canductonce<br>(micrambos<br>of 250 C)                                                   |   |       |       |         |            | 104      | 131        | 10                 |         | 130     | 577     | 11.9       | C.       |                      | 3       |
|              | Dissolved<br>oxygen<br>opm %Sol                                                          |   |       |       |         |            |          |            |                    |         |         |         |            |          |                      |         |
|              | a Temp                                                                                   |   |       |       |         |            |          |            |                    |         |         |         |            |          |                      |         |
|              | Dischorgs Temp                                                                           |   | 7.357 | 7,715 | 7,266   | 8,240      | 9,529    | 8,084      | 6,402              | 269'5   | 9,189   | 6,183   | h,82h      | 4,679    | 4,800                | 94,046  |
|              | ond time<br>sampled<br>P.S.T                                                             |   |       |       | 7/1=11, | 18-31      | 7,29-31, | 8/17-26    | -/26-31,<br>9/1-1- | /11-11/ | 1/13-51 | 1/22-30 | 1.71-15    | 1.716-31 | 11/1-5               | 11/6-30 |

b Labarotory pH. o Field pH.

c. Sum of colcium and magnessum in epim.
d Iron (Fe), aluminum (Al), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci 's), reported here as  $\frac{0.0}{0.00}$  except as shown d Iron (Fe), aluminum (Al), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci 's), reported here as  $\frac{0.0}{0.00}$  except as shown c. Sum of colcium and magnesium in epm.

Derived from canductivity vs TDS curves

Determined by addition of analyzed constituents.

h Annal median and strage, respectively. Calcitated from may just set of diplicate recently sample by Calcitane Department of Public Health, Division of Laboronnies, or David-Sories Public Health Sories.

I Manual conferes made by David-Sories Geological Survey, Candro of Mende Sories Candro Sories (Sories Geological Survey, Candro Office) and Sories Candro Sories (1994). Sories Candro Sories Candro Sories Candro Sories (1994). Sories Candro Sories Candro Sories (1994). Sories Candro Sories (1994). Sories Candro Sories (1994). Sories Candro Sories (1994). Sories Candro Sories (1994). Sories Candro Sories (1994). Sories Candro Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). Sories (1994). So

CYNTRAL VALLEY REST. W (BO ...)

|                                | _               |                         |                                                                                               | _    |        |        |         |     |       |      |        |      |              |     |      |       |
|--------------------------------|-----------------|-------------------------|-----------------------------------------------------------------------------------------------|------|--------|--------|---------|-----|-------|------|--------|------|--------------|-----|------|-------|
|                                |                 |                         | Herchess bid Corform Analyzed oc CoCC3 prom MP N/m by 1 by 10 by 1 by 10 by 1 by 10 by 1 by 1 | ĺ    |        |        |         |     |       |      |        |      |              |     |      |       |
|                                |                 | -                       | MP N/m                                                                                        |      |        |        |         |     |       |      |        |      |              |     |      |       |
|                                |                 | 3                       | 0-0                                                                                           |      |        |        |         |     |       |      |        |      |              |     |      |       |
|                                |                 |                         | 000 H                                                                                         |      |        |        |         |     |       |      |        |      |              |     |      |       |
| Ü                              |                 |                         |                                                                                               |      |        |        |         | П   |       |      |        | ī    |              |     |      |       |
| ï                              |                 | P e.                    | 500                                                                                           |      |        | E      | X       |     |       |      |        |      | 1            |     | 7    | A     |
|                                |                 | Total                   | 90 0 6<br>0 0 6<br>0 0 6                                                                      |      |        | 4      |         |     |       | 1    | -      | 2    | 3            | ٠,  | 1    | >     |
|                                |                 |                         |                                                                                               |      |        |        |         |     | -     |      |        | -    |              |     |      |       |
|                                |                 |                         | Other constituents                                                                            |      |        |        |         |     | 1     |      |        |      | 114.25       |     |      |       |
|                                |                 | Ì                       | 200                                                                                           |      | d      | -61    | X       | ×   | -9-   | -7   | 0      | al.  | al.          |     |      |       |
|                                |                 | li on                   | Boron Silica<br>(8) (5:0 <sub>2</sub> )                                                       |      |        |        |         |     | 0.0   |      | dI.    |      | 1            |     |      | 11    |
| 192                            | per million     | lim nec                 | Fluo-<br>ride<br>(F)                                                                          |      | 0 0    | 18     | 18      | T   | 1     | E    | 0.0    | :6   | 10           |     |      | 52    |
|                                | ports per       | squivolants par million | frots<br>(NO <sub>S</sub> )                                                                   |      | - 00   | Œ      | £       | 1   | ã     | 0    |        | 1    | B            |     |      | 70    |
| A UPS A                        | a               | Banna                   | Chlo-<br>rids<br>(Ct)                                                                         |      | 7 E    | E      | 1       | :6  | 2 K   | 1    | ~ K    | .E   | :6           | 1   | 58   | le le |
| TVPR AP                        |                 |                         | 5ul<br>fors<br>(50 <sub>4</sub> )                                                             |      | - 8    | 1      | 1       | 1   | 9 6   | - 12 | d.     |      | F.           |     |      | - K   |
| ACRAMINTO STATE AT MINSA ( TA. | const. B. cont. | 10000111                | Bicar -<br>bonate<br>(HCO <sub>3</sub> )                                                      |      | 12.3   |        | .0      |     | - K   | - 6  | 75     | 1 07 | E            | -   | E    | il.   |
| ACBA                           | Money           |                         | Carban-<br>o1<br>(CO <sub>3</sub> )                                                           |      | T.     | 70     | 16      | 38  | 3/8   | -,8  | 15     | :13  | 16           | SP. |      | 92    |
|                                | M               | -                       | Paras.<br>(K)                                                                                 | _    | -      |        | 4 -     | 7.7 | 0 0 3 | 16   |        | 16   | 15           |     |      | 0 0 0 |
|                                |                 |                         | Sodium<br>(No)                                                                                |      | 100    | 16     | . 13    | 7.7 | - 6   | 200  | 1 de 1 | 18   | :            | 1   | 25   | 7 2 2 |
|                                |                 |                         | Magne-<br>s-um<br>(Mg)                                                                        |      | 2 2    | . 5    | -       | 7.2 | -00   | - 03 | 58     | :15  | 7 5          |     |      | . 2   |
|                                |                 |                         | Colcium<br>(Co)                                                                               |      | 9.00   | 2/5    | 0.70    | 200 | 18.   | =    | 595    | J.   | ali.         | E   | 799  | -3 C  |
|                                |                 |                         | T a                                                                                           |      | 1 32   | 4      | ~       |     | 7. 4  |      |        | 4    |              | 7.6 |      |       |
|                                |                 | Specific                | (micromhos pH<br>or 25°C)                                                                     |      | 116    | 138    | 160     | 3   | 136   | 1.8  | 7      | 100  | 8            | 3   | 76.X | 3     |
|                                |                 |                         | 0 501                                                                                         |      | 3      | 8      |         | 9   | 9     | u    | -      | 3    | 5            | 4   | 4    | 8     |
|                                |                 |                         | osygen<br>osygen                                                                              |      | 8.6    | 2      |         |     | 3     |      | 1      |      | 9            |     |      |       |
|                                |                 |                         | 0.0                                                                                           |      | 3      | 1.7    | -2      |     |       | ~    | 1      | 8    | 9            | 3   | -    | -     |
|                                |                 |                         | Discharge 18mp                                                                                |      | 24,200 | 11,400 | 1 . 4 . | j.  | 9,1   | 086  | 91/1   | 3    | ļ            |     | ,    | ÷     |
|                                |                 |                         | and lime<br>sempled<br>PST                                                                    | 1969 | 1/12   | 2000   | \$1     | 1/4 | 4     | 7.0  | 9/2    | 9710 | - 18<br>- 18 | 9-  | 0.00 | 1     |

Supported the second control of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

Oz 21 - 10101 | Solo1 - 1 -

Associated of a comparable of the professional contractions of the form of the form of the contraction of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form

ANALYSES OF SURFACE WATER

In ame a new new and and other and CENTRAL VALLEY REGION (NO.

| _                 | -                       |                                      | -                   |      |             | <br>_       |        |                 |                                      |      |             |       |                     |       |      |          |  |
|-------------------|-------------------------|--------------------------------------|---------------------|------|-------------|-------------|--------|-----------------|--------------------------------------|------|-------------|-------|---------------------|-------|------|----------|--|
|                   |                         | Analyzed<br>by 1                     |                     | urgu |             |             |        |                 |                                      |      |             |       |                     |       |      |          |  |
|                   | -                       | os CaCO <sub>3</sub> 11y MPN/mi by 1 |                     |      |             |             | Media. | Muximum<br>29.0 | Minimum<br>0 23                      |      |             |       |                     |       |      |          |  |
| r                 | - 1.0                   | - Pid<br>- Add                       |                     |      |             |             |        | 8.              |                                      | S    |             | C-    | 7.                  | ut.   | н    | S S      |  |
|                   |                         | 500                                  | b b b               |      |             |             |        |                 | -                                    | o.   | 9           | c     | 0                   | 0     | 0    | С        |  |
|                   |                         | Hord<br>os Co                        | ppm ppm             |      |             |             |        | 3               | 2.0                                  | 3    | ==          | 5     | 75                  | 82    | 55   | 19       |  |
|                   | Per                     | - pos                                |                     |      |             |             |        |                 | 71                                   | 10   | E           | Ę     | 23                  | 8     | 33   | £        |  |
|                   | Total                   | - pos parios                         |                     |      |             |             | 40g    |                 |                                      | 609  | 100         | lupe  | 117£                | 1086  | 106  | 101      |  |
|                   |                         | Other constituents                   |                     |      |             |             |        |                 | Fe 0.01 A1 0 14 PO <sub>4</sub> 0.00 |      | Tot. Alk 75 |       | POl, 0.05 Al 0.03 d |       |      |          |  |
|                   | Ì                       | Siron                                | 12010               |      |             |             |        |                 | 8                                    |      |             |       | *                   |       |      |          |  |
|                   | LOI                     | Boron                                | (0)                 |      |             |             | c      | 21              | cl                                   | 0.7  | 77          | 5.3   | 0.2                 | 7     | -1   | 2.0      |  |
| million           | er mil                  | Fluo-                                |                     |      |             |             |        |                 | 0.0                                  |      |             |       | 0.0                 |       |      |          |  |
| ports per million | equivalents per million | N                                    |                     |      |             |             |        |                 | 0.00                                 | _    |             |       | 0.0                 |       |      |          |  |
| od                | edniva                  | Chlo-                                |                     |      |             |             | 0.00   | 0.07            | 3.2                                  | 0.13 | 0.20        | 0.28  | 9.5                 | 9.0   | 0.31 | 0.00     |  |
|                   | 5                       | Sul -                                | (80%)               |      |             |             |        |                 | 0.00                                 |      |             |       | 0.0                 |       |      |          |  |
|                   | atituents               | Bicar-                               | (HCO <sub>3</sub> ) |      |             |             | 0.69   | 0.69            | 0.75                                 | 51.0 | 1.13        | 1.29  | 1.36                | 1.25  | 1.26 | 1.25     |  |
|                   | Mineral constituents    | Sodum Potos- Corbon-                 | (co)                |      |             |             | 0.00   | 0.0             | 0.0                                  | 0.0  | 0.10        | 0.0   | 0.0                 | 0.0   | 0.0  | 0.00     |  |
|                   | Mine                    | Potos-                               | 3                   |      |             |             |        |                 | 0.0                                  |      |             |       | 1.7                 |       |      |          |  |
|                   |                         | Sodium                               | (NO)                |      |             |             | 3.5    | 0.10            | 3.0                                  | 0.20 | 9.6         | 12    | 12                  | 111   | 12   | 0.52     |  |
|                   |                         | Magne-                               | (Mg)                |      |             |             |        |                 | 6.0                                  |      |             |       | 8.5                 |       |      |          |  |
|                   |                         | Calcium                              | (0.0)               |      |             |             | 0.68   | 0.80            | 8.5.0                                | 9.88 | 1.08°       | 1.240 | 7.6                 | 1.15  | 1.06 | 1.82     |  |
|                   |                         | ° E                                  |                     |      |             |             | 6.     | e.              | 5.                                   | 2    | 7.          | 177   | <i>u</i> .          | 5     | 7:7  | <u>-</u> |  |
|                   | Specific                | Canductance pH<br>(micrambas pH      |                     |      |             |             |        | 91.7            |                                      | 8.3  | 041         |       | 162                 | 151   | 149  | 142      |  |
|                   |                         | p us                                 | %Sat                |      |             |             | 8      | 75              |                                      |      | 101         | 107   | %                   | 80    | 66   | 8.       |  |
|                   |                         | Dissalved                            | mdd                 |      |             |             |        | 7.01            | 10                                   |      | t-          | 6.3   | 6                   | 10.1  | 11.6 | 12.3     |  |
| 1                 |                         |                                      | _                   |      |             |             |        |                 |                                      | 9    | 774         |       | 75                  | 59 1  | 17 1 | 9        |  |
|                   |                         | Discharge Temp                       |                     |      | With Cample | Not Campled |        |                 | 9                                    | 628  | 9#3         | 105   | 182                 | 555   | 216  | c        |  |
|                   |                         | Dote<br>nd time                      | P.S.T               | 1 5  |             |             |        |                 | 500                                  |      | 7/13        | 8/10  | 9/9<br>0730         | 10/12 | 1325 | 1500     |  |

o Freld pH

c. Sum of colocum and magnesium in spm.
4 (ran (Fe), aluminum (A), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Za), and hexavalent chromium (Ci<sup>\*\*</sup>s), reported here as  $\frac{0.0}{0.0}$  except as shown. c Sum of colcium and magnesium in epm. b Laboratory pH.

Determined by addition of analyzed constituents. e Derived from canductivity vs TDS curves

h Annal median and neap, respectively. Calculated from enclypers of deplicate monthly samples made by Californic Department of Poblic Health, Division of Laboratorist, or United States Poblic Health Service

Mental montress made by United States Geological Streety, Canthry of West and Benedy United States Controlled of Mental States Controlled of States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States Canthrolled States

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | POTGRES B G O FORM BARRYSON OS CECO, P. P. M.P.M. By . OF . OF . OF . OF . OF . OF . OF . O | 1 |   |    |     |   |      |     |   |     |     |    |   |    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------|---|---|----|-----|---|------|-----|---|-----|-----|----|---|----|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | MPN/m                                                                                       |   | 1 | 一品 |     |   |      |     |   |     |     |    |   |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 0.40                                                                                        |   |   |    |     |   |      |     |   |     |     |    |   |    |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | N COS                                                                                       |   |   |    |     |   |      |     |   |     |     |    |   |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Pordness<br>os CeCOs<br>Tato N                                                              |   |   |    |     | 2 |      |     |   | 2   |     | -  |   |    |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 500                                                                                         |   |   | 7  |     | 7 |      |     | 7 |     |     |    | 7 |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                   | Des on                                                                                      |   | ٠ | -  | -   | - |      |     | Y | 3   | 7   | ٠, | 1 | 2  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Ofhar congt * , ents                                                                        |   |   |    |     |   | - 13 |     |   |     |     |    |   |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Sco                                                                                         |   |   |    |     |   |      |     |   |     |     |    |   |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000                     | 8 aron Suico                                                                                |   |   |    |     |   |      |     |   |     |     |    |   |    |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pullings                | Fluo<br>(F)                                                                                 |   |   |    |     |   | T    |     |   |     | 16  |    |   |    |  |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | squivarents per million | N.<br>frote<br>(NO <sub>3</sub> )                                                           |   |   |    |     |   | Ť    |     |   |     |     |    |   |    |  |
| Outro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000                     | Chid<br>(Ci)                                                                                |   |   |    | 3   |   | d.   | J.F |   | 12  | 18  | 北  |   | E  |  |
| 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c                       | Sui<br>fore<br>( 0,0)                                                                       |   |   |    |     |   |      |     |   |     | 1   |    |   |    |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | constituents            | Bicar<br>banate<br>(HCO <sub>3</sub> ) (                                                    |   | ĭ |    |     | F | -L   |     | d |     |     | E  |   |    |  |
| THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O | Minaral con             | arban-<br>ore<br>IIIO <sub>9</sub> )                                                        |   | 1 |    | -6  | P |      |     |   |     | 1   | 1  |   |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76                      | otos-<br>OK)                                                                                |   |   |    |     |   | 1    |     |   |     | *** |    |   |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Sodium Patas- Carbon-<br>(Na) (K) (IIU.)                                                    | _ |   | =1 | : 1 |   | :1:  | .0  |   |     |     | ,I |   | 12 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Magna.<br>s.um<br>(Mg)                                                                      |   |   |    |     |   | E    |     |   |     |     |    |   |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Catcum Magne.<br>(Ca) sum<br>(Ca) (Mg)                                                      |   |   | L  |     | P | 1    | 2   | N | F   | 1   | F  | Þ | E  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | r o                                                                                         |   |   |    |     |   |      |     |   | ř   |     |    |   |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spacet                  | anductance<br>ancrambos<br>at 25°C)                                                         |   |   |    |     |   | 1    |     | ì |     |     |    | 1 |    |  |
| Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | 0 50                                                                                        |   |   |    |     |   |      |     |   | -   |     |    |   |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Dissolva d<br>osygen<br>ppm 00501                                                           |   |   |    |     |   |      |     |   |     | ,   |    |   |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 0 e e                                                                                       |   |   |    |     |   |      |     |   |     |     |    |   |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Discharge Temp Dissoland conductoring pH associated at 25°C)                                |   |   | •  |     | - |      |     |   | 1   | Т   | 0. | ì |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ond time<br>sompred<br>P S Y                                                                |   |   |    |     |   | :    |     |   | 3.5 |     |    |   |    |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Anoiyzed<br>by i                                                        | 26   |                   |                |                   |              |                   |             |         |             |                                                   |             |             |              |   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|------|-------------------|----------------|-------------------|--------------|-------------------|-------------|---------|-------------|---------------------------------------------------|-------------|-------------|--------------|---|--|
| ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                    | Hordness bid - Collorm Analyzed os COCO3, 117 MPN/mi by; Total NC, nppm |      | Medito            | Max1mum<br>23. | Minimum<br><0.045 |              |                   |             |         |             |                                                   |             |             |              |   |  |
| ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tur-                 | - piq<br>- bid<br>- bid                                                 |      |                   | 60             | Se.               |              |                   |             | m       | ă.          | ~                                                 | o,          | ~           | **           |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | N COS                                                                   |      |                   | С              | c                 |              |                   |             | С       | c           | =                                                 |             | C           |              |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Hordness<br>os CoCO <sub>3</sub><br>Total N.C.                          |      |                   | 7              | 9                 |              |                   |             | 3       | 2           | S-7                                               | 92          | Ç.          | 125          |   |  |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Par-                 | T PE                                                                    |      | 200               | 8.             | 7.                |              |                   |             | 2       | 3           | 8                                                 | 2           | *           | %            |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Totol                | solved sod-<br>solids lum<br>in ppm                                     |      | 102               | 302            | °p-               | B3.0         | E                 | 1           | T.      | 87 e        | 188                                               | 85          | 986         | ot o         |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Other constituents                                                      |      | 7n 0.15 At 0.15 d |                |                   |              | Fe 0.22 A1 0.06 d |             |         |             | 70 <sub>k</sub> 0 05 A1 0 08 <sup>d</sup> Cu 0.01 |             |             |              |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Silco<br>(Si0 <sub>2</sub> )                                            |      | 8                 |                |                   |              | 8                 |             |         |             | 8                                                 |             |             |              |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug.                  | Boron S<br>(8)                                                          |      | c c               | c              | c                 | c            | 31                | C.          | 91      | ā)          | 0.0                                               | 2]          | 0.0         | 0.1          |   |  |
| million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | per million          | Fluo- B.                                                                |      | 5,6               |                |                   |              | 100               |             |         |             | 1.0                                               |             |             |              |   |  |
| - During                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | equivolents p        | trote<br>(NO <sub>8</sub> )                                             |      | V (0.1            |                |                   |              | 3 0               |             |         |             | 0.0                                               |             |             |              |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | edning               | Chio-<br>ride<br>(CI)                                                   |      | 3.0               | 0.0            | 2/2               | 8.00<br>80.0 | 2.5               | - JG:       | 0.00    | 0.07        | 0.0                                               | 3.0<br>0.08 | 0.4         | 3.0          |   |  |
| A THE STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE | e .                  | Sul -<br>fote<br>(SO <sub>4</sub> )                                     |      | 7.50              |                |                   |              | 2 0 0             |             |         |             | 5.0                                               |             |             |              |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | efituenti            | Bicor-<br>bonate<br>(HCO <sub>3</sub> )                                 |      | 1.13              | 5.4<br>0.70    | 9.98              | 5.2<br>0.85  | 0.90              | ψ/S         | 80.0    | 86          | 1.03                                              | 62          | 1.20        | 1.25         |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mineral constituents | Patas- Corbon-<br>sum ots<br>(K) (CO <sub>3</sub> )                     |      | 0.0               | 0.00           | 0.0               | 0.00         | 0.0               | 0.0         | 0.0     | 0.0         | 0.00                                              | 0.0         | 0.0         | 0.00         |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Min                  | Patos-                                                                  |      | 1.4               |                |                   |              | 0.03              |             |         |             | 1.4                                               |             |             |              |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Sodium<br>(No)                                                          |      | 7.7               | 6.1            | 8.8               | 5.0          | 5.4               | 5.6         | 6.2     | 6.2         | 0.26                                              | 3.9         | 8.5<br>0.37 | 8.4<br>0.37  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Mogne-<br>Sium<br>(Mg)                                                  |      | 6.3               |                |                   |              | 1,10              |             |         |             | 4.3                                               |             |             |              |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Colcium A                                                               |      | 0.50              | 0.H2           | 00.0              | 96.0         | 8.8               | 26.0        | 0.886.0 | 0.88        | 0.55                                              | 96.0        | 1.06        | 1.06         |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Ŧ.                                                                      |      | 7.18              | 7.18           | 7.08              | 7.18         | 7.7               | 7.2         | 7.19    | 7.38        | 7.3                                               | 7.1         | 7.18        | 7.5          |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spacific             | conductons<br>(m.cromhos pH<br>ot 25°C)                                 |      | 134               | 100            | 128               | 1115         | 107               | 109         | 112     | 112         | 113                                               | 114         | 130         | 134          |   |  |
| t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | gan (r                                                                  |      | ű                 | Ž.             | 8                 | 66           | 75                | 76          | 66      | 81          | 98                                                | 66          | 42          | 8            | - |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Disso                                                                   |      |                   | 5              | 8                 | 0.11         | 10.7              | 10.3        | 11.2    | 0.6         | 0.6                                               | 9.6         | 0.8         | 5.0          |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Temp<br>o or                                                            |      |                   |                | 95                | 8%           | S                 | 2           | 8       | 25          | 95                                                | 5.1         | 65          | 75           |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Discharge Temp                                                          |      | 0.2%              | 10,300         | 7,430             | 3,2%         | 7,530             | 7,540       | 10,600  | 13,800      | 7,720                                             | 5,190       | 4,350       | 3.690        |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Dote<br>ond time<br>sompted<br>P S T                                    | 10.9 | 1/6               | 2/1            | 3/2               | 1,46         | 0560              | 6/2<br>1430 | 1645    | 8/k<br>1530 | 9/8                                               | 10/13       | 1550        | 12/2<br>0845 |   |  |

o Field pH.

b Laboratory pH.

c. Sum of calcium and magnessum in spin.

I consider (As), copper (Cu), load (Pb), manganese (Mn), zinc (Zn), and hazavalent chromium (Cr. ), reported here as 0 except as shown d Iran (Fe), organic (As), copper (Cu), load (Pb), manganese (Mn), zinc (Zn), and hazavalent chromium (Cr. ), reported here as 0 0 except as shown. c Sum of calcium and magnessum in epm.

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Annul melan and anough respectively. Calculated from analyzes of depictors routhly samples mode by California Department of Poblic Realist. Duration of Laboratories, or United States Poblic Realist Service.

Amend works were designed Servery, Quelit of a Water Bornel, 1955, Juned States Demonstrated in Service.

Committed in SERCED, Service and Servery, Coding of Water Bornel, 1955, Juned States Demonstrated Servery, Coding of Servery, Coding Service, Services and Service Services.

Services and Services and Servery, Coding Servery, Coding Services, Department of Services and Services.

Services and Services and Services and Services and Services and Services and Services.

Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services.

Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Services and Grovimetric determination.

CHARTRAL VALLEY REGION (80. 11)

|                                          |                 | An Dry Feed<br>By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |          |         |        |       |                  |       |       |      |        |        |       |          |   |             | _ |
|------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|---------|--------|-------|------------------|-------|-------|------|--------|--------|-------|----------|---|-------------|---|
|                                          |                 | 15 Section 1 Configuration By the both the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the bank that the b |      | See page | Mar and | 600    |       |                  |       |       |      |        |        |       |          |   |             |   |
|                                          | -               | 0 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |          |         |        | T     |                  | 7     |       |      |        |        |       |          |   |             |   |
|                                          |                 | 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |          |         |        |       |                  |       |       |      |        |        |       |          |   |             |   |
|                                          |                 | 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | ١.       | 1       |        | -     | I.               | 4     |       |      |        |        |       | 1        |   |             |   |
|                                          | -               | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 5        | =       |        | 1     | 4                |       |       |      |        |        | 2     |          |   |             |   |
|                                          | Total           | 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | -        | 4       | -      | -     | 90               |       | 7     | -    | 1      | 7      | 1     |          |   |             |   |
|                                          |                 | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |          |         |        |       | Fe . L A . L . L |       |       |      | ·      |        |       |          |   |             |   |
|                                          |                 | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _    |          |         |        |       |                  |       | -     |      | R      |        |       |          |   |             |   |
|                                          | 001             | Boron (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |          | 3       | 3      | 1     |                  | T     | 3     | ől.  | 7      |        | 3     | 7        |   |             |   |
|                                          | 0.0             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |          |         |        |       | *                |       |       |      | +      |        |       |          |   |             | - |
| Direct ( w. 10                           | equivo anta par | N. Fluo-<br>frafe, ride<br>(NO <sub>S</sub> ) (F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |          |         |        |       | 0.00             |       |       |      | R      |        |       |          |   |             |   |
| in the same                              | 0 2 2 2 0       | Chid<br>(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 91.9     | P.C.    | 2 F    | 2/2   | 8.5              | 10    | 0 10  | 1    | 21.5   | E      | 2     | 0.50     |   |             |   |
| P.78.2.482                               | Ę               | 501<br>fate<br>(50 <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |          |         |        |       | 160              |       |       |      | 9.     |        |       |          |   |             |   |
| ACHARDRED RIVER AT EMILIES GARDING A. 19 | constituents    | B.cor<br>CMCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 200      | 8 7     | 8 2    | 1.34  | 94<br>Hz 1       | 100   | 143   | 0 10 | 88     | 136    | 10    | 8 2      |   |             |   |
| MERCIN                                   | Wineral con     | Carbon<br>(CO <sub>9</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 0,18     | 0 0     | F      | K     | . 8              | * P   | 18    | 10   | 100    | 00.00  | 98    | 0.00     |   |             |   |
| WCF                                      | N. P.           | Potos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |          |         |        |       | 4.1              |       |       |      | 500    |        |       |          |   |             |   |
|                                          |                 | Sodum<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | -18      | 210     | 210    | 8.8   | 10               | 25    | 197   | 9.0  | 116.0  | 1.0    | 23    | 3        |   |             |   |
|                                          |                 | Magne.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |          |         |        |       | -15              |       |       |      | 6.8    |        |       |          |   |             |   |
|                                          |                 | Calcum<br>(Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | B.F.     | 86      | 1.0    | 17.   | 10               | 1 880 | 35    | 1300 | 1.7    | Co     | 1 730 | 798.     |   |             |   |
| Ī                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 4        | 26.7    | 2-     | 1.8   | 7.2              | 4,    | e.a.  | 5    | 4      | 48.7   | e-9:  | 4.5°     |   |             | _ |
|                                          | 2.01.000        | nouctonce<br>crambos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 6777     | 2       | 61     | 1 Bo  | 8                | 353   | 187   | -1   | 180    | 156    | \$90  | 182      |   |             |   |
| -                                        | V               | Saf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 8        | HQ.     |        | 69    | 8                | 7     | 16    | ĭ    | 8      | 8      | %     | 8        |   |             | - |
|                                          |                 | Dissoived<br>0xygen<br>0erygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 6.9      | 10.4    |        | 9.6   | 9 1              | 7.8   | S. S. | :    | 6.5    | -      | 11    | 1.04 0.0 | - |             |   |
|                                          |                 | 0 o E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 4.5      | 5       | \$     | ~     | ₹                | 28    | 1     | ç,   | 7      | 69     | 80    |          |   | Mero        |   |
|                                          |                 | Discharge Temp. Dissolved conductoring BH. In cis. In CF. Disgen (Inscrement) Box 1965 of 25 C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 86. 8    | 11,500  | 14,809 | 8,000 | 6,8              | , 9   |       | 9.6  | 8,080* | s,720* | -00%  | 4 18 °   |   | * Daily Men |   |
|                                          |                 | Dave<br>and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,61 | 250      | 2/9     | 3.00   | 141   | 1,400            | 6/1   | 1/1   | 8/10 | 9/7    | 10/6   | 11.11 | 12/4     |   |             |   |

b Laboratory pH c Sum of calcium and magnessium in eam.

E Juno Folkstim and magnessium in sear.

I second Pormangeress land Pormangeress land in and Face. and chromium ICT responsed have on 0 accept on shown of tron Fig. 0 them. A copper ICU is and Pormangeress land in an ICT.

Derived from conductivity vs TDS curves

Deservined by addition of analyzed constituents.

Gravimetric determination

Association and proper inspectional Collections from exciting the results by Collection Department of December 1 and State 1 and State 1 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 2 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 and State 3 a

CRNTRAI VALLEY REGION (NO. 5) TABLE B-4

ANALYSES OF SURFACE WATER

|                               |                |         |                                   |                                       |     |                 |                        |                | SACHAM                | PNTO RI                              | SACRAMPNTO RIVER AT KNIGHTS LANDING (STA. LUJ | CNIGHTS                             | LANDING               | (STA.                                        | lu.)                 |                    |                     |                    |                            |       |                                               |        |                                                                               |     |                  |
|-------------------------------|----------------|---------|-----------------------------------|---------------------------------------|-----|-----------------|------------------------|----------------|-----------------------|--------------------------------------|-----------------------------------------------|-------------------------------------|-----------------------|----------------------------------------------|----------------------|--------------------|---------------------|--------------------|----------------------------|-------|-----------------------------------------------|--------|-------------------------------------------------------------------------------|-----|------------------|
|                               |                |         |                                   | o de de                               | ۵   |                 |                        |                | Mineral               |                                      | constituents                                  | ë                                   | lovinge               | ports per million<br>equivolents per million | million<br>er milli  | 90                 |                     |                    | Total                      | -     |                                               | į.     |                                                                               |     |                  |
| ond time<br>sompled<br>P S.T. | Discharge Temp |         | Disactive d<br>oxygen<br>ppm %Sot | conductance<br>(micromhos<br>at 25°C) | ž.  | Colcium<br>(Ca) | Magne-<br>muna<br>(Mg) | Sodium<br>(No) | Potos-<br>eium<br>(K) | Carbon-<br>Ote<br>(CO <sub>5</sub> ) | Bicor-<br>bonote<br>(HCO <sub>3</sub> )       | Sul -<br>fore<br>(SO <sub>4</sub> ) | Chlo-<br>ride<br>(CI) | rrote<br>(NO <sub>3</sub> )                  | Fluo-<br>ride<br>(F) | Baron Si<br>(B) (S | ( <sup>2</sup> OIS) | Other constituents | pevios<br>polved<br>in ppm | t pod | Hordness<br>os CoCO <sub>3</sub><br>Total N C | SO DEG | Hardness bid - Coliformh<br>as CaCO <sub>3</sub> ity MPN/mi<br>Total N.C nppm | ĘĘ. | Anolyzed<br>by 5 |
| 1959                          |                |         | -                                 |                                       |     |                 |                        |                |                       |                                      |                                               |                                     |                       |                                              |                      |                    | -                   |                    |                            |       |                                               | -      | _                                                                             |     | USGS             |
| 1/5-10                        |                |         |                                   | 162                                   | 0°2 | 12<br>0,60      | 0.56                   | 1.1<br>0,18    | 1.7                   | 0.0                                  | 1.34                                          | 10.0                                | 9.5                   | 7*1<br>0*0 <u>5</u>                          | 1000                 | 00                 | 22                  | Pe 0.05            | 106                        | 59    | 82                                            | 0      |                                                                               |     |                  |
| 97-11/1                       |                |         |                                   | H                                     | 7.3 | 77.0            | 5.0                    | 5.0            | 0,03                  | 0.0                                  | Ulb<br>0.72                                   | 0.23                                | 0.12                  | 0.01                                         | 0000                 | 0*1                | 20 F                | Fe 0,12            | 18                         | 19    | 771                                           | 60     |                                                                               | _   |                  |
| 1/17-31                       |                |         |                                   | 131                                   | 7.b | 0.55            | 0°9                    | 6.2            | 0,0                   | 0.0                                  | 1,03                                          | 5.8                                 | 0.50<br>H.00          | 0,02                                         | 0000                 | 0,1                | 26                  | Pe 0,10            | 8                          | 50    | 52                                            | 0      |                                                                               |     |                  |
| 2/1-2h                        |                | -       |                                   | 1377                                  | 7.3 | 0,55            | 6°0<br>0°9             | 6.h<br>0.28    | 0,0                   | 0.0                                  | 1,02                                          | 7*7                                 | 21.0                  | 0.0                                          | 0.0                  | 0,0                | 25                  | Re 0.06            | 76                         | 21    | 22                                            | -      |                                                                               |     |                  |
| 2/25-3/3                      |                |         |                                   | 162                                   | 7.6 | 11.<br>0.70     | 7.5                    | 7.2            | 0,03                  | 0.0                                  | 78                                            | 8.6<br>0.18                         | 5.8                   | 0.8                                          | 0.0                  | 0.0                | 22tr                | Fe 0.03            | 107                        | 19    | 99                                            | 2      |                                                                               |     |                  |
| 3/4-11                        |                |         |                                   | 175                                   | 0.8 | 16<br>0,80      | 7.8                    | 8.6            | 0,0                   | 0.0                                  | 1887                                          | 12 0.25                             | 7.8<br>0.22           | 9.0                                          | 0,00                 | 0,1                | 277                 | Pe 0,01            | 119                        | 8     | 72                                            | 3      | -                                                                             |     |                  |
| 3/12-23                       |                |         |                                   | 203                                   | 7.7 | 16<br>0,70      | 9,1                    | 0,47           | 0,03                  | 0.0                                  | 1.51                                          | 17                                  | 0.27                  | 6.0                                          | 0000                 | 0,1                | 36                  | Fe 0,01            | 136                        | 23    | 77                                            | 2      |                                                                               |     |                  |
| 3/24-31                       |                |         |                                   | 178                                   | 7.6 | 36<br>0,80      | 8,3                    | 6.5            | 0,03                  | 0.0                                  | 97.1                                          | 9.6                                 | 0.20                  | 0.0                                          | 0.0                  | 1,0                | 36                  | Pe 0.01            | 122                        | 50    | 7/1                                           | 0      |                                                                               |     |                  |
| 1/1-5                         |                |         |                                   | 194                                   | 5   | 16<br>0,80      | 8,3                    | 0,48           | 0,07                  | 0.0                                  | 1.54                                          | 0.25                                | 7.8                   | 0.0<br>0.01                                  | 0,0                  | 0,0                | g                   | Fe 0,02            | 133                        | 237   | 717                                           | 0      |                                                                               |     |                  |
| 9/17                          | Not Sam        | Sampled |                                   |                                       |     |                 |                        |                |                       |                                      |                                               |                                     |                       |                                              |                      |                    | -                   |                    |                            |       |                                               |        |                                                                               |     |                  |
| 5/4                           | Not Sang       | Sampled |                                   |                                       |     |                 |                        |                |                       |                                      |                                               |                                     |                       |                                              |                      |                    |                     |                    |                            |       |                                               |        |                                                                               |     |                  |
| 7                             | Not Sam        | Sampled |                                   |                                       |     |                 |                        |                |                       |                                      |                                               |                                     |                       |                                              |                      |                    |                     |                    |                            |       |                                               |        |                                                                               |     |                  |
| 7/1-18                        |                |         |                                   | 214                                   | 0.0 | 110<br>07.00    | 8.8<br>0.72            | 17.0           | 5.02                  | 0.0                                  | 100                                           | 15                                  | 0.20                  | 200                                          | 0 U.O.               | 0,1                | 33                  | Fe 0.01            | 11.6                       | 34    | 11                                            | 0      |                                                                               |     |                  |
| 1/19-61/1                     |                |         |                                   | 193                                   | 7.6 | 7.00<br>0.70    | 7.5                    | 15<br>0.65     | 0°8                   | 0.00                                 | 1,119                                         | 200                                 | 7.2                   | 0.00                                         | 0.01                 |                    | 82<br>B             | Fe <u>0,01</u>     | 131                        | 33    | 99                                            | 0      |                                                                               |     |                  |
|                               |                |         |                                   |                                       |     |                 |                        |                |                       |                                      |                                               |                                     |                       |                                              |                      |                    |                     |                    |                            |       |                                               | -      | -                                                                             | 1   |                  |

o Field pH.

b Laborotory pH.

Jum of colcum and magnetum in spin.

Iron (Fe), oluminum (AI), practic (Su), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr\*6), reparted here as 0.0 except as shown. Sum of colcium and magnesium in apm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric datermination.

Annual median and arrays respectively. Calculated from molyses of deplicate monthly samples mode by California Department of Poblic Health, Division of Laboratories, or United States Public Health Service.

Comed Datastria (SECTO), proposable and the California (WED). Lined States Department of the Retinement of Reclamatic (SECR), United States States (SECR), Sam Bernadina County Flood

Camed Datastria (SECTO), proposable and the California (WED). Lined States Department of Reclamatic of Reclamatic and States (SECR), Sam Bernadina County Flood

Sealt Health (SECR), Terminal Termit, Laboratories, Inc. (TILL), or California Department of Wester of Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of Las Augusts, Department of Resources (DWP), City of L

|                   |                         | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                              | 7    |      |         |         |       |             |          |       |            |        |                                         |
|-------------------|-------------------------|----------------------------------------------------------------------|------|------|---------|---------|-------|-------------|----------|-------|------------|--------|-----------------------------------------|
|                   |                         | Herphass Bid-Coliform Analysed os CoCO <sub>3</sub> Ity MPN/mid by I | -    |      |         |         |       |             |          |       |            |        |                                         |
|                   |                         | Coliforn<br>EPK/m                                                    |      |      |         |         |       |             |          |       |            |        |                                         |
|                   | 3                       | 200                                                                  |      |      |         |         |       |             |          |       |            |        |                                         |
|                   |                         | Merghess<br>os CoCO <sub>S</sub><br>Total N C<br>ppm                 |      |      |         |         |       |             |          |       |            |        | -                                       |
| _                 | -                       | 18 29                                                                | _    | 7    | E .     | -       |       | 0           |          | 19    |            | 1      | 0                                       |
|                   | E E                     | 00 00 00 00 00 00 00 00 00 00 00 00 00                               |      | 1    |         | Ē       |       |             |          |       |            |        |                                         |
|                   | 20.                     |                                                                      |      | 7    |         |         | 8     | 9           | 1        | à     | 3          | 0      | 9                                       |
|                   |                         | Other constituents                                                   |      | Fe   | 70 0. 1 | Fe      | F. 1  | Fe          | 1        | 4     | 4          | 70     |                                         |
|                   |                         | (\$0.8)<br>(\$0.8)                                                   |      | 29   | 1       | 2)      | 5     |             | -        | -     | 4          | 2      | -1                                      |
|                   | 11100                   | Boron Silico<br>(8) (5:0 <sub>2</sub> )                              |      |      | 3)      | -       | 1.    |             | 1        | 3     | 7          |        |                                         |
| gotte per million | per m                   | Fiuo-<br>ride<br>(F)                                                 |      | J.   |         | 36      | , F.  | 1.          | \$       | 18    | 100        | 1.     |                                         |
| Oc 16 00'         | equivolents per million | Irote<br>(NO <sub>3</sub> )                                          |      | :C   |         | ¥.      | , ic  | ale<br>Viki | .8       | 6. C. | 1          | 45     | 36                                      |
| 6                 | 941000                  | Chio.<br>ride<br>(CI)                                                |      | 7.27 | and K.  | 7,18    | 0.27  | 25.         | 0,7      | 0.2   | 8.5<br>216 |        | 0,24                                    |
|                   | <u>c</u>                | Sul .<br>fore<br>(50 <sub>4</sub> )                                  |      | 120  | - 1.    | 12 × 12 | 25.0  | 0.19        | Ŧ.       | -12   | ali        | 100    | 116                                     |
|                   | elifuente               | Bicor-<br>bonote<br>(MCO <sub>3</sub> )                              |      | 17.0 | 111     | 2.7#    | 9.1   | »E          | E        | s E   | 2          | 15     | 1.61                                    |
|                   | Mineral constituents    | Carbon-<br>010<br>(CO <sub>3</sub> )                                 |      | c    | c .     | o 19.   | 0.    | F 18.       | e.       | 0 8   |            | ×.     | 98.                                     |
|                   | Min                     | Potos.<br>(K)                                                        |      |      | -[-     | 7.      | 313   |             | 1.       | : [   |            | ٠.[.   | 1                                       |
|                   |                         | Sodium<br>(No)                                                       |      | 1·   | F.      | E       | 1     | 7           | _;E      | 100   | - 1        | =[-    | 1 N N N N N N N N N N N N N N N N N N N |
|                   |                         | 80gne<br>8:60)<br>(Mg)                                               |      | 35.  | 1.      | 1       | :t-   |             | 4.       | 1     | : -        | 16     |                                         |
|                   |                         | Colcium Mogne<br>(Co) e.um<br>(Mg)                                   |      | 100  | F-      | b       | = 100 | Va.         | <u> </u> | 1     | 1          | -      | 1                                       |
|                   |                         | I a                                                                  |      | 7.8  | ÷       | -       |       | d.          |          |       | Ġ          | ÷      | 1                                       |
|                   | Specific                | Conductorce and<br>(m.cromboe and<br>of 25°C)                        |      | 1.6  | 7       | ,       |       | 5           |          | 6     | É          | ť      |                                         |
|                   |                         | Dissolved<br>Oaygen<br>ppm %55a                                      |      |      |         |         |       |             |          |       |            |        |                                         |
| _                 |                         | Dischorge Temp                                                       |      |      |         |         |       |             |          |       |            |        |                                         |
|                   |                         | ond time<br>sompled<br>P S T                                         | 1000 | 0.40 | 118-11  |         | 10.00 | 1000        | . 10.0   | 1.11  | 4          | 1. 1.1 | 10,00                                   |

o F.a jpH b Loboratory pH

c Sum of calcium and magnesium in epm.

c. Jun of descuir and independent in spin.
d. Itan Fel aluminum (Al) areasen. As), capper (Cu. lead IPb), manganase Mah. sinc (Zn. and hexacident chromium (Ci.\* reported hare as 0 0 except as shown diline Fel aluminum (Al).

· Derived from conductivity vs TDS curves

Gravimetric determination

Determined by addition of analyzed constituents

h Annal malay and longs, respectively Calculated Innomality and dedicate model by Calcinatio Department of Public Health, Division of Laboratories in United States Department of Sectionary Department of Management of Management of Management of Management of Sectionary and Sectionary Department of Sectionary Sectionary Sectionary Department of Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Sectionary Section Sectionary Sectionary Sectionary Sectionary Sectionary Section Sectionary Sectionary Section Sectionary Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Secti

CENTRAL VALLEY REGION (NO. .)

|                                               |                                              | Analyzed<br>by i                                                    |                    | USBR  |       |       |     |      |       |        |       |       |       |       |          |
|-----------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|--------------------|-------|-------|-------|-----|------|-------|--------|-------|-------|-------|-------|----------|
|                                               |                                              | MPN/mi                                                              |                    |       |       |       |     |      |       |        |       |       |       |       |          |
|                                               | 1                                            | - piq                                                               |                    |       |       |       |     |      |       |        |       |       |       |       |          |
|                                               |                                              | Hordness bid Coliform Analyzed os CoCO <sub>3</sub> 11y MPN/ml by i | mdd mdd            |       |       |       |     |      |       |        |       |       |       |       |          |
|                                               | -                                            | sod -                                                               |                    |       | 2     | 34    |     | 5    | 54    | 72     | 72    | 98    | 69    | 19    | <u>6</u> |
|                                               | Totol                                        | - pos panios                                                        |                    |       | 248   | 180   | 1   | ķ    | 1,068 | 10,824 | 6.000 | 2.684 | 2,008 | 2.560 | 5.388    |
|                                               |                                              | Other constituents                                                  |                    |       |       |       |     |      |       |        |       |       |       |       |          |
|                                               | ion                                          | Boron Silico                                                        |                    |       |       |       |     |      |       |        |       |       |       |       |          |
| ş .                                           | million<br>er mill                           | Fluo-                                                               | 3                  |       |       |       |     |      |       |        |       |       |       |       |          |
| 12 ( T.                                       | ports per million<br>equivolents per million | - S to to to to to to to to to to to to to                          | (NO <sub>3</sub> ) |       |       |       |     |      |       |        |       |       |       |       |          |
| ARD STOT                                      | ownba                                        | Chlo.                                                               | _                  |       | 20    | 19    | 177 | 20   | 476   | 828,4  | 2,932 | 1,271 | 8     | 1,218 | 2.549    |
| E'P MALL                                      | EI S                                         | Sul                                                                 |                    |       |       |       |     |      |       |        |       |       |       |       |          |
| TVER N                                        | stifuent                                     | Bicor-<br>bonate                                                    | (HCO3)             |       |       |       |     |      |       |        |       |       |       |       |          |
| CR MENTO PIVER NETP MALLYRD CLOUDS ( 77, 1,0) | Mineral constituents in                      | Colcium Magne- Sodium Potas- Corbon Bicor-                          | (502)              |       |       |       |     |      |       |        |       |       |       |       |          |
|                                               | Min                                          | Potas-                                                              | (R)                |       |       |       |     |      |       |        |       |       |       |       |          |
|                                               |                                              | Sodium<br>(No)                                                      |                    |       | 22    | 8     | 65  | 98   | 253   | 2,530  | 1,495 | 679   | 536   | 644   | 1,324    |
|                                               |                                              | Magne-                                                              | (Mg)               |       |       |       |     |      |       |        |       |       |       |       |          |
|                                               |                                              | Coleum<br>(Co)                                                      |                    |       |       |       |     |      |       |        |       |       |       |       |          |
|                                               | Specific                                     | conductonce<br>(micromhas<br>of 25°C)                               |                    |       | 324   | 258   | 395 | 333  | 2,034 | 15,294 | 9,076 | 4,254 | 3,569 | 4,391 | 9,942    |
|                                               |                                              | Dischorge Temp Dissolved                                            | 7050Y mdd          |       |       |       |     |      |       |        |       |       |       |       |          |
|                                               |                                              | Temp<br>in of                                                       |                    |       | 3     |       |     |      | 69    |        | 2     | 69    | 69    | 200   | 97       |
|                                               |                                              | Dischorge<br>in cfs                                                 |                    | Tidal |       |       |     |      |       |        |       |       |       |       |          |
|                                               |                                              | ond time<br>sompled                                                 | i L                | 1959  | 1,114 | 27,11 |     | 4/15 | 5/15  | 1/17   | 8/13  | 9/16  | 10/15 | 11/13 | 1315     |

o Freld pH

b Laboratory pH

c. Sun et calcum and magnesium in sym. de capper (Cu), leed (Pb), manganese (Ua), and leavedent chammum (Cr.\*), repaired here as  $\frac{0.0}{0.00}$  except as shown. d. free (Fe), chummum (Al), aresen C As), capper (Cu), leed (Pb), manganese (Ua), and clean (Cr.\*), and heaved (Cr.\*), repaired here as  $\frac{0.0}{0.00}$  except as shown.

Determined by addition of analyzed constituents.

g Gravimetric determination

e Derived from conductivity vs TDS curves

It was dealed and expr. reservoirs. Calculated from enough second from experiment of Policy Research (All Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference on Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conference On Conferen

PRESAL VILLA TON IN

|                   |                         | by .                                                          |              |    | -   |    |    |        |    |     |     |                 |     |     |     |       | 7 |
|-------------------|-------------------------|---------------------------------------------------------------|--------------|----|-----|----|----|--------|----|-----|-----|-----------------|-----|-----|-----|-------|---|
|                   | 4                       | POSTABLE DO CO TOWN AND PRO-                                  |              |    |     |    |    |        |    |     |     |                 |     |     |     |       |   |
| r                 | - 10                    | 0.44                                                          |              |    |     |    |    |        |    |     |     |                 |     | 7   |     |       | 1 |
| 1                 | -                       | N N N                                                         |              |    |     |    |    |        |    |     |     |                 |     |     |     |       | 1 |
|                   |                         | 00 CC                                                         |              |    |     |    |    |        |    |     |     |                 |     |     |     |       |   |
|                   | 0.0                     | 300                                                           |              |    |     |    |    |        |    | ×   |     |                 |     |     |     |       |   |
|                   | Total                   | - pos ep os                                                   |              |    |     |    | A  |        | ·  |     | 1   |                 |     | 6   | 1   |       |   |
|                   |                         | Other costituents                                             |              |    |     |    |    | 1月17月1 |    |     |     | Q 1 (3 × 0 × 1) |     |     |     |       |   |
| 1                 | 1                       | 0000                                                          |              |    |     |    |    | -0     |    |     |     |                 |     |     |     |       |   |
|                   | 1100                    | Baron<br>(B)                                                  |              |    |     |    |    | 1      | 7  |     |     |                 |     |     |     |       |   |
| ports per million | . w.                    | Fluo- Baron Si co<br>ride (B) (5 0g)<br>(F)                   |              |    |     |    |    | 1      |    |     |     |                 |     |     |     |       | ı |
| 10 00.            | ents p                  | trote<br>(NUS)                                                |              |    |     |    |    | 1      |    |     |     |                 |     |     |     |       |   |
| 000               | equivalents per million | Chio<br>ride<br>(C.I.)                                        |              |    | -   |    | £  | F      |    | +   |     | B               |     |     |     |       | 1 |
|                   |                         | Sul<br>fore                                                   | -            |    |     |    |    | 14     |    |     |     | J.              |     |     |     |       | i |
| 1                 |                         | Bicar<br>bonofe<br>(MCO <sub>3</sub> )                        |              | 35 | 1   |    |    | -1     | E  | £ . | 7   | · F             |     | F   | 8 - |       | 1 |
|                   | 1000                    |                                                               |              | T. |     |    |    | 11     | 15 | 1   |     |                 |     | Ť   |     |       |   |
|                   | 0.00                    | Sodium Potos- Carbon-<br>fium ofe<br>(No)                     |              |    | _   | -  |    | -1     |    |     |     | -1              | -   |     |     |       | - |
|                   | ŀ                       | e (o                                                          | _            | 1  | eP. | 10 |    | 1      | 77 | -8  | -,- | 6               |     | e[k | 2   |       | - |
|                   |                         | 000                                                           |              |    |     |    | -  | F      |    |     |     | 111             | e e |     |     |       |   |
|                   |                         | Calcium Magne<br>(Co) sium<br>(My)                            |              | 14 | T   | R  | F  | 1      | -  | þ   | 17  |                 | 5   | I   | 10  |       |   |
| -                 | _                       | g .                                                           |              | -  |     | -  | -  | 3      |    | 5   | -   | -               | Ť   | ~   | -   | <br>_ | - |
|                   | cific                   | ombos<br>25°C)                                                |              | -  |     | i  |    |        | -  |     |     |                 |     |     |     |       |   |
| -                 | 500                     | (micro                                                        |              |    |     |    |    |        |    |     |     |                 |     |     |     |       |   |
|                   |                         | Dissolved<br>Oaygen<br>ppm %Sot                               |              | -  | -   | 1  | 2  |        | -  |     |     |                 |     |     |     |       |   |
| -                 |                         | 0 8                                                           | -            |    | 0   |    |    |        |    |     |     |                 |     |     |     |       |   |
|                   |                         | Discrete Temp Dissolved Conductoring PH in of sayden of 25°C) | 110          |    |     |    |    |        | ì  |     |     |                 |     |     |     |       |   |
|                   |                         | ond in a                                                      | Total Inches |    |     |    | :5 | 980    |    |     |     |                 |     |     |     |       |   |

ANALYSES OF SURFACE WATER TABLE B-4

|                                          |                                              | Analyzed<br>by I                                | Tosh. |              |          |         |            |                                            |             |         |         |                   |          |        |         |   |               |  |
|------------------------------------------|----------------------------------------------|-------------------------------------------------|-------|--------------|----------|---------|------------|--------------------------------------------|-------------|---------|---------|-------------------|----------|--------|---------|---|---------------|--|
|                                          |                                              | os CaCO <sub>S</sub> 11y MPN/ml by 1 Total N.C. |       | Left<br>Pank | 65<br>69 | E COJ o | Electron C | Pank<br>Median                             | Maximum     | Minimum |         |                   |          |        |         |   |               |  |
|                                          |                                              | - Pid<br>Edd                                    |       | Ç.           | U        | Ç.      | 5          | 2                                          | К.          | 12      | 8       | ę                 | 13       | 9      | £       |   |               |  |
|                                          |                                              | 200 N                                           |       | 0.           | er.      | С       | С          | С                                          | с           | С       | 0       | С                 | c        | С      | С       |   |               |  |
|                                          |                                              | Hardness<br>os CaCO <sub>S</sub><br>Totol N.C.  |       | C)           | ÷        | 5:      | C.         | 4                                          | 69          | 96      | 2.5     | E.                | 69       | 99     | 4       |   |               |  |
|                                          |                                              | -tuge                                           |       | 5"           | 8        | 2       | 2          | 7.                                         | 3.5         | 52      | 33      | ç.                | 6.       | 8      | 27      |   |               |  |
|                                          | Total                                        | solids<br>solids<br>in ppm                      |       | 73.5         | e.<br>E  | 876     | 470        | 1245                                       | 135         | 1100    | 103     | 1887              | 115      | 1176   | 121     |   |               |  |
|                                          |                                              | Other constituents                              |       |              |          |         |            | Fe 0 02 A1 0 07 d<br>PO <sub>12</sub> 0 15 |             |         |         | A1 0 06 Cu 0 01 d |          |        |         |   |               |  |
|                                          |                                              | Siico<br>(5:02)                                 |       |              |          |         |            | a.l                                        |             |         |         | 8                 |          |        |         |   |               |  |
|                                          | 6                                            | 5                                               |       | 5            |          |         | c          | C                                          | c           | 6       | 리       | 0                 | cl       | 2      | 6.0     |   |               |  |
|                                          | million<br>per mil                           | Fluo-<br>ride<br>(F)                            |       |              |          |         |            | - la                                       | _           |         |         | 0 0               |          |        |         |   |               |  |
| TO (°FA                                  | ports per million<br>equivolents per million | Ni-<br>trots<br>(NO <sub>4</sub> )              |       |              |          |         |            | c  6                                       |             |         |         | m 6               |          |        |         |   |               |  |
| SACRAMENTO RIVER AT SACRAMENTO (STA, 35) | d Anna                                       | Chlo-<br>ride<br>(CI)                           |       | 200          | 0 13     | 7 0     | 5.2        | 12                                         | 12          | 8.6     | 010     | 0.37              | 0.0      | 0.8    | 0.21    |   |               |  |
| TER ATES                                 | 5                                            | Sul -<br>fote<br>(SO <sub>a</sub> )             |       |              |          |         |            | 13.0                                       |             |         |         | 0.0               |          |        |         |   |               |  |
| ENTO RID                                 | constituents                                 | Brcor-<br>bonate<br>(HCO <sub>3</sub> )         |       | 0.80         | 63       | 19      | 38         | 1.39                                       | 94.1        | 1.20    | 74      | 1.79              | 98       | 8      | 8       |   |               |  |
| SACRAM                                   | Mineral cor                                  | Corbon-                                         |       | 0.0          | 0.00     | 0.00    | 0.00       | 0.00                                       | 0.0         | 0.00    | 0.00    | 0.00              | 0.00     | 0.00   | 0.0     |   |               |  |
|                                          | Mın                                          | Potos-<br>sum<br>(x)                            |       |              |          |         |            | 0.08                                       |             |         |         | 1.6               |          |        |         |   |               |  |
|                                          |                                              | Sodium<br>(No)                                  |       | - 8          | 1 8      | 6.3     | 6.2        | 0.70                                       | 16<br>0.70  | 52.0    | 12 0.52 | 18<br>0.78        | 9.0      | 12     | 0.52    |   |               |  |
|                                          |                                              | Mogns-<br>sum<br>(Mq)                           |       |              |          |         |            | 6.4                                        |             |         |         | 4.6               |          |        |         |   |               |  |
|                                          |                                              | Calcium Magns-<br>(Ca) sium<br>(Mg)             |       | E.           | É        | 1.040   | 1.00       | 0.75                                       | 1.380       | 1.120   | 1.140   | 17<br>0.85        | 1.36°    | 1.35   | 1.44c   |   |               |  |
|                                          |                                              | Ĭ.                                              |       | 7.40         | e 0.     | 0.7.    | no         | T.3 a                                      | 7.6a        | 7.30    | 7.38    | 4.3.8             | 7.3      | 7.6    | 7.38    |   |               |  |
|                                          |                                              | conductonce pH (m.cromhos pH of 25°C)           |       | 113          |          | 5       | 1777       | 195                                        | 83          | 99      | 158     | 238               | 177      | 180    | 186     |   |               |  |
|                                          |                                              | gan do sol                                      |       |              |          | -5      |            | ŝ                                          | 8,          | 107     | 100     | 102               | 16       | 56.    | 102     |   |               |  |
|                                          |                                              | Dissolved<br>oxygen                             |       |              |          |         |            | ď.                                         | 6.7         | 9.6     | 6.0     | 65.59             | 10.0     | 60     | 0.11    |   |               |  |
|                                          |                                              | OF OF                                           |       |              |          |         |            | - 5                                        | 2           | 8       | 5       | 7                 | 63       | 75     | 17      | - | -             |  |
|                                          |                                              | Discharge Temp                                  |       |              | 507      |         |            |                                            | 7.170       | auch' L | 12,400* | 10,800*           | FC125, 9 | p.350* | 6,70.14 |   |               |  |
|                                          |                                              | Disch                                           |       |              |          |         |            |                                            | 7.7         | 7.      | 12,     | 10,8              | a."      | a.     | 9       |   | 5<br>2        |  |
|                                          |                                              | Dote<br>and time<br>sompled<br>P.S.T            | 1.6   |              |          | - 1     |            | 11,7                                       | 6/8<br>7725 | 1/1     | 8/11    | 0/4               | 1330     | 11/2   | 12/7    |   | * Dadity Neur |  |

Pield pH

b Loboratory pH.

c. Sum of Colcinon from impression in equilibrium of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o c Sum of colcium and magnessum in epm

Determined by addition of analyzed constituents

Annul inclus and respectively. Calculated from analyses of depirate monthly samples made by California Department of Poblic Health, Division of Lobardones, or United States Public Health Service.
Mannal analyses made by United States Canada Sarrey, Quality of Water Barce Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Can Gravimetric determination.

Derived from conductivity vs TDS curves

|                       | _               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |         |          | -             |          |      |       |         |        |         |       |       |        |             |             |
|-----------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------|---------------|----------|------|-------|---------|--------|---------|-------|-------|--------|-------------|-------------|
|                       |                 | Accipred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |         |          |               |          |      |       |         |        |         |       |       |        |             |             |
|                       |                 | Hordness Bid Colform Assissed as CeCO <sub>3</sub> 17 MPN/ms By 1 Feb M/ms By 1 Fe |      |         |          |               |          |      |       |         |        |         |       |       |        |             |             |
|                       | -               | 10-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |         |          |               |          |      |       |         |        |         |       |       |        |             |             |
|                       | -               | 000 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |          | -             |          |      |       |         |        |         | -     |       |        |             | 3           |
|                       |                 | Merdness<br>es CeCO <sub>3</sub><br>Totel N.C<br>pem sem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 9       | 1        | 0.            |          |      |       |         |        |         |       |       |        |             |             |
|                       |                 | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |         | -        | 100           | 1        | 1    |       |         |        | -       |       |       | н      | E           |             |
|                       | Total           | 0001000<br>0011000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Ŀ       | ŝ        | 10            | 1        |      | i     | 8       | 8      |         |       | y.    | Т      |             | 1           |
|                       |                 | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | - 100 · | = -      | Pa    1.10    | 7.0      | 4 2  | 100   | A       | No.    | 10.00   |       | 0.0   | Fe     | <b>0</b>    |             |
|                       |                 | (3.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 10      | =        | 11            | άl       | d    | ul.   | W.      |        | 3       | 3     | 9     | d      | **          | el.         |
|                       | 1100            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |         |          |               | -        | 3    | H     | 4       | 3      | -:      |       | 1     |        |             | -           |
|                       | per million     | f 140-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         | ·E       | 38            | 7        | Ţ.   | -[.   | 1.      | 18.    | ·ŗ.     |       |       | 11.    |             | 35.         |
| •                     | equivolents per | N o so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | -:[.    | - No     | 15            | 7.02     |      | :[-   | *       | 1      | ٦.      | :4:   | :[:   | -1:    | ₹F.         | 10          |
| 11 0 × 01 18 18 18 18 | 9 000           | Chio-<br>ride<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | E.      | 0.25     | 5.5           | 5:50     | 0,12 | 90.0  | ·       | -16:   |         | =16   | \$    | y.     | <b>.</b> F. | =  8        |
|                       | ē               | Sul -<br>fate<br>(\$0 <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | =[-     | 0,27     | 7.7           | 0.20     | 7.0  | 0.27  | 900     | .f.    | J.      | 10.23 | 30    | g (    | 0           | -E          |
| 1000                  | constituents    | Bicor-<br>bonote<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 25      | NO.0     | 11.2<br>X 7.0 | 20°      | y .: | 25    | gĽ.     | 98.    | 1 K.    | 25    | E     | 1      | 15          |             |
| Libraria.             | Mineral con     | Corbon-<br>ore<br>(CO <sub>5</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | o.k.    | <u>.</u> | 0.00          | 0.0      | ٥.   | 0.00  | 000     | ole*   | 8.      | ° ×   | 36.   | \$     | 30          | = 16°       |
|                       | M               | Potos<br>(X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 1.2     | 1.4      | - 6           | 17.      | 1.   | 35    | 7       | -      | 7.7     | 36    | ÷     | 1.     | 1           | : 12        |
|                       |                 | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 70.     | - 6      | - 12.0        | = -      |      | J.F.  | 3       | [-     | 龙       | 5.    | - 10  | 1      | 15          | E.          |
|                       |                 | # Cgn=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | T.      | -JF:     | - 10          | : [      | 15.  | .F.   | 7       | ₫.     | -,F.    | 4.    | J. F. | +      | 10.         | <u>-</u> F. |
|                       |                 | Coleium<br>(Ce)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 11/2    | = [      | :F.           | 21       | ==   | zř.   | al.     | `F.    | 36.     | E     | L.    | 8      | 10          | ====        |
|                       |                 | , I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 1       | 7.       |               | 2        | į.   | ,     | 2       | 7.9    | 7.,     | -     |       |        |             | 7           |
|                       | Specific        | conductance<br>(micrombos<br>of 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 182     | -        | 8             | 20       | 1.   | 3     | 139     |        | 3       | 8     | 156   | 7177   | 1,          | 267         |
|                       |                 | Dissolved<br>osygen<br>ppm %3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |          |               |          |      |       |         |        |         |       |       |        |             |             |
|                       |                 | Discharge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |          |               |          |      |       |         | _      |         |       |       |        |             |             |
|                       |                 | Dote<br>ond lime<br>sompled<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 41 | 9       | 1/1-1    | 1/4-1/        | 1/1 - 31 | 1-4  | 11+11 | 1-7 1-1 | . 1-21 | 1111-21 | - 10  | 1110  | 124-1. | - Order     | 10.7        |

c Sund laticum and magnetium in spin.

( Sund has a latinum ( ) in separate the copper ( Sund Pb) management ( Sund has an experient changes ( ) in separate here or a 0 second or thousand of lates.

Determed from conductivity vs TDS curves
Determ ned by addition of analyzed analyticents

Annual residences, respectively Calculated hear and years of logalistic models by Calculate Department at Poblic Medith. Inc., a. Understand. Here Steep Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and Annual Services and

ANALYSES OF SURFACE WATER TABLE B-4

CPNTRAI "ALIRY REGION (NO. 5)

|                                                    |                   | Analyzed<br>by 1                      |                     | USGS |             |             |            |            |         |            |         |            |            |            |         |             |         |             |
|----------------------------------------------------|-------------------|---------------------------------------|---------------------|------|-------------|-------------|------------|------------|---------|------------|---------|------------|------------|------------|---------|-------------|---------|-------------|
|                                                    | -                 | bid - Coliform<br>ity MPN/mi          |                     |      |             |             |            |            |         |            |         |            |            |            |         |             |         |             |
|                                                    | 1                 | - pid<br>- pid<br>- pid<br>u          |                     |      |             |             |            |            |         |            |         |            | <u> </u>   | 0          | 0       | 0           | 0       | 0           |
|                                                    |                   | \$ 00<br>\$ 00<br>\$ 00               | PPE                 |      | 0           |             | 0          | 0          | 0       | 0          | 0       | 0 59       | 19         | 19         | - 25    | 25          | 29      | 62          |
|                                                    |                   |                                       | Totol               |      | TŽ          | 82          | 8          | 72         | 72      | 11         | 73      |            | 33 6       | 33 6       | 31      | 33          | 31 6    | 34.         |
|                                                    | 4 -               | pos ps                                | E                   |      | 52          | 29          | 31         | 35         | 32      | 32         | 1 32    | 33         |            |            |         |             |         |             |
|                                                    | - 10<br>10<br>10  | solved<br>solids                      | e d                 |      | 101         | 107         | 125        | 137        | 1777    | 11.8       | 134     | 127        | 113        | 119        | 110     | 102         | 122     | 123         |
|                                                    |                   | Other possessituands                  |                     |      | Fe 0.01     | Fe 0.02     | Fe 0.01    | Fe 0,00    | Fe 0,00 | Fe 0,.00   | Fe 0.00 | Fe 0,00    | Fe 0.00    | Fe 0.00    | Fe 0.02 | Fe 0,00     | Fe 0,00 | Fe 0,00     |
|                                                    |                   | Silica                                | (SiO <sub>2</sub> ) |      | 12          | 27          | 22         | 757        | 121     | 77         | 25      | 121        | 757        | 77         | 22      | 27          | 52      | 23          |
|                                                    | lion              | 1 5                                   | (B)                 |      | 0,1         | 1.0         | 10         | 9.1        | 0,1     | 0,1        | 0,1     | 0.1        | 0.0        | 0.0        | 0.0     | 0.0         | 0*0     | 0           |
| tinued                                             | par million       | Fluo-                                 | (F)                 |      | 0.0         | 0.0         | 0.0        | 0.0        | 0.2     | 0.2        | 0.0     | 0.2        | 0.0        | 0.00       | 0.2     | 0.0         | 0.01    | 0.0         |
| 15 con                                             | porte per million | ż                                     | (NO <sub>S</sub> )  |      | 0.5         | 0.00        | 0.0        | 0.00       | 0.0     | 0.00       | 0*0     | 0.0        | 0.9        | 0.9        | 0.3     | 0.0         | 0.0     | 0.00        |
| O (STA.                                            | aguivolents       | Chlo-                                 | (CI)                |      | 6,5         | 9.0<br>0.25 | 10<br>0.2F | 13         | 0.37    | 0.39       | ± 0000  | 0.31       | 0.31       | 0.31       | 0.37    | 8.0<br>0.23 | 8.5     | 0.31        |
| ACRANCET                                           | Ē                 |                                       | (SO <sub>4</sub> )  |      | 11 0.23     | 0,23        | 0.33       | 0.27       | 15.0    | 18         | 0,23    | 0.27       | 0,21       | 9.8        | 0.37    | 0.0         | 97      | 7,23        |
| JER AT S                                           | constituents      |                                       | (HCO <sub>3</sub> ) |      | 90°.        | 13          | 1,31       | 92         | 1.57    | 96<br>1.61 | 84      | 82<br>1.34 | 78<br>T,28 | 1.28       | 72      | 89<br>F:1   | 76      | 1.38        |
| SACRAMENTO RIVER AT SACRAMENTO (STA. 15 continued) | Mineral cor       | O                                     | (CO <sub>3</sub> )  |      | 0.0         | 0.0         | 0.0        | 0.0        | 0.0     | 0.0        | 0.0     | 0.0        | 0.0        | 0.0        | 0.0     | 0.0         | 0.0     | 0.0         |
| SACRAM                                             | Min               | Potos-                                | E(X)                |      | 1.5         | 0.00        | 1.6        | 2.1        | 1.6     | 0,04       | 3.6     | 1.5        | 1.6        | 1,1        | 1.4     | 0.03        | 1.5     | 0.03        |
|                                                    |                   | 0.0                                   |                     |      | 8.1<br>0.37 | 111         | 177        | 16         | 3.6     | 17.0       | 16      | 15         | 0.61       | 11<br>0.61 | 0,52    | 12          | 57      | 0.65        |
|                                                    |                   |                                       | (Mg)                |      | 0.38        | 6.8         | 7.5        | 7.8        | 8.3     | 9.0        | 8.6     | 7.3        | 7.5        | 6.9        | 7.2     | 717         | 6.6     | 9.9         |
|                                                    |                   |                                       | (Co)                |      | 11.<br>0.70 | 12          | 47.0       | 16<br>0,80 | 0.80    | 17<br>0.85 | 15      | 27.0       | 12<br>0,60 | 13         | 0.55    | 112         | 0,70    | 111<br>0.70 |
|                                                    |                   | e e                                   |                     |      | 7.1         | F-          | 7.5        | 6*9        | 7.0     | 7.0        | 7,3     | 7.0        | 7.4        | 7.1        | 7.2     | 7.1         | 7.1     | 7.b         |
|                                                    |                   | Spacific<br>conductance<br>(micromhos | at 25°C             |      | 12.7        | 161         | 190        | 205        | 213     | 224        | 215     | 198        | 179        | 181        | 160     | 7777        | 171     | 159         |
|                                                    |                   | Dissolved                             | ppm %Saf            |      |             |             |            |            |         | -          |         |            |            |            |         |             |         |             |
|                                                    |                   | E C                                   |                     |      |             |             |            |            |         |            |         |            |            |            |         |             |         |             |
|                                                    |                   | Dischorge Tamp                        |                     |      |             |             |            |            |         |            |         |            |            |            |         |             |         |             |
|                                                    |                   |                                       | P.S.T               | 1959 | 1,/13-21,   | L/25-30     | 5/2-8      | 5/11-20    | 5/21=31 | 6/1-10     | 6/11-19 | 6/20-30    | 7/1-10     | 7/11-20    | 7/21-31 | 8/1-2       | 8/3-9   | 8/30        |

o Freld pH.

Sum of calcium and magnessum in Apm.

Sum of calcium and magnessum in Apm.

Iron (Fe), aluminum (A), assenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chramium (Cr<sup>+6</sup>), reported here as 0.00 except as shown. c Sum of colcium and magnesium in epm. b Laboratory pH.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Ameni medan and ronge, respectively. Calculated from problesses of deplicate monthly samples most by California Department of Poblic Health, Division of Laboratories, or United States Public Health Service.

Service of the Company of the Company of the Respect (MSC), Linest States Department of Pederal Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of Long Baseds, Department of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Company of The Co

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5.)

Weldatt Ba-Collemb A-at CoCos | 1 mPA/mu 8 Total Carried Control of Carried Control of Carried Control of Carried Control of Carried Control of Carried Control of Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carried Carrie Other constituents Fe 0.0 Fe . 10 0.0 Fluo- Boron Silico equivolante per million SACRAMMING RIVER AT SACHAMINT STA, 15 continued perts per million 11010 (NO<sub>3</sub>) Chio. 3ul -fors (SO<sub>2</sub>) 5 Minarol constituents 25.1 Corbon-0.0 0.0 Sodium Potos-61 2 25 26 500 (Ca) 177 10 10000 aH<sub>b</sub> Dissolvas conductores phosphology phosphology of 250 C) Ouscharge Tamp 9/1-10

Sum of calcium and magnesium in epin

Iron (Fa) aluminum (Al orsani (As), copper (Cu), lead (Pb),

Determined by addition of analyzed consti-

Austral mode by United States Cholingted Nurse, Outling all hands (USSS) United States Department of the Internal Back Internal States Department of the Nurse States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States Stat h. Annual median and congar responsively. Calculated from analyses of deplicate manthly samples made by California Department of Public Health, Division of Laboratories or United States Public Health Service

reported here as 0.0 except as shown 0.00

monganese (Mn), sinc (Zn), and hexavalent chramium (Cr\*8)

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

|                                                |                      | Anolyzed<br>by 1                                                                     | USBR  |     |     |     | _     |     |     |      |      |      |       |      |      |
|------------------------------------------------|----------------------|--------------------------------------------------------------------------------------|-------|-----|-----|-----|-------|-----|-----|------|------|------|-------|------|------|
|                                                | -                    | Hordness bid - Collform Analyzed os CoCO <sub>3</sub> liy MPN/ml by i Tolai N C. ppm |       |     |     |     |       |     |     |      |      |      |       |      |      |
| -                                              | Tur                  | - pid<br>- pid<br>- pid<br>- pid<br>- pid                                            |       |     |     |     |       |     |     |      |      |      |       |      |      |
| T                                              |                      | Hordness<br>os CoCOs<br>Total N.C.<br>ppm ppm                                        |       |     |     |     |       |     |     |      |      |      |       |      |      |
|                                                |                      | Total<br>PPP                                                                         |       |     |     |     |       |     |     |      |      |      |       |      |      |
|                                                | Q.                   | sod -                                                                                |       | 82  | ê   | 77  | 75    | 2   | 30  | %    | 8    | %    | 8     | 33   | 75   |
| Ì                                              | Total                | solids<br>solids<br>solids                                                           |       |     | 106 | 110 | 184   | 200 | 13h | 105  | 144  | 156  | 176   | 120  | 180  |
|                                                |                      | Other constituents                                                                   |       |     |     |     |       |     |     |      |      |      |       |      |      |
|                                                |                      | Silico<br>(SiO <sub>2</sub> )                                                        |       |     |     |     |       |     |     |      |      |      |       |      |      |
|                                                | million              | Boron Siico<br>(8) (SiO <sub>2</sub> )                                               |       |     |     |     |       |     |     |      |      |      |       |      |      |
| A. 97)                                         | per mil              | Fluo-<br>ride<br>(F)                                                                 |       |     |     |     |       |     |     |      |      |      |       |      |      |
| SACRAMENTO RIVER AT SNODGRASS SLOUGH (STA, 97) |                      |                                                                                      |       | 1.9 | 9.0 | 6   | 9.0   | 9.0 | 0.0 | 9.0  | 1.2  | 0.0  | 9.0   | 9.0  | 0.0  |
| RASS SI                                        | equivalents          | Chio-<br>ride<br>(Ci)                                                                |       | 1.8 | 7.9 | 6.7 | 5.7   | n n | 17  | 9.5  | 7.8  | 15   | 5.7   | 8.5  | 1,8  |
| T SNODC                                        | č                    | Sul -<br>fate<br>(SO <sub>4</sub> )                                                  |       | 13  | 13  | 7.5 | [2] · | 30  | 15  | 6.2  | 9.6  | 15   | 1     | 19   |      |
| RIVER A                                        | ratituant            | Bicor-<br>bonate<br>(HCO <sub>3</sub> )                                              |       | 33  | 89  | 54  | 8     | 7   | 79  | 9    | 99   | 306  | 88    | 98   | 82   |
| RAMENTO                                        | Mineral constituents | Carbon-<br>ote<br>(CO <sub>3</sub> )                                                 |       | 0.0 | 0.0 | 5.1 | 0:0   | 0.0 | 0.0 | 0.0  | 0.0  | 0,0  | 0.0   | 0.0  | C)   |
| SA                                             | ž                    | Potas-<br>R.(K.)                                                                     |       | 0.5 | 0.0 | 5.0 | 0.0   | 0.0 | 0.0 | 0.0  | 1.2  | 0.0  | 1.6   | 5.0  | 1.6  |
|                                                |                      | Sodium<br>(No)                                                                       |       | 5.3 | 8.7 | 6.9 | 8.5   | 15  | 77  | 10   | 11   | 16   | 52    | 77   | n    |
|                                                |                      | Mogne-<br>sum<br>(Mg)                                                                |       | 5.3 | 5,1 | 8.7 | 6.3   | 7.2 | 8,2 | 6.0  | 5.5  | 22   | 9.6   | 6.1  | 10.  |
|                                                |                      | (Co)                                                                                 |       | 27  | 77  | 7.  | 13    | 16  | 12  | 13   | 77   | 16   | 13    | ũ    | 11   |
|                                                |                      | E E                                                                                  |       | 9.9 | 7.6 | a'  | 7.0   | 6.9 | 7.0 | 5    | 4.   | 7.8  | 7.6   | 8.1  | 80   |
|                                                | 0.0000               | (micromhos of 25°C)                                                                  |       |     | 140 | 8   | 162   | 253 | 217 | 163  | 187  | 560  | 508   | 179  | 20%  |
|                                                |                      | Dissolved<br>osygen<br>ppm %So                                                       |       |     |     |     |       |     |     |      |      |      |       |      |      |
|                                                |                      | Te n                                                                                 |       |     |     |     | 2     | 10  |     | 775  | F    | 12   | 89    | 58   | 23   |
|                                                |                      | Discharge Temp                                                                       | Tidal |     |     |     |       |     |     |      |      |      |       |      |      |
|                                                |                      | Dote<br>ond time<br>sompled<br>P.S.T                                                 | 1950  |     | 39  |     |       |     |     | 1129 | 112. | 9/18 | 10/12 | 11/0 | 1480 |

b Loborotory pH

c. Sum of calcium and magnessum in elym decision (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci "0), reported here as 0.0 except as shown. d Iron (Fe), aluminum (A1), arrented here os 0.00 except as shown. c Sum of calcium and magnesium in epm

Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves

Annel metan and trapes respectively. Calculated from maily yeas of doublicate numbly, samples made by Calculation Department at Public Health, Division of Laboratories, or United States Public Health Service.

Mannel Mannel States Geological Survey, Qualite of Water Bennel (1852), Juned States Demonstrated in the International States (1859); Libraries States Public Health Service (1859); San Bennelmon Control Flood
Commo Divisional States (1859); Lab Angeles Sportment of Miner and Personal Mannel States (1859); Lab Angeles Sportment of Miner and Personal States (1859); Lab Angeles Sportment of Miner Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Iransial Flood Mannelmon (1859); Ir Gravimetric determination.

ANALYSES OF SURFACE WATER CRETRAL VALLEY ROBIGE (80. 9) TABLE B.

|                   |                         | Andiyred                                                                            |                      | 8 9   |      |              |      |       |               |      |       |       |      |       |      |      |       |
|-------------------|-------------------------|-------------------------------------------------------------------------------------|----------------------|-------|------|--------------|------|-------|---------------|------|-------|-------|------|-------|------|------|-------|
|                   |                         | Coliforn<br>MPN/m                                                                   |                      |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   | 1                       | 7                                                                                   |                      |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   |                         | Sod Nordhees 814 - Caliform Analyzed                                                | Total & C<br>ppm ppm |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   | -                       | 200                                                                                 |                      |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   | Totel                   | edived cont                                                                         | £ 86 c               |       | 2    | 8            | 3    | 2     | 176           | 8    | 3,000 | 28    | 26   | 3     | 9    |      |       |
|                   |                         | Other constituents                                                                  |                      |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   |                         | 9 0                                                                                 | 3"                   | _     |      |              |      |       |               |      | _     |       |      |       |      | <br> | <br>_ |
|                   | 8                       | oron S                                                                              | 0                    |       |      |              |      |       |               |      |       |       |      | -     |      |      |       |
| million           | I mill                  | Flug- Boron Silice                                                                  | ( <u>)</u>           |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
| parts per million | equivolente per million | Ni -                                                                                |                      |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
| 90                | 041100                  | Chio.                                                                               | $\rightarrow$        |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   |                         | - Ive                                                                               | (\$0°)               |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   | 11 years                | Bicor-                                                                              | MCO.                 |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
| parts per million | Mineral constituents in | or bon -                                                                            | (co <sub>9</sub> )   |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   | Mine                    | Potos. C                                                                            | (x)                  | _     |      |              |      |       |               |      |       |       |      |       |      |      | <br>  |
|                   |                         | Sodium                                                                              | ()                   |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   |                         | -august                                                                             | (6 a)                |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   |                         | Colcum Magne Sodium Potes Corbon-                                                   |                      |       |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   | Specific                | Discharge Temp Dissolved conductorce BM<br>in city in 69 osygen (micrombos) at 25°C |                      |       | 991  | 152          | 197  | 154   | 906           | 89   | p,760 | 1,266 | 310  | £     | 292  |      |       |
|                   |                         | Discolves o                                                                         | ppm %3et             |       |      |              |      |       |               |      |       |       | -    | _     |      |      |       |
| -                 |                         | 0 m                                                                                 |                      |       |      | 3            |      | 63    | S             | 28   | Se .  | F     | 6    | 19    | 29   |      |       |
|                   |                         | Orechorge<br>to efe                                                                 |                      | 71441 |      |              |      |       |               |      |       |       |      |       |      |      |       |
|                   |                         | and lime                                                                            |                      | 1959  | 1/13 | 8/10<br>1140 | 3/17 | 1,130 | 5/18<br>14 JO | 6/15 | 1/13  | 11/9  | 9/14 | 10/18 | 11/9 |      |       |

Hg blad a

b Loboratory pH

c. Jun of continue may impressed in symmetric (Cu), I and (Pb), manganese (Ikh), and heravalent chromoum (Ci<sup>-1</sup>), reported here os 0 0 except as shawn of Iran (Fe) aluminum (Ki<sup>-1</sup>), reported here as 0 0 except as shawn c. Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents. · Derived from conductivity vs TDS curves

Gravimetric determination

Annul melan red rage represent Calculated from analyses of deligene monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swaper monthly swape

ANALYSES OF SURFACE WATER TABLE B-4

CENTRAL VALLEY REDION (NO. 51

|                                 |              |                                                                            |       |             |                  | -        |         |                   |             |      |              |                    |      |          | _            |              |
|---------------------------------|--------------|----------------------------------------------------------------------------|-------|-------------|------------------|----------|---------|-------------------|-------------|------|--------------|--------------------|------|----------|--------------|--------------|
|                                 |              | Anolyzed<br>by i                                                           | 11000 |             |                  |          |         |                   |             |      |              |                    |      |          |              |              |
|                                 | 4            | Hordness bid - Coliform" os CoCO <sub>3</sub> ity MPN/ml Total N C ppm ppm |       | Mediun      | Maximum<br>7 nnn | Miritaga |         |                   |             |      |              |                    |      |          |              |              |
|                                 | - 10         | D = C                                                                      |       |             |                  |          |         | Ş.                |             |      |              | \$                 |      |          | 13           |              |
| Ì                               |              | CO3<br>DBM<br>DBM                                                          |       | c           | c                | c        |         | c                 | С           |      | С            | С                  | ~    |          | С            |              |
|                                 |              |                                                                            |       | g.          | 661              | Ş        |         |                   | 16.         | 8    | 186          | 161                | 178  |          | 1.90         |              |
|                                 | Par          | sad -                                                                      |       | ę.          | 70               | ĉ        |         | 7                 | 7           | 77   | 37           | 5                  | 98   |          | 55           |              |
|                                 | Total        | solved<br>solids<br>in ppm                                                 |       | 1601        | 103              | 161      | 144     | <sup>2</sup> CIC  | loh         | 328  | J466         | 3696               | 286° |          | 287          |              |
|                                 |              | Other constituents                                                         |       |             |                  |          |         | 70 0.07 41 0.19 d |             |      |              | PO, 0 b0 A1 0 05 d |      |          |              |              |
|                                 |              | Silica<br>(SiO <sub>2</sub> )                                              |       | 2           | 2                | 8        | 2       | 13                | 8.          | *    | 2            | 6                  | 77   |          |              |              |
| (8)                             | lion         | Boron<br>(B)                                                               |       | SI          |                  | 7        | 1       | 5                 | cl          | SI.  | 0            | 0                  | cl   |          | -            |              |
| TA. 1                           | per million  | Fluo-<br>ride<br>(F)                                                       |       | 00          | - 6              | 200      | 0 0     | 0.0               | 1.0         | 100  | 0.0          | 0.0                | 00   |          |              |              |
| S) SMIQN                        | 6            | rrate<br>(NO <sub>3</sub> )                                                | -     | 2   2       | 5 6              | 7 0      | d   0 c | 0.0               | 1.1         | 9,03 | 7.00         | 0.0                | 0.01 |          |              |              |
| NEAR KNIGHTS LANDING (STA. 14m) | parts p      | Chio-<br>rida<br>(CI)                                                      |       | 0.145       | 71               | 0,0      | 15      | 8 2               | 12          | 1.65 | 1.52         | 15 C               | 38   |          | 1.16         |              |
| RAR KNI                         | <u>c</u>     | Sul -<br>fore<br>(SO <sub>6</sub> )                                        |       | 7.7         | 6.7              | R. C.    | 3.8     | 12                | 1100        | 0.00 | 26           | 8.0                | 0.35 |          |              |              |
| SLOUGH 1                        | constituents | Bicor-<br>bonate<br>(HCO <sub>5</sub> )                                    |       | 133<br>2.18 | 2.72             | 2.36     | 120     | 27.9              | 170         | 234  | 133          | 3.67               | 3.54 |          | 3.45         |              |
| SACRAMENTO SLOUGH               | Minsral cor  | Potes Corbon-<br>sium ate<br>(K) (CO <sub>3</sub> )                        |       | 100         | 0.0              | 0.0      | 0 8     | 0.00              | 0.00        | 0.0  | 0.0          | 0.0                | 0.0  |          | 0.0          |              |
| SACE                            | Min          | Potos-<br>sium<br>(K)                                                      |       | 0           | 1.7              | 1.7      | 0.0     | 0.0               | 1.7         | 1.2  | 0.04         | 0.05               | 0.0  |          |              |              |
|                                 |              | Sodium<br>(Na)                                                             |       | 19<br>0.83  | 18               | 15       | 13      | 8 8               | 10<br>0.175 | 3 8  | 2,75         | 34                 | 25.7 |          | 34           |              |
|                                 |              | Magns -<br>stum<br>(Mg)                                                    |       | 21          | 1.2              | 11       | 2/2     | 10                | 1.34        | 26   | 8 2.1        | 22<br>1.183        | 1.91 |          |              |              |
|                                 |              | Calcium<br>(Ca)                                                            |       | 7.10 10     | 7.86             | 100.0    | 7.86 19 | 28                | 7/2         | 1.77 | 1.66         | 200                | 33   |          | 3.60°        |              |
|                                 | _            | I a                                                                        |       | 2           |                  | 7:1      | 12      | 7.h               | 7.14        | °c.  | 12           | 1.1,1              | 8.0% |          | 7.7          |              |
|                                 | Spacific     | canductance<br>(m.crambos<br>or 25°C)                                      |       | 1124        |                  |          | 596     | 162               | 0 2         |      | 5.72         | 1773               | 1621 |          | 624          |              |
|                                 |              |                                                                            |       |             |                  |          |         | 8                 | 75          | 5-   | 2            | E.                 | 5    |          | 84           |              |
|                                 |              | Dissolvad<br>osygan<br>ppm %So                                             |       |             | 1                |          | 7.7     | G. G.             | er 2        |      |              | 0.19               | 5.   |          | 10.0         |              |
|                                 |              | T 0 0 0                                                                    |       |             | 99               | <u>.</u> | 99      | -                 | 2           | 7.   | E            | 2                  | 99   | led      | 67           |              |
|                                 |              | Discharge Tamp                                                             |       | 1,864       | Pend             | 3.50     | 7,840   | E. (**)           | 041.10      | -915 | 1071         | 1,240#             | 158* | Not Samp | *166         | e e          |
|                                 |              | ond time<br>sampled<br>P.S.T                                               | 1959  | 1/12        | 2 5              |          |         |                   | 58          | 1100 | A/10<br>0930 | 9/7                | 10/5 | 11/13    | 12/4<br>1245 | * Daily Wean |

d Iron (Fo), aluminum (A1), areasia (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr <sup>(5)</sup>), reported here as 30, except as shown of Iron (Fo), aluminum (A1), areasia (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr <sup>(5)</sup>), reported here as 30, except as shown. c Sum of calcium and magnessum in apm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. g Gravimetric determination.

h Aaval malian and rangs, respectively, Calculated from analyses of displicate monthly samples made by Calitatina Department of Pablic Health, Durstan of Laborraness, or United Stores Public Health Service.

Manual renalises made by United Stores Geological Survey, Quelor of Western Stores Chapterson of the Internet of Reclamation (USB), Linead Stores (LADPS), Linead Stores Public Health Service (USPPS), San Baronalina California (USB), San Baronalina California (USB), Linead Stores (LADPS), Carl of Las Anapales, Department of Pablic Health (LADPH), Carl of Las Anapales, Department of Pablic Health (LADPH), Carl of Las Anapales, Department of Realth (LADPH), Carl of Las Anapales, Department of Land (LADPH), Carl of Las Anapales, Department of Land (LADPH), Carl of Las Anapales, Department of Land (LADPH), Carl of Las Anapales, Department of Land (LADPH), Carl of Las Anapales, Department of Land (LADPH), Carl of Las Anapales, Department of Land (LADPH), Carl of Las Anapales, Department of Land (LADPH), Carl of Las Anapales, Department of Land (LADPH), Carl of Las Anapales, Department of Land (LADPH), Carl of Las Anapales, Department of Land (LADPH), Carl of Las Anapales, Department of Land (LADPH), Carl of Las Anapales, Department of Land (LADPH),

CONTRAI VALLEY PROICE (S)

|                      |                                                   | 1004                                     | 1308   |              |       |            |                |              |              |      |        |          |      | _          |        |  |
|----------------------|---------------------------------------------------|------------------------------------------|--------|--------------|-------|------------|----------------|--------------|--------------|------|--------|----------|------|------------|--------|--|
|                      |                                                   | OF COCO 17 Metal/on By I                 |        |              |       |            |                |              |              |      |        |          |      |            |        |  |
|                      | - 30                                              | -                                        |        |              |       |            |                | 0            |              |      |        | 35       |      | 8          | 8      |  |
|                      |                                                   | 000                                      |        | 189          | 3     | 197        | 8.             | â            | 9.7          | 4    | 19     | 113      | 120  | 172        | 1.6    |  |
|                      |                                                   | 1                                        |        | ŏ            | 797   | 30         | 286            | 286          | 22           | 218  | 29%    | 266      | 2111 | 38         | 9.     |  |
|                      | 4                                                 |                                          |        | 8            | 5     | 65         | O <sup>2</sup> | 23           | 5            | 0    | UF     | 38       | 38   | 28         | 3      |  |
|                      | 40.0                                              | police<br>in period                      |        | Ĭ            | 11,60 | 3.160      | 777            | 74.0         | 5.00         | 3    | E      | 71,7     | 786  | 1,160      | 7.     |  |
|                      |                                                   | Other constituents                       |        |              |       |            |                | Zh 7,21 K 37 |              |      |        | PA TA TA |      |            |        |  |
|                      | -                                                 | (3·0°)                                   |        | 17           | 7     | 97         | 256            | 25           | 12           | 2    | 5      | 70       | :1   |            |        |  |
| 1                    | 000                                               | 60 (8)<br>(6)                            |        | 1,4          | 2.2   | 1.2        | 5.0            | 9.           | 1,1          | 0.3  | 2      | r.       | V.   | 10         | 7      |  |
| r million            | . w                                               | F160-                                    |        | 35           | -:[-  | 00         | 25             | ~[]          | 20.0         | 3/5  | 20.    | :[.      | : 1. |            |        |  |
| porte per millien    |                                                   | frose<br>(NOg)                           |        | F            | 200   | 10.0       | 3.6            | 5.<br>0. A   | 2.1          | -t.  | 1      | 1,1      | 1    |            |        |  |
| porte pe             | 04100                                             | Chio-                                    |        | 28R<br>F.17  | 375   | 37.        | 246            | 236          | 11.2         | 166  | 272    | 36.      | -19  | 11.00      | 10,15  |  |
| <u>e</u>             |                                                   | Sur<br>fere<br>(\$0.0)                   |        | 25           | 0.67  | 290        | 120            | 21.          | 123          | 1.90 | 11.08  | 2.7      | 234  |            | 26.23  |  |
| al neutr             | 1                                                 | Great-<br>borrate<br>(MCO <sub>3</sub> ) |        | 8 4.         | 216   | 3.15       | 2.73           | 27.5         | 167          | 2.67 | 2,62   | 186      | 1.78 | 236        | 2 E    |  |
| Mineral conetifuents | l                                                 | Carbon (CO <sub>1</sub> )                |        | 00.0         | 0,6   | 10.        | 8              | 10.0         | 0.0          | 0.0  | -0.0   | 0.0      | .P.  | c P        | , po.  |  |
| No.                  | ŀ                                                 | Petos.<br>(K)                            |        | - t-         | - 10  | 35         | -F-10          | 3.7          | 7.2<br>0.18  | 91.0 | R 22 R | 7.0      | a [] |            |        |  |
|                      | Ì                                                 | Sodium<br>(No)                           |        | 250<br>10,88 | 12.70 | 17 E       | 1. F. F. S     | 0.5          | 1119<br>F.T. | 17   | 126    | 169      | 172  | THE STREET | 37°11  |  |
|                      | ľ                                                 | Magne-<br>erum<br>(Mg)                   |        | 35           | 200   | 330        | 9              | F            | 22,          | 1.91 | 98.    |          | 1    |            |        |  |
|                      |                                                   | Calcium<br>(Ca)                          |        | 11.69        | 56    | 77<br>1.11 | 25.2           | sE.          | 86.2         | 1    | 2 Se.  | 522      | E.   | 25.        | 4.52.0 |  |
|                      | ۰                                                 | T.                                       |        | -7           | 9.0   | 2          | ~              |              | 7.5          | 7.2  | 7.     | 2        | 7    | 7.2        |        |  |
|                      | Specific<br>conductorce<br>(micrombos<br>et 20°C) |                                          |        | 18no         | 237   | 1.30       | 1320           | 13.0         | 296          | 643  | 1260   | 1330     | 85   | 1000       | 300    |  |
|                      |                                                   | 9% 341                                   |        | 30           | \$    | 0          | 8              | 6            | 9            | 69   | 44     | 9.7      | 3    | 8          | -      |  |
|                      | Disease                                           | 0aygen<br>ppm %38f                       |        | 1.2          |       | 8.7        | 6.3            | -            | 6.3          | 8.8  | 7.4    | 7.2      | 1    | 7.2        | 9.     |  |
| -                    |                                                   |                                          | -      | 95           | 0     | 002        | 3              | 67           | 2            | 92   | - 9    | -        | 3    | 9          | 3      |  |
|                      | Therese                                           | 90                                       |        | 3            | 8     | 92         | 8              | 69           | 126          | 8    | 15     | 4,6      | 9.   | 2          | 3      |  |
|                      |                                                   | sompled<br>PST                           | 1 2 10 | -8           | 31:   | :          | % No.          | 1,101.1      | 180          | 1,4  | 17     | 200      | 59   | 50         |        |  |

Such a calculum and respect to sit specified. (Co.) tool (Pb), manganess (Ibo), and (Ibo), and hearstern changes (C.\*), reported here as 0.0 except as shown at these (Ibo). a Derived from Conductivity us TDS curves

Determined by addition of analysed constituents

A short care of the control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Co g Grey metr. Setermination

CENTRAL VALLEY REGION (NO. 5)

|                   |                                 | Anolyzed<br>by 1                                     | SDSA  |               |                   |                |        |                                            |      |       |              |                                    |              |       |            |      |
|-------------------|---------------------------------|------------------------------------------------------|-------|---------------|-------------------|----------------|--------|--------------------------------------------|------|-------|--------------|------------------------------------|--------------|-------|------------|------|
|                   | Total par-                      | MPN/mi                                               |       | Median<br>62. | Maxtmin<br>7,000. | Minimum<br>2 3 |        |                                            |      |       |              |                                    |              |       |            |      |
|                   | 1,50                            | - bid -                                              |       |               | 5                 | %              | 5      | 35                                         | Ç    | ٤     | B 2          | 14.5                               | 55           | 5     | <u> </u>   |      |
|                   | Total page                      | CO3<br>N C                                           |       | 200           | 33                | 3              | 19     | 5                                          | F    | 594   | 8            | 2R1                                | 118          | 111   | 41.B       |      |
|                   |                                 | Hardness<br>as CoCO <sub>3</sub><br>Total N C        |       | %             | 8                 | 108            | 42     | 8                                          | 17.  | 029   | 1995         | 355                                | 20%          | 8     | 8          |      |
|                   | -                               | T Po                                                 |       | 57            | S                 | 5              | 30     | 9                                          | Æ    | 11    | 44           | 75                                 | 7            | 5     | 75         |      |
|                   | Totol                           | solved sad-                                          |       | 6 C           | 170               | 2234           | 4.<br> | 135.4                                      | 520° | 3000  | 830          | 1.810                              | 875          | 865   | .BRO       |      |
|                   |                                 | Other constituents                                   |       |               |                   |                |        | A1 0.10 F0 <sub>11</sub> 3.15 <sup>d</sup> |      |       |              | Pe 0.12 41 0.23 d POW 0.15 CW 0.01 |              |       |            |      |
|                   |                                 | Siica<br>(5:02)                                      |       |               |                   |                |        | 18                                         |      |       |              | 16                                 |              |       |            |      |
|                   | uoi                             | Boron<br>(B)                                         |       | 0.0           | e e               | 0.1            | 6.0    | 0.1                                        | 0.1  | 5.0   | 4            | 0.3                                | 0,0          | 0,1   | 0.3        |      |
| (82               | ents in equivolents per million | Flua-<br>ride<br>(F)                                 |       |               |                   |                |        | 0.0                                        |      |       |              | 0.03                               |              |       |            |      |
| CSTA.             |                                 |                                                      |       |               |                   |                |        | 0.0                                        |      |       |              | 0.03                               |              |       |            |      |
| AT ANTIOCH (STA.  | Bquival                         | Chio-                                                |       | 1.30          | 1.16              | 1.35           | 35     | 190                                        | 930  | 1,760 | 1.560        | 940                                | 11,42        | 390   | 1,050      |      |
| IVPR AT           | ē                               | Sul -<br>fote<br>(\$0 <sub>4</sub> )                 |       |               |                   |                |        | 42<br>0.87                                 |      |       |              | 3.12                               |              |       |            |      |
| SAN JOAQUIN RIVPR | constituents                    | Brear-<br>bonate<br>(HCO <sub>3</sub> )              |       | 1.25          | 1.16              | 83             | 1.20   | 72                                         | 1.39 | 93    | 38           | 8.[1                               | 105          | 1.62  | 94<br>1.54 |      |
| SAM J             | Mineral con                     | Potos- Carbon-<br>sium ate<br>(K) (CO <sub>3</sub> ) |       | 0.00          | 0.0               | 0.0            | 0.00   | 0.0                                        | 0.0  | 0.0   | 0.00         | 0.00                               | 0.0          | 0.0   | 0.0        |      |
|                   | Win                             | Potos-<br>(X)                                        |       |               |                   |                |        | 5.6                                        |      |       |              | 0.72                               |              |       |            |      |
|                   |                                 | Sadium<br>(Na)                                       |       | 30            | 31                | 35             | 1.00   | 108                                        | 5.44 | 1,050 | 834<br>36.28 | 542                                | 233          | 9.00  | 23.27      |      |
|                   |                                 | Mogne.<br>Srum<br>(Mg)                               |       |               |                   |                |        | 20                                         |      |       |              | 99.40                              |              |       |            |      |
|                   |                                 | Calcium *                                            |       | 1.720         | 1.80              | 2,160          | 1.58°  | 0.75                                       | 2.85 | 13.40 | 11.28        | 34                                 | 4.080        | 8.8   | 36.7       |      |
|                   |                                 | Ŧ.                                                   |       | 7.2           | 7.28              | 7.3ª           | 7.1    | 7.2ª                                       | 7.58 | 2.5   | 7.90         | 7.48                               | - 1.<br>E 1. | 7.38  | 7.3        | <br> |
|                   |                                 | conductance<br>(micromhas<br>at 25°C)                |       | 333           | 318               | 1105           | 280    | 809                                        | 946  | 016,9 | 5,140        | 3,250                              | 1,590        | 1,570 | 3,410      |      |
|                   |                                 | gen<br>9%Sot                                         |       | 8             | 26                | 70             | 8.     | 8                                          | 69   | æ     |              | 5                                  | 表            | 92    | 62         |      |
|                   |                                 | Dissolved<br>oxygen<br>ppm %So                       |       | 7.6           | 2.6               | 9.6            | 0.6    | 7.3                                        | 1.8  | 6.3   |              | 8.3                                | 8.8          | 4.9   | -i.        |      |
|                   |                                 | 0 L                                                  |       | 75            | S.                | 66             | 8      | 69                                         | 69   | 73    | 7            | 75                                 | 99           | . 65  | 25         |      |
|                   |                                 | Discharge Temp                                       | Tidel |               |                   |                |        |                                            |      |       |              |                                    |              |       |            |      |
|                   |                                 | Dots<br>and time<br>sampled<br>PST                   | 1959  | 1/13          | 01/2              | 3/11           | 1,70   | 5/12                                       | 6/8  | 7/1   | 8/10         | 9/7                                | 10/5         | 11/3  | 12/7       |      |

o Field pH

e. Sum at calcium and magnesium in spin.

d. Inod (Pa), alumnum (A1), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>-6</sup>), reparted here as  $\frac{0.0}{0.00}$  except as shown. c Sum af calcium and magnesium in epm. b Loboratory pH.

f Determined by addition of analyzed constituents

h Annual medion and roops, resectively. Calculated from maliyses of shall care monthly samples mode by Calculated becomes a Public Health, Division of Lebonanies, or United States Debids Health Service (USPRS), Annual relatives and by United States Geningered Servey, Quality of Mental States Geningered Servey, Quality of Mental States (Service) and States of Personal Services (USPRS), Sam Bernandino Compy Flood Committee of Services (USPRS), Services (USPRS), Sam Bernandino Compy Flood Committee of Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (USPRS), Services (US e Derived from conductivity vs TDS curves

TABLE 8-11
ANALYSES OF SURFACE WATER
11 ALLET 1951/16 (NO.)

A J. J. UIN ALIFE \* N. ND\* 1505

| F                 | -                                                                                                           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        |
|-------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                   | Total Per Andreas bid Co-form Assyred sold as CaCOs r Branch By a Solds on Co-form Relatives                | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|                   | 4 m / 10 m                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -                 | 30.4                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                   | 000 P                                                                                                       | e dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| L                 | as Co                                                                                                       | w G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|                   | 4005                                                                                                        | 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| L                 | Total<br>Bold                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                   | Fiuo- Boron Sinco                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ı                 | 00005                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 1                 | Boron<br>(B)                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| m.010             | Fico-                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ports per million | Chio Ni Fiuo- Boro (c) (c) (c)                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| bd                | Chio                                                                                                        | y 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 1                 | Sul<br>fore                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                   | Bicor                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 100000            | orban-                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| N. S.             | Colcum Magne Sodum Potes. Corbon-<br>(Co) (Ma) (No) sum ofe                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                   | Sodium<br>(No)                                                                                              | Tal al a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|                   | and and and and and and and and and and                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                   | (Co)                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                   | H                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                   | Spacific<br>conductance<br>(micrambas<br>at 25°C)                                                           | 18 10 11 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                   | Discharge Tamp Dissolves conductores phinical conductores phinings on pages (micrambos phinings) on 1 2000. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                   | To of                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                   | Dischorge                                                                                                   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |          |
|                   | Date<br>ond time<br>sampled<br>P S T                                                                        | * N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F I I IN |

ANALYSES OF SURFACE WATER TABLE B-14

CENTRAL WALLEY REGION (NO. | )

|                                           | solived sod - cert Hordness blud - Coliform Analysed solived sod - solice in ppm MPK/ml by 1 in ppm MPK/ml by 1 in ppm Ppm MPK/ml by 1 in ppm Ppm MPK/ml by 1 in ppm Ppm MPK/ml by 1 in ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm | USBR |     |       |       |       |       |      |          |       |       |       |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-------|-------|-------|-------|------|----------|-------|-------|-------|
| 4                                         | N/mi                                                                                                                                                                                                                            |      |     |       |       |       |       |      |          |       |       |       |
|                                           | ty Mg                                                                                                                                                                                                                           |      |     |       |       |       |       |      |          |       |       |       |
| j-                                        | CO <sub>3</sub>                                                                                                                                                                                                                 |      |     |       |       |       |       |      |          |       |       |       |
|                                           | Hardness<br>os CaCOs<br>Tatal N C<br>ppm ppm                                                                                                                                                                                    |      |     |       |       |       |       |      |          |       |       |       |
| De c                                      | and -                                                                                                                                                                                                                           |      | 5   | 9     |       | ξ.    | Ş     | 2    | <u>5</u> | 5     | 5     | 0     |
| Total                                     | solved<br>solved<br>in ppm                                                                                                                                                                                                      |      | 736 | Š.    | g .   | 340   | 112   | 616  | 924      | 716   | 824   | 8     |
|                                           | Other constituents                                                                                                                                                                                                              |      |     |       |       |       |       |      |          |       |       |       |
|                                           | (2015)<br>(S10 <sub>2</sub> )                                                                                                                                                                                                   |      |     |       |       |       |       |      |          |       |       |       |
| Ilian                                     | Baran Silica<br>(8) (5:0 <sub>2</sub> )                                                                                                                                                                                         |      |     |       |       |       |       |      |          |       | _     |       |
| per million                               | Flua-<br>ride<br>(F)                                                                                                                                                                                                            |      |     |       |       |       |       |      |          |       |       |       |
| parts per million<br>equivalents per mill | trate<br>(NO <sub>3</sub> )                                                                                                                                                                                                     |      |     |       |       |       |       |      |          |       |       |       |
| painbe                                    | Chla-<br>ride<br>(Ci)                                                                                                                                                                                                           |      | 52  | 111/2 |       | 2     | 8     | 165  | 2012     | 191   | 212   | 214   |
| ē                                         | Sul -<br>fote<br>(SO <sub>4</sub> )                                                                                                                                                                                             |      |     |       |       |       |       |      |          |       |       |       |
| triuents                                  | Brcor-<br>banate<br>(HCO <sub>3</sub> )                                                                                                                                                                                         |      |     |       |       |       |       |      |          |       |       |       |
| Mineral constituents                      | orbon-<br>die<br>(CO <sub>3</sub> )                                                                                                                                                                                             |      |     |       |       |       |       |      |          |       |       |       |
| Mine                                      | otos- C<br>Sium<br>(K)                                                                                                                                                                                                          |      |     |       |       |       |       |      |          |       |       |       |
|                                           | mulpo<br>(o N.)                                                                                                                                                                                                                 |      | 133 | 75    | 511   | 69    | 143   | 25   | 155      | 133   | 154   | 199   |
|                                           | S -auto<br>grow<br>(Mg)                                                                                                                                                                                                         |      |     |       |       |       |       |      |          |       |       |       |
|                                           | Coleium Magner Sodium Potos Corbon (Co) (Mg) (NO) (KN) (COs)                                                                                                                                                                    |      |     |       |       |       |       |      |          |       |       |       |
|                                           | Ŧ.                                                                                                                                                                                                                              |      |     |       |       |       |       |      | -        |       |       |       |
|                                           | canductonce pH<br>(micromhas pH<br>at 25°C)                                                                                                                                                                                     |      | 948 | 786   | 1,665 | 1,195 | 1,228 | 676  | 1,379    | 1,108 | 1,265 | 1,288 |
|                                           | gan<br>gan<br>%Sot                                                                                                                                                                                                              |      |     |       |       |       |       |      |          |       |       |       |
|                                           | Disso                                                                                                                                                                                                                           |      |     |       |       |       |       |      |          |       |       |       |
|                                           | Tamp<br>in of                                                                                                                                                                                                                   |      | ş   | 4.5   | 29    | 8     | 40    | 89   | 76       | 52    | 63    | 02    |
|                                           | Dischargs Tamp<br>in cfs in 9F                                                                                                                                                                                                  |      |     |       |       |       |       |      |          |       |       |       |
|                                           | Date<br>and time<br>ampled<br>P S.T                                                                                                                                                                                             | 1059 |     | 2/17  | 1130  | 1200  | 5/13  | 6/16 | 7/16     | 8/11  | 9/16  | 10/14 |

b Laboratary pH.

a Field pH

Sum of calcium and magnesium in apm. It is a compart (Cu), leed (Pb), managenese (Mn), zinc (Zn), and hexevalent chramium ( $C^{+}^{0}$ ), reported here as  $\frac{0.0}{0.00}$  except as shown Itan (Fe), oluminum (AI), arsenic (As), capper (Cu), leed (Pb), managenese (Mn), zinc (Zn), and hexevalent chramium (Ci), reported here as  $\frac{0.0}{0.00}$  except as shown Sum of calcium and magnesium in epm.

Determined by addition of analyzed canstituents. Derived from conductivity vs TDS curves.

Amod median and range, respectively. Calculated from analyses and shallows another to Calculated from analyses and shallows another a depollution another and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shallows and the shall be shallows and the shall be shallows and the shall be shallows and the shal

Total Pr. Modelli Tu. C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm Anapied 1019 of C. farm F100 AN JOAQUIN HIVEN NE IN DOF P I OF ( " 1, " a Chio Mineral constituents in B.cor bonote (MCO.) 010 (CO<sub>3</sub>) Potos 18 Magne 87 Discharge Temp Dissolved Sobserfice in the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the common of the c A 46.94 Dore ond lime sompled P S Y 111 11 53 35

A se A er ca 5 ang ese Mil

A control of the first property of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of t

#### ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE 3-4

| r                                                                     | _                       | -                                |                            |      |                |                                 |                 |       |                |  |
|-----------------------------------------------------------------------|-------------------------|----------------------------------|----------------------------|------|----------------|---------------------------------|-----------------|-------|----------------|--|
|                                                                       |                         | Anolyzed<br>by 1                 |                            | USGS |                |                                 |                 |       |                |  |
|                                                                       |                         | Hordness bid - Coliform Analyzed |                            |      | Mean<br>6.2    | Maximum<br>>7,000.              | Minimum<br>7.23 |       |                |  |
| r                                                                     | - 50                    | - pid                            |                            |      | 20             | 9                               | 28              | 20    | 20             |  |
|                                                                       |                         | 888                              | D B C                      |      | 186            | 162                             | 377             | 455   | 217            |  |
|                                                                       |                         | Hordn<br>es Co                   | Total N.C.<br>ppm ppm      |      | 352            | 336                             | 5P0             | 099   | 419            |  |
| ľ                                                                     | Day                     | - poe                            |                            |      | 50<br>00<br>00 | 55                              | 82              | 29    | 19             |  |
|                                                                       | Total                   | solvad sod -                     | mdd ui                     |      | 1060°          | 3 E776                          | 1630°           | 1960  | 1280°          |  |
|                                                                       |                         |                                  |                            |      |                | 40                              |                 |       |                |  |
|                                                                       |                         |                                  |                            |      |                |                                 |                 |       |                |  |
|                                                                       |                         |                                  | 20 1811                    |      |                | A1 0.16<br>PO <sub>2</sub> 0.55 |                 |       |                |  |
|                                                                       |                         | 1                                | - 1                        |      |                | 21<br>PR A3                     |                 |       | _              |  |
| SAN JOACHIN RIVER AT FREHONT FORD BRIDGE (STA. 25c) ports per million |                         | Boron Silico                     | (Si                        |      | 101            |                                 | 01              | 00    | 0              |  |
|                                                                       | Illian                  | Boro                             |                            |      | 0.5            | 0.7                             | 110             | 8.0   | 1.0            |  |
|                                                                       | par m                   | Fluo                             | (F)                        |      |                | 0.2                             |                 |       |                |  |
|                                                                       | equivolents per million | ž                                | (NO <sub>S</sub> )         |      |                | 0.03                            |                 |       |                |  |
|                                                                       | equivo                  | Chio-                            |                            |      | 13.31          | 298<br>8,40                     | 640<br>18.05    | 732   | 12,55<br>12,55 |  |
|                                                                       | ·                       | Sul -                            | -                          |      |                | 192                             |                 | 376   | 266            |  |
|                                                                       | tuente                  |                                  | (HCO <sub>S</sub> )        |      | 3.31           | 3,47                            | 24.8            | 250   | 246            |  |
|                                                                       | Minsrol constituents    | Bon-B                            | (K) (CO <sub>3</sub> ) (F) |      | 0000           | 0.0                             | 0000            | 0.0   | 0 8            |  |
|                                                                       | Minsro                  | Co - so                          | Ec.                        |      | 010            | 7.0<br>0.18                     | 010             | 010   | OIC            |  |
|                                                                       |                         | Pote                             | ž.                         |      | 10-            |                                 | 16              | 77    | 100            |  |
|                                                                       |                         | Sodium                           | N)                         |      | 9.79           | 208<br>9.05                     | 369             | 21,71 | 30k<br>13.27   |  |
|                                                                       |                         | Mogne                            | (Mg)                       |      |                | 3.43                            |                 |       |                |  |
|                                                                       |                         | Colcum                           | (Co) mium<br>(Mg)          |      | 7.00           | 3.29                            | 11.60           | 13.20 | H,38¢.         |  |
|                                                                       |                         | F.                               |                            |      | 8,3            | 8,2                             | 8,0             | 7.3   | 7.7            |  |
|                                                                       | Spacefic                | conductance<br>(micromhos        | 01 25-0                    |      | 1620           | 1690                            | 2800            | 3360  | 2190           |  |
|                                                                       |                         | p us                             | %Sat                       |      | 137            | 106                             | 66              | 1177  | 105            |  |
|                                                                       |                         | Dissolved                        | Edd                        |      | 10.9           | 00<br>N/                        | 9,2             | 11,7  | 12.h           |  |
|                                                                       |                         | Tamp<br>In of                    | -                          |      | 82             | 8                               | 8               | 200   | 17             |  |
|                                                                       |                         | Dischorgs Tamp                   |                            |      | 92             | 77                              | 38              | 26    | 99             |  |
|                                                                       |                         | ond time                         | P.S.T.                     | 1959 | 8/4            | 9/10                            | 10/8            | 11/5  | 12/10          |  |

b Loborotory pH.

Sum of colcium and magnesium in epm.

Jum of colcum and magnessum in spin.
Iran (FR), aluminum (AI), areanic (KS), capaer (CU), lead (Pb), manganese (Mn), zinc (Zn), and hazavalent chromium (CI<sup>+6</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Among median and range, respectively. Calculated from analyses of displicate monthly samples mode by California Despirement of Poblic Mealth. Division of Lobaronaus, or United States Public Health Service.

Mannel analyses made by United States Geological Sarray, Doding of Waters Banch (1955), United States Profile Cheep International States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and States and Stat

### ANALYSES OF SURFACE WATER CENTRAL VALLET REGION (NO. 5)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Andryzed                              |                               | 9050                     |          |         |         |         |              |        |         |         |         |         |         |       |         |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|--------------------------|----------|---------|---------|---------|--------------|--------|---------|---------|---------|---------|---------|-------|---------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coliforn<br>MPR/m                     |                               |                          |          |         |         |         |              |        |         |         |         |         |         |       |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                     |                               |                          |          |         |         |         |              |        |         |         |         |         |         |       |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000m                                  | W A                           |                          | 164      | 8       | 152     | 191     | j.           | E      | 8       | 5       | 1       | Ŷ.      | 1       | E     | 101     | 1            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Months Considered on Aguardian per million of the first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first firs |                                       |                               |                          | 200      | 219     | 1       | 361     | 8            | ¥.     | 37.2    | E       | 7       | 315     | *       | 8     | ř.      | 8            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                               |                          | 3        | 9.      | 8       | 99      | 8            | 5.     | 2       | \$      | 35      | 5       | 9       | 5.0   | 34      | ř.           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In squivolants par million (fatal per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 601.00                                | -                             |                          | 1.180    | 3       | 1.110   | 1,730   | 219          | 28     | 1       | 8       | F.      | 916     | 200     | 3     | Į.      | 578          |
| SOM CONCERN ATTENDED THE DETECT (TITLE, 200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Olner constituents            |                          | 800      | Pe 0.01 | Pa 0.00 | ₹ 0.01  | 7. 0.02      | 0.0    | Pe 0.00 | P 0.01  | 7e 0.04 | 8 6     | 80 0 2  | 80.00 | 8 0.8   | Pe 0 70      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SHICO                                 | (%)                           |                          | 13       | 2       | 19      | 8       | 20           | 2      | 61      | al      | 5       | 10      | A .     | 25    | 8       | 13           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Baron Silica                          | (0)                           |                          | 0 1      | 9.0     | 1.2     | 1.6     | 0.9          |        | 0.0     | 57      | 7.0     | 5]      | 6       | 5     | 4.0     | 0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in milli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                     | ( F )                         |                          | 0.0      | 3 3     | 000     | 4.00    | 00.0         | 000    | 000     | 0.0     | 000     | 00      | 0 0     | 0.0   | 0.0     | 100          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | (NON)                         |                          | 20.00    | 0.0     | 200     | 0.08    | # 10<br># 10 | 0.8    | 180.0   | 9.04    | 0.03    | 2.0     | - 18    | 100   | 20      | # 10<br>W.O. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CNIa-                                 | (C)                           |                          | #        | 150     | F 18    | \$ 10°  | 18           | 301    | 310     | 1       | 6       | £ 12    | 2.23    | 145   | 8 6     | 150          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sel -                                 | (\$0\$)                       |                          | 29.      | E.E.    | 200     | 25.5    | THE ST       | 28     | 200     | 9 8     | 2.58    | 21.50   | 9 0 0   | 8 0   | 100     | 200          |
| COUNTY TOWNS TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF TH | tifuants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 10010                               | Bonata<br>(HCO <sub>3</sub> ) |                          | % E      | 1 1 3 S | 3.87    | 9 10    | 2.62         | 3.56   | 1.39    | 191     | 8       | 8 1     | F. 8    | 164   | 18 N    | E   E        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rol con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | (co)                          |                          | 0.0      | 0.0     | 0.0     | 0.0     | 0.0          | 0.0    | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.00  | 0.0     | 0.00         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | E C                           |                          | 5.0      | 6.8     | 0.0     | 6.19    | 8.8          | 6.4    | 0.21    | 6.0     | 9.6     | 0 8     | 0.5     | 5.6   | 5 B     | 5.8          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sadium                                |                               |                          | 10.8     | 182     | 10.0    | 256     | 212          | 8 8    | 10.14   | 191     | 169     | 88      | 25      | 3.00  | 1 0     | 5.52         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Magns                                 | ( ( M g)                      |                          | 2/2      | 200     | 200     | 47.63   | 2/3          | 3.53   | 100     | 3.05    | 200     | 16.     | 2/2     | 12    | 23/3    | 1.18         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Caterom                               | (00)                          |                          | 3.69     | P . 35  | 3.49    | 8 2     | 18           | 16     | 10      | 3.69    | 8 2     | 8       | 200     | 7.35  | 200     | 3.5          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P H                                   |                               |                          | #.<br>}- | 7.1     | 7.3     | ۳<br>س  | 7.1          | 7.2    | AF.     | 7.5     | 7.3     | 7.3     | 7.0     | 7.3   | 7.2     | 6,1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | conductance                           | 13 c 2 La                     |                          | 1,840    | 1,070   | 1,760   | 1,930   | 1,010        | 1,750  | 1,840   | 1,540   | 1,430   | 1,500   | 547     | 8     | 1,170   | 8            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8801v86                             | ppm %3at                      |                          |          |         |         |         |              |        |         |         |         |         |         |       |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tamp<br>in of                         |                               |                          |          |         |         |         |              |        |         |         |         |         |         |       |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Orschorgs Tamp                        |                               | Average<br>Daily<br>Mean | 128      | 8       |         | 183     | 397          | 106    | 134     | 152     | M3      | 36      | 230     | 92    | 190     | 380          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | - CO                          | 1949                     | 1/1-11   | 1/12-18 | 2/1-9   | 2/10-13 | 2/19-58      | 3/1-12 | 3/13-25 | 3,26-31 | 4/6-18  | 98-61/4 | 0(-12/* | 5/1-4 | \$/5-15 | 11-91/5      |

b Loborstory pH

c Sum of colcium and magnesium in epm

c. Sum of calcum and importance in spin.
d. fren (Fe) is turnium. As is expericed here on (Cu. Lead (Pb), managenese like is inc. (Zn) and hexardent chromium (Cu.\*) reported here on 0 except as abbum d. Irran (Fe) is turnium. · Derived from Eunductivity vs TDS curves

g Grevimetric Jeterminstron

h. Aural region and integer respectivals, Calculated from analyzes of dools also manifyly simplest mode by Calcinoria Department of Public Health Division of Laboratoria, as United Stress Pouls Parker and Book Stress (Mark Stress Pouls as Proceedings Book Mark Stress Pouls as Proceedings Book Mark Stress (Mark Stress Pouls as Proceedings Book Mark Stress Pouls as Proceedings (Mark Stress Pouls As Proceedings Book Mark Stress Pouls As Region Department of Parker Book Stress (Mark Stress Public Pouls As Region Pouls Parker Book Stress Pouls As Region Pouls Parker Book Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Book Pouls Parker Parker Book Pouls Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker Parker P

| 8116. (776, 25c centăriien)<br>paris per million | _                  |                                         | 1       | _                          |         |          |         |                    |              |                       |         |             |                |         |             |              |          |
|--------------------------------------------------|--------------------|-----------------------------------------|---------|----------------------------|---------|----------|---------|--------------------|--------------|-----------------------|---------|-------------|----------------|---------|-------------|--------------|----------|
|                                                  |                    | Anolyzed<br>by i                        | 1       |                            |         |          |         |                    |              |                       |         |             |                |         |             |              |          |
|                                                  |                    | bid - Coliform                          |         |                            |         |          |         |                    |              |                       |         |             |                |         |             |              |          |
|                                                  | 1                  | - Add                                   |         |                            |         |          |         |                    |              |                       |         |             |                |         |             |              |          |
|                                                  |                    | SO NO                                   |         |                            |         | 3        |         | 3                  |              |                       | с<br>-  |             | U.             | Ξ       | ā           | 121          | ć        |
|                                                  |                    |                                         |         |                            |         |          |         |                    |              | 3                     | 3       | ~           | ě              | Ē,      |             | 4            | 1-12     |
|                                                  |                    | - pos<br>- pos<br>- pos                 |         |                            |         |          |         | 7                  | -            |                       |         | -           |                | ě       | L           | 7            | r,       |
|                                                  | Tatal              | solids<br>solids<br>in ppm              |         | ě                          | ě       | å        | 8       | 100                | 7, 10        | Ā                     | 3,00    | 1000        | 1,0 %          | 0.7     | 1           | -            | - [*]    |
|                                                  |                    | Other constituents                      |         | Fe 1,00                    | Pr 0.00 | Fe 0.00  | Pe 1,05 | Fe 0,1h            | Fe 0,(2      | r <sub>p</sub> 1,001, | Pe 1,03 | Fe 0,01     | Pa 1.11        | Fc 0,00 | 0.00        | 00*11 0      | 00° - 00 |
|                                                  |                    | Silca<br>(SiO <sub>2</sub> )            |         | 23                         | 88      | 22       | 33      | 8                  | 5            | z                     | 8       | 2.2         | 10             | 8       | г           | 83           | 57       |
|                                                  | ion                | Boron (B)                               |         | 7.                         | 5       | 5.0      |         | -                  | ¥.           | 3                     | ä       | -5          | 10             | č       | -           |              | 3        |
| ntirse                                           | million<br>per mil | Flug-<br>ride<br>(F)                    |         | 200                        | 46      | S C      | 20.0    | E 00               | 500          | - C-10                | 0.3     | 0.3         | 0.02           | 2 2     | 4 C         | 100          | 200      |
| . 250 00                                         | ients per          | trate<br>(NOs)                          |         | v. 0.                      | 78      | 8 7 6    | 4 10    | 9,0                | 200          | 3.3                   | 0,07    | 2.1         | 2.3            | 2 + 9   | 200         | 2.3          | 0.0      |
| 5- (TTA                                          | equivalents        | Chlo-<br>ride<br>(CI)                   |         | 97                         | 220     | 270      | 200     | 302                | 362<br>10,21 | 333                   | 365     | 312<br>4,80 | 370<br>10,11,3 | 230     | 11.5        | 757<br>10.0  | 11.70    |
| T 88 T                                           | C. S               | Sul -<br>fate<br>(50 <sub>4</sub> )     |         | 2.50                       | 2.56    | 3.65     | 23.77   | 3.10               | 3770         | 136                   | 3,19    | 2,73        | 3.21           | 2,73    | 135<br>2.81 | HC 2         | 191      |
|                                                  | nefifuent          | Bicar-<br>bonate<br>(HCO <sub>5</sub> ) |         | 1H1                        | 3,14    | 27.3     | 3,21    | 3,25               | 208<br>1.1   | 190                   | 3,29    | 191         | 3,20           | F .     | 3.20        | 176<br>2,119 | 1.61     |
|                                                  |                    | Corban-<br>(CO <sub>S</sub> )           |         | 0.0                        | 000     | 0.<br>0. | 0.5     | 0 0                | 0,0          | 0.0                   | 0 2     | 0.0         | 0.0            | 0.0     | 0,00        | 0.0          | 0.0      |
|                                                  | M                  | Potds-<br>sium<br>(K)                   |         | : 15                       | 77.5    | 7,2      |         | 3.6                | 2/6          | ×15                   | 7.6     | 716         | 7,2            | 0,19    | 10          | 2/2          | 212      |
| *                                                |                    | Sodium<br>(No)                          |         | 128                        | 155     | 205      | 7.7     | 211<br>9.18        | 11.0         | 252                   | 9.31    | 2008        | 21,0           | 173     | 100         | 970          | 11.1     |
|                                                  |                    | Magne-<br>erum<br>(Mg)                  |         | 7.                         | 2.27    | 1.96     | 26*1    | 2,59               | 2/2          | 72                    | 3.41    | 27          | 37.00          | 2,01    | 3.11        | 31.2         | ZE:      |
|                                                  | _                  | (Calcium<br>(Ca)                        |         | 2.5                        | 3.9     | 3.74     | 65      | 5/2                | 3,79         | 7.2E                  | 1.0     | 3,10        | 3,64           | 7       | -10         | v.F.         | #E       |
|                                                  | ۵                  | I                                       | _       |                            | 7       | 7-3      | 7-7-    | U.                 | 7.7          | 5                     | 2       | 7:3         | 5.             | -       | 7.6         | 7.7          | c-       |
|                                                  | Soucific           | (micromhos<br>at 25°C)                  |         | $\lambda_y \in \mathbb{T}$ | 1,040   |          | 1,07    | 1,500              | 1,700        | 3,17                  | 1,670   | 1,410       | 1,690          | 1,610   | 1,790       | 1,1%         | J. 900   |
|                                                  |                    | Dissolved<br>oxygen<br>ppm %Sat         |         |                            |         |          |         |                    |              |                       |         |             |                |         |             |              |          |
|                                                  |                    |                                         |         |                            |         |          |         | -                  |              | -                     |         | _           |                |         |             |              |          |
|                                                  |                    | Discharge Temp                          | Average | 217                        | 156     | 123      | 132     | 76                 | 13           | 108                   | 78      | 8           | 13             | 100     | 63          | 121          | 3        |
|                                                  |                    | and time<br>sompled<br>P.S.T            | E part  |                            | * 1     | 121      | 6-1     | 17 = 17<br>10 = 17 | 7/17-31,     | F/ .=12               | 1/13-19 | H/2 1-27    | 0-174          | 9/3-4   | 1/10-14     | 1/2:-30,     | 10/3-17  |

b Laboratory pH. a Field pH.

c Sum of calcium and magnesium in epm.

c. and at concern any amplitude of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contrac e Derived from conductivity vs TDS curves.

g Gravimetric determination.

Determined by addition of analyzed constituents.

h. Annual median and range, respectively. Calculated from analyses of duplicate manifys samples made by California Department of Public Health, Division of Laboratories, or United Stress Public Health, Service

Maneal analyses node by United Stores Geological Survey, Quality of Water Branch (USGS), United Stores Department of the Interior of Stores of Reference (USBS), United Stores (USPS), San Barnestina Champy Flood
Commol Distriction (Store), Department of Stores (USPS), San Barnestina Champy (Stores (USPS)), San Barnestina Champy (

ANALYSES OF SURFACE WATER FWTRAL VALLETY RETEON (WT. 1 TABLE B.4

|                         | disc. can Horonass on Co form Analyzed to post of the Phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phylos by the phyl | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 3                       | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| -                       | 000 me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                         | Totol<br>PBP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Pas                     | 5 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Total                   | 3000 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                         | Silico<br>(S O <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1100                    | Fluo- Boron Sinco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| valente per mil         | F1uo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | م                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| aquivolente per milion  | trote<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3).<br>3P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| AIRbe                   | Chia<br>ride<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                         | Sul -<br>fate<br>(50 <sub>6</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 11146018                | Bicar -<br>banate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Mineral constituents in | Catcum Magna: Sagum Patas. Carbon Bucar-<br>(Ca) sum aum (Na) (Na) (x CO <sub>3</sub> ) (HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Min                     | Patae-<br>Sions<br>CX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                         | Sadium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                         | Magne-<br>sium<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                         | (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | م ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Specific                | conductanc<br>(m.crambos<br>at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                         | Discourge Tamp Discoved conductoring pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                         | de of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                         | on of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Character and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the |  |
|                         | Dote of 1.me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 178-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

CENTRAL VALLEY REGION (NO. 5)

|                                       |           |             |                                 |                                            |      |               |                 |                 |       |                               |      |       |      |                   |      |       | _                           | <br>_ | <br>7 |
|---------------------------------------|-----------|-------------|---------------------------------|--------------------------------------------|------|---------------|-----------------|-----------------|-------|-------------------------------|------|-------|------|-------------------|------|-------|-----------------------------|-------|-------|
|                                       |           |             | Anolyzed<br>by 1                |                                            | 5050 |               |                 |                 |       |                               |      |       |      |                   |      |       |                             |       |       |
|                                       |           |             | de CoCO <sub>3</sub> Ity MPN/mi |                                            |      | Wedten<br>23. | Maximum<br>620. | Minimum<br>0.23 |       |                               |      |       |      |                   |      |       |                             |       | -     |
|                                       |           | Tur         | - A                             |                                            |      | 10            | c.              | 9               | 5     | -                             | 9    | er.   | v    |                   | ٥.   | 9     | ٥.                          |       |       |
|                                       |           |             | DCO s                           | D E C                                      |      | С             | c               | С               | 0.    | -                             | c    | С     | С    |                   | С    | c     | -2                          |       | <br>- |
|                                       |           |             | Hord<br>G Cd                    | Tatal N.C<br>ppm ppm                       |      | 12            | 13              | 15              | 17    | 16                            | 13   | 13    | 12   |                   | 7    | 12    | 16                          |       |       |
|                                       |           | Par         | 2 og                            |                                            |      | \$            | Ş               | C <sub>2</sub>  | 8     | 31                            | 5    | 9     | 30   |                   | 99   | 5     | 37                          |       |       |
|                                       |           | Total       | solved                          | mdd ui                                     |      | 35.0          | 32°             | <b>%</b>        | 48    | 47                            | 326  | 396   | 369  |                   | 58   | 39.   | <sup>6</sup> C <sub>2</sub> |       |       |
|                                       |           |             |                                 |                                            |      |               |                 |                 |       | Fe 0.09 A1 0.10 d<br>POL 0.00 |      |       |      |                   |      |       |                             |       |       |
|                                       |           |             | Silico                          | (\$0.05)                                   |      |               |                 |                 |       | 10                            |      |       |      |                   |      |       |                             |       | 1     |
|                                       | l         | u o         | Boron S                         | (8)                                        |      | c.            | 0.0             | 0.1             | 0,0   | 0.0                           | 0.0  | 0.0   | 0.0  |                   | 0.0  | 0.0   | 0.0                         |       | 1     |
| -                                     | million   | per million | Fluo-B                          |                                            |      |               |                 |                 | -1    | 0.0                           |      |       | -    |                   |      |       |                             |       | <br>1 |
| (STA. Pl                              | ports per |             |                                 | (SO <sub>4</sub> ) (CI) (NO <sub>3</sub> ) |      |               |                 |                 |       | 0.0                           |      |       |      |                   |      |       |                             |       |       |
| PRIANT                                | od        | edonvalents | Chlo-                           | (0)                                        |      | 8.4           | 0.11            | 6.0             | 6.5   | 0.1                           | 0.11 | 3.2   | 0.07 |                   | 7.5  | 0.11  | 0.07                        |       |       |
| VER AT                                |           |             | Sul -                           | (80%)                                      |      |               |                 |                 |       | 3.8                           |      |       |      |                   |      |       |                             | -     |       |
| SAN JOAQUIN RIVER AT FRIANT (STA. 24) | 1         | 9111090118  | Bicor-                          | (HCO <sub>3</sub> )                        |      | 16            | 0.26            | 0.33            | 0.30  | 0.30                          | 0.26 | 0.30  | 18   |                   | 0.52 | 0.26  | 0.25                        |       |       |
| SAN JO                                |           | Mineral con | Carban-                         | (K) (CO <sub>S</sub> )                     |      | 0.0           | 0.00            | 0.00            | 0.00  | 0.0                           | 0.00 | 0.0   | 0.0  |                   | 0.0  | 0.00  | 0.00                        |       |       |
|                                       | 1         | WID         | Potos- Carban-                  |                                            |      |               |                 |                 |       | 0.0                           |      |       |      |                   |      |       |                             |       | 1     |
|                                       |           |             | Sodium                          |                                            |      | 0.13          | 3.7             | 0.20            | 3.2   | 3.5                           | 0.18 | 3.9   | 3.6  |                   | 6.6  | 3.9   | 0.19                        |       |       |
|                                       |           |             | Mogne-                          | (Mg)                                       |      |               |                 |                 |       | 0.08                          |      |       |      |                   |      |       |                             |       |       |
|                                       |           |             | Calcium                         | (00)                                       |      | 0.240         | 0.240           | 0.30            | 0.340 | 8.4                           | 0.26 | 0.26° | 0.25 |                   | 0.48 | 0.240 | 0.32                        |       |       |
|                                       |           |             | e H C                           |                                            |      | 6.5           | 6.8             | 6.8             | 6.9   | 6.8                           | 7.7  | 7.0   | 6.8  |                   | 6.8  | 6.8   | 6.9                         |       | <br>- |
|                                       |           | Specific    | (micrambas pH &                 | 01 62 10                                   |      | 1977          | 43.4            | 9.95            | 9.94  | 6.54                          | 0.44 | 44.8  | 44.4 |                   | 72.2 | 0.54  | 50.3                        |       |       |
|                                       |           |             | D C                             | %Sat                                       |      | 86            | 46              | 8:              | 98    | 8                             | 124  | 8     | 8    | anett             | 16   | 79    | 8.                          | <br>  |       |
|                                       |           |             | Dissolved                       | ррш                                        |      | 9.7           | 10.3            | 11.0            | 10.h  | 10.9                          | 11.4 | 11.2  | 10.5 | Broken in Transit | 10.6 | 10.9  | 11.0                        |       | -     |
|                                       | -         |             | Temp<br>In oF                   |                                            |      | 95            | 23              | 9               | 5     | 14                            | 9    | 99    | 9    |                   | 9    | 15    | 51                          |       |       |
|                                       |           |             | Discharge Temp                  |                                            |      | 175           | 180             | 186             | 108   | 137                           | 133  | 181   | 175  | Sample            | 148  | 106   | 42                          |       |       |
|                                       |           |             | and time                        | P.S.T                                      | 1959 | 1/15          | 2/3             | 3/10            | 17/4  | 9//90                         | 6/3  | 7/8   | 9/6  | /6                | 1007 | 11/4  | 12/9                        |       | -     |

b Laboratory pH. a Field pH.

c Sum of calcium and magnessum in apm.

Sum of colcum and magnetium in spin.

Inon (Fe), aluminum (AI), reparted here as  $\frac{0.0}{0.00}$  except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Amed melan red resp, respectively. Cledioted from endyster of deplaces monthly samples mode by Celtomia Opportunes of Poblic Health, Division of Laboratoris, or United Stores Poblic Health Springes.

Minned modyses mode by United Stores Condrigated Sovery, Queling divines Goode (USSS), the Department of the Internot, Survey of Reference (USPS), San Bewerdero Conny, Flood Composition (USBS), Linied Stores Condition when Desired Soveryers (Confidence (MOP), Les Angeles Department of Meater of Meater (LADPP), City of Las Angeles, Department of America (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Control (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Department of Meater (LADPP), City of Las Angeles, Departme Grovimetric determination.

THE DEVI OF GREENING ROTTER ( ... "NOTHEL VALLET RIGH W (M.

|                         | Andryzed<br>by i                                                                                    | ī   |          |                |     |      |            |     |     |     |       |      |      |     |
|-------------------------|-----------------------------------------------------------------------------------------------------|-----|----------|----------------|-----|------|------------|-----|-----|-----|-------|------|------|-----|
|                         | Hordness bid Coliform Analyzed se CeCO <sub>3</sub> 1, MPN/mu by:                                   |     | New Land | Name of Street | 1   |      |            |     |     |     |       |      |      |     |
| 100                     | P-6                                                                                                 |     | 23       |                | 8   | 1    |            | 5   | 3   | 5   | rd .  | 10   | 1    | ū.  |
|                         | N C 0 2                                                                                             |     |          | -              | 3   |      |            |     |     |     |       | ¥    | 5    | 3   |
|                         | Potol<br>ppm                                                                                        |     |          | 3              | 3   | 3    |            | E   | 8   | N.  | 3     | à    | 1    | Ř   |
| 1                       | 00 g                                                                                                |     |          |                | 0   |      |            |     |     | 2   |       | 2    | ,    |     |
| Tote                    | solved sod -                                                                                        |     | 38°      | 1              | 1   | *80  | d          | F   | J   | ° 2 | b     | à    | 9    | 007 |
|                         | Other constituents                                                                                  |     |          |                |     |      | AL .2 F L. |     |     |     | A 1.6 |      |      |     |
|                         | (\$0'S)                                                                                             |     |          |                |     |      | 7          |     |     |     | -     |      |      |     |
| 100                     |                                                                                                     |     | :        | 0.0            | 5.0 | 3    | 1          | -1  | 3   | d   | 3     | 0,1  | 1    | -5  |
| per million             | Fivo-<br>ride<br>(F)                                                                                |     |          |                |     |      | 1          |     |     | -   | 98    |      |      |     |
| voients per million     | N<br>trote<br>(NO <sub>3</sub> )                                                                    |     |          |                |     |      | 180        |     |     |     | 0.0   |      |      |     |
| equivolents             | CNIO-<br>ride<br>(CI)                                                                               |     | 200      | 01.0           | 77. | 1114 | 7          | 96. | 1   | 18: | 100   | 25   | 1.00 | 1   |
| Ē                       | Sul -<br>fore<br>(SO <sub>6</sub> )                                                                 |     |          |                |     |      |            |     |     |     | 980   |      |      |     |
| ituents.                | Bicor-<br>bonote<br>(HCO <sub>3</sub> )                                                             |     | 10,1     |                | - 1 | E    | 4          | 17. |     | 104 | 8/2   | 180. | 1.   | 174 |
| Mineral constituents in | 010<br>010<br>(CO <sub>3</sub> )                                                                    |     | 8        | 18:0           | 8.0 | 18   | 18         | 18  | 18  | 18  | 18.   | 18   | 18.0 | 3/8 |
| Mine                    | Potos- Corbon - (x)                                                                                 |     | 010      | 510            | 010 | 010  | 15         |     | -   |     | 00.0  |      |      |     |
|                         | Sodium (No)                                                                                         |     | 24       | 1              | 38  |      | 8/3        | 13; | 5/5 | Z i | 8     | 90   | 11;  | 18; |
|                         | Wogne.                                                                                              |     |          |                |     |      | 9/3        |     |     |     | 17.21 |      |      |     |
|                         | (Colcium<br>(Co)                                                                                    |     | -        | E              | 1.  | B    | 7          | P   | E   | 10  | 45    | E    | t-   | ì   |
|                         | r<br>E                                                                                              |     | *.       | 0              | 2   | 170  | ż          | 7   | R   | 1   | Į.    | 1    | ř.   | ê   |
| Soncific                | anductance<br>or 25°C)                                                                              |     | d        | į              | . 7 | Ē    |            | 396 | 14  |     | 100   | go.  | 20   |     |
|                         | en 60                                                                                               |     |          | -              | 1   | 8    | 8          | 0   | 4   | 1   |       | *    | 10%  |     |
|                         | Dissolved<br>Osygen<br>ppm (%Sof                                                                    |     | 3        | 7              | 7   | 3    | 1          | -   | 0.4 |     | -     |      |      |     |
|                         | Temp<br>In OF                                                                                       |     | ×        |                | 2   | Ŧ    | Ĭ          |     | ×   | 2   | A     | 8    | 1    | 7   |
|                         | Dischorge Temp Dissolved conductoring phy in cfs in 0F caygen (incrembos) physical physics of 25°C. | Tal |          |                |     |      |            |     |     |     |       |      |      |     |
|                         | Dote<br>ond time<br>compled<br>P S T                                                                | 199 | 100      |                | 38  | 18   | 200        | 4   | - 1 | 100 | 100   | E    | 12   | n u |

F all H b obordory H

c S = 1 or an and registrant or an expension of a looper (it is all PI) reoperate (the time (2A) and head less chemical C imported head as the except is the

g Gray ett determition

we were recommended to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o

ANALYSES OF SURFACE WATER

|                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                |                 |                |              |                                |             |        | _       |               |             |               |       | <br> |  |
|--------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|-----------------|----------------|--------------|--------------------------------|-------------|--------|---------|---------------|-------------|---------------|-------|------|--|
|                                      |                      | Anolyzed<br>by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82811 |                |                 |                |              |                                |             |        |         |               |             |               |       |      |  |
|                                      | 4                    | Hordness bid - Coliform Analysed os CoCO <sub>3</sub> Ify MPN/ml by I by I oppm N C n ppm Ppm Ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Median<br>130. | Maximum<br>2.km | Mtnfmum<br>2 3 |              |                                |             |        |         |               |             |               |       |      |  |
| t                                    | - 10                 | D - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | Ę              | С               | 8              | 32           | S                              | 13          |        |         |               | 15          | 8             | 10    |      |  |
| t                                    |                      | COO S DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 3              | 119             | 141            | 121          | 111                            | αc          | 145    |         |               | 17          | 115           | 153   |      |  |
|                                      |                      | Hordness<br>os CoCO <sub>3</sub><br>Total N C<br>ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | %              | 301             | 333            | 8            | 288                            | 283         | 3779   |         |               | 230         | 304           | 333   |      |  |
| t                                    | P B.T.               | in a contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract |       | 80             | 19              | 80             | 26           | 54                             | 96          | 5      |         |               | 96          | 58            | 95    |      |  |
|                                      | Total                | solved<br>solids<br>in pom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 612°           | 867*            | 986            | 796          | 7773°                          | 760         | 844    |         |               | 989         | 820           | 921   |      |  |
|                                      |                      | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                |                 |                |              | A1 0.16 PO <sub>b</sub> 0.45 d |             | Jan    |         |               |             |               |       |      |  |
|                                      |                      | Sinca<br>(\$10 <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                |                 |                |              | 8                              |             | 8      |         |               |             |               |       |      |  |
|                                      | uo.                  | Boron (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                | 8.              | 10             | 0.5          | 7.0                            | 5:0         | 0.5    |         |               | 4.0         | 7.            | 9.6   |      |  |
| 100                                  | per million          | Fluo-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                |                 |                |              | 0.0                            |             | 0.0    |         |               |             |               |       |      |  |
| SON (STA. 24)                        | ents pr              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | _              |                 |                |              | 0.00                           |             | 0.03   |         |               |             |               |       |      |  |
| SAM JOAQUIN RIVER NEAR GRAISON (SFA. | equivolents          | Chio-<br>rids<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 160            | 7.05            | 7.81           | 21.8<br>5.15 | 6.20                           | 228<br>5.43 | 235    |         |               | 181         | 6.34          | 280   |      |  |
| EK NEAK                              | E                    | Sul -<br>fore<br>(SO <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                |                 |                |              | 3.31                           |             | 3.64   |         |               |             |               |       |      |  |
| SULPA RIV                            | tituents             | Bicor-<br>bonote<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 3.70           | 3.64            | 3.84           | 3.41         | 3.54                           | 3.51        | 2 th 8 |         |               | 2.92        | 3.77          | 3.61  |      |  |
| SAN JOAC                             | Mineral constituents |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 0.00           | 0.0             | 0.00           | 0.00         | 0.00                           | 0.00        | 0.0    |         |               | 0.0         | 0.0           | 0.0   |      |  |
|                                      | Mine                 | Potos- Corbon-<br>sium ote<br>(K) (CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                |                 |                |              | 1.8                            |             | 5.2    |         |               |             |               |       |      |  |
|                                      |                      | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 145            | 9.57            | 9.35           | 172          | 161                            | 167         | 174    |         |               | 134<br>5.83 | 8.8           | 9.18  |      |  |
|                                      |                      | Mogne-<br>sum<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                |                 |                |              | 2.17                           |             | 3.87   |         |               |             | 36            |       |      |  |
|                                      |                      | (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 1.52c          | 20.9            | 6.65           | 5.840        | 3.59                           | 5.660       | 3.09   |         |               | 7.60        | 3.09          | 99:9  |      |  |
|                                      |                      | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 7.9            | 8.1             | ·4.            | .7.          | 4.0                            | 8.5         | 8.1    |         |               | 6.          | 8.0           | 8.1   |      |  |
|                                      | Sparific             | (micromhos<br>or 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 1,030          | 1,460           | 1,660          | 1,340        | 1,310                          | 1,280       | 1,420  |         |               | 1,070       | 1,380         | 1,550 |      |  |
|                                      |                      | open<br>gen<br>%Sot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 63             | 120             | 88             | 121          | 145                            | 127         | 124    |         | in transit    | 100         | 88            | 98    |      |  |
|                                      |                      | Dissolved<br>oxygen<br>ppm %Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                | 9.3             | 80             | 10.9         | ,<br>()                        | 11.0        | 12.6   |         | tu tu         | 9.5         | 0.0           | 6.6   |      |  |
|                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 22             | 25              | 8              | 10           | 15                             | 7           | £      | Sampled | broken        | 89          | 65            | 64    |      |  |
|                                      |                      | Dischorge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 096            | 099             | 599            | 01/1         | 525                            | 340         | 130    | Not Sam | Sample broken | 385         | 315           | 345   |      |  |
|                                      |                      | Dots<br>and time<br>ampted<br>P.S.T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1959  | 1/20           | 2/10            | 3/11           | 1/1h<br>1410 | 5/11                           | 6/8         | 1345   | /8      | /6            | 10/9        | 11/1h<br>1445 | 12/16 |      |  |

c Sum of colcium and magnessum in epm.

<sup>6</sup> Loborotory pH. Treld pH

c Sum of colcium and magnestum in 8pm. d poper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Ci\*6), reported here as  $\frac{0.0}{0.00}$  except as shown d Iron (Fe), aluminum (AI), asseric (As), copper (Cu), lead (Pb), manganese

Determined by addition of analyzed constituents.

Amed median and strope, respectively. Calculated from analyses of displaces consistly samples med by Calculation Organisms of Hoborites, and United Strates Geological Survey, Calcular Street Descriptions, Proceedings of Survey, Calcular Street Descriptions, Proceedings of Survey, Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcular Street Calcu Berived from conductivity vs TDS curves.

CENTRAL VALLEY REGION (No. 5)

|               | Are-yzed<br>by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı    |               |                    | -        |       |                   |       |               |       |                |        |       |       |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|--------------------|----------|-------|-------------------|-------|---------------|-------|----------------|--------|-------|-------|
|               | Hardness and Conform Appress on CaCO <sub>3</sub> in the Na/ma apply for the Cap approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx approx a |      | Padlah<br>De. | Backlana<br>, f co | Phinasa. |       |                   |       |               |       |                |        |       |       |
| ,             | 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |               |                    |          |       | 4                 |       |               |       | 10             |        |       |       |
|               | Hardness<br>es CaCOs<br>pam la C<br>pam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 4             | D                  | 0        | 146   | 3                 | 17    | 3             | 37    | 1              | 1      | 建-    | 4     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 200           | 30                 | 200      | 1     | 9                 | 7     | 4             | 1     |                | 7.     | 1     | 1     |
|               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 3             | 8                  | -        | =     | JL.               | 9     | 3             | X     | 8              | 1      | •     | 3     |
| Tofal         | Golved<br>eolide<br>in som                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 770           | 1,300              | 1        | y "/  | R                 | 3711  | -             | 9000  | 1              | gard.  | 17    | 1     |
|               | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |               |                    |          |       | 70 CLUZ A1 CLUZ 4 |       | Tot. Ask. Ack |       | A1 U. 0 0 00 d |        |       |       |
|               | (\$0.02)<br>(\$0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 2             | 4                  | থ        | 71    | 24                | 1     | 4             | ul.   | 81             | ,      |       |       |
| lon           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 5.5           | 7                  | 0.5      | 7     | 7                 | 7     | 7.0           | 0.4   | 0.7            | :      | 507   | 70    |
| per med       | F) un - n - n - n - n - n - n - n - n - n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 200           | 0.02               | 30       | :01   | 7 .               | 想     | 41            | 300   | 4000           | 16:0   |       |       |
| equivalents g |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 45            | 1.7                | 200      | 7.5   | 400               | 1     | 0/3           | -18   | .7             |        |       |       |
| 9 50          | Chio-<br>rida<br>(Ci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 101           | 9.85               | 5.50     | 0.0   | \$ 1.78<br>2.78   | 17    | 12.4          | 51.13 | 10.8           | 11.    |       | 1     |
| 5             | Sul -<br>fote<br>(SO <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 118           | 77.77              | 3.1      | 312   | 78                | 1.1   | 8 .           | 2.09  | 250            | * 8.   | 4     |       |
| constituents  | Bicar-<br>bonofe<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 7: 1          | 409                | 18,      | 163   | 171               | 1.13  | 5             | 300   | 3              | \$E    | 3     | j .   |
| Mineral con   | Carbon 018<br>(CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 0.00          | 000                | 0.0      | 0.00  | 18                | 0 3   | 6.0           | 200   | .8.            | 0,00   | 0.0   | :#:   |
| N.            | Poros.<br>euch<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 6.11          | 100                | 2°0°0    | 9 5   | 4-1               | 0.10  | 61.           | 5.0   | 21.0           | 0.10   |       |       |
|               | Sadium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 5.70          | 14.5               | 7.0      | 17.7  | 13.               | 25    | 4.            | 151   | 35.6           | 77.8   | 200   | 11.10 |
|               | Mogne.<br>Bright<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 2.00          | 7,40               | 2.36     | 2.50  | 97.               | 1,18  | 120           | 97.   | 3.44           | 3.18   |       |       |
|               | Calcium<br>(Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 0             | 84.9               | 97       | 25.72 | 0 2               | = [2] | 18            | , K   | 1.34           | 101    | 190°p | 0000  |
|               | g E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 7             | 7.1                | 7.9      | 7.9   | 10                | :.    | Ξ             | 2     | 6.             | 7.     |       | 7.7   |
| Socific       | (micramhos<br>of 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 241 16        | .,160              | 1,20     | 1,290 | 1,140             | -994  | 966           | 1,1%  | 1,07           | 1,54   | 390'  | 7901, |
|               | % So So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 77            | 976                | >        | 8     | 103               | 8     | 3             | Bi    | 8              | Ç      | d     | d     |
|               | Oies<br>Oug<br>Dbm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 7.6           | 9.01               | 6.0      | 6.9   | 9.                |       |               | 6.1   | 6,2            | 7<br>0 | 0.0   | 3     |
|               | Teng<br>P of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 66            | 1                  | 9        | 69    | 59                | ï     | - 2           | 7.6   | E              | 99     | 3     | 5     |
|               | O'scholge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 0.4.9         | 167                | 6.0      | 464   | 1 2               | 707   | 4             | 16    | 166            | 1 11   | 8     | 4     |
|               | ond time<br>sampled<br>PST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1959 | 1/1           | 1300               | 11/9     | 4/6   | 514.<br>1145      | 1 15  | 7.00          | 4 × 1 | 9 10           | 10/8   | 11/4  | 95    |

A control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. :)

|                                             |                         | Agranges bid - Coliform" Analyzed os CoCO <sub>3</sub> 11y MPN/ml by i |          | USBR  |      |     |     |       |      |      |       |       |      |       |                  |
|---------------------------------------------|-------------------------|------------------------------------------------------------------------|----------|-------|------|-----|-----|-------|------|------|-------|-------|------|-------|------------------|
|                                             | 4                       | MPN/mi                                                                 |          |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             | - L                     | prd-                                                                   |          |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             |                         | dardness<br>os CoCO <sub>3</sub>                                       | mdd mdd  |       |      |     |     |       |      |      |       |       |      |       |                  |
| -                                           |                         | 100                                                                    | - 0      |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             | 8-1010                  | solved sad-                                                            |          |       | 992  | 8   |     | 7 7 7 | 350  | 30#  | 1.692 | 1.308 | 272  | 968   | 802              |
| -                                           |                         |                                                                        | -        | _     |      |     | _   |       |      |      | -     |       |      |       |                  |
|                                             |                         | Other constituents                                                     |          |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             |                         | Silica                                                                 | N N      |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             | 101                     | Baran Silica                                                           | 2        |       |      |     |     |       |      |      |       |       |      |       |                  |
| SAN JOAQUIN RIVER AT JERSRY POINT (SE. 201) | equivalents per million | Fluo-                                                                  | (F       |       |      |     |     |       |      |      |       |       |      |       |                  |
| OINT (3                                     | oorts per               | N                                                                      |          |       |      |     |     |       |      |      |       |       |      |       |                  |
| TERSEY P                                    | inbe                    | Chla-                                                                  | -        |       |      |     |     |       |      |      |       |       |      |       |                  |
| JER AT J                                    | ē.                      | Sul -                                                                  | (804)    |       |      |     |     |       |      |      |       |       |      |       |                  |
| QUIN RI                                     | instifuen               | - Brear-                                                               | (HCO3    |       |      |     |     |       |      | _    |       |       |      |       |                  |
| SAM JOA                                     | Mineral canstifuents in | Potos- Corbon- B                                                       | (CO3)    |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             | ×                       | Potos-                                                                 | ŝ        |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             |                         | Sodium                                                                 | (041)    |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             |                         | Colcium Magne- Sodium                                                  | (Mg)     |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             |                         | Colcium                                                                | (00)     |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             |                         | T O                                                                    |          |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             | Conciden                | Conductance<br>(micromhos                                              |          |       | 304  | 317 | 321 | 183   | 563  | 181  | 2,820 | 2,324 | 904  | 288   | a <sub>1</sub> 8 |
|                                             |                         | p c c                                                                  | %sot     |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             |                         | Dissolved                                                              | ppm %Sol |       |      |     |     |       |      |      |       |       |      |       |                  |
|                                             |                         | Tamp<br>in of                                                          |          |       |      | 64  | 53  | b     | 99   | 12   | 32    |       | 89   | %     | 29               |
|                                             |                         | Dischorge Tamp                                                         |          | Tidel |      |     |     |       |      |      |       |       |      |       |                  |
|                                             |                         | Dote<br>ond time<br>sompled                                            | P.S.T    | 1959  | 1/14 | 2/9 | 100 | 1305  | 5/14 | 6/17 | 7/13  | 8/10  | 9/15 | 10/16 | 11/12            |

b Laboratory pH. o Field pH.

c Sum of calcium and magnesium in epm.

e. Sum of calcium and inspirestum in epin.
d. Inou (Fe), aluminum (A1), arsenic (A2), capper (Cu), lead (P6), manganese (Mn), zinc (Zn), and hexavalent chromium (Gr<sup>+6</sup>), reported here as 0.00 except as shown d. Inou (Fe), aluminum (A1), arsenic (A2), capper (Cu), lead (P6), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), arsenic (A2), capper (Cu), lead (P6), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), arsenic (A2), capper (Cu), lead (P6), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), arsenic (A2), capper (Cu), lead (P6), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), arsenic (A2), capper (Cu), lead (P6), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), arsenic (A2), capper (Cu), lead (P6), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), arsenic (A2), capper (Cu), lead (P6), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), arsenic (A2), capper (Cu), lead (P6), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), arsenic (A2), capper (Cu), lead (P6), manganese (Mn), arsenic (Cr), are chromium (A2), are chromium (A3), are chromiu

Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves

Annel medion and trage, respectively. Calculated from analyses of displicate nanthly samples match by Calculation Department of Poblic Health, Division of Labbrances, or United States Public Health Service.

Count District SECTOL, Internated abstract, Calculated Service, County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Fload

County Flo

ANALYSES OF SURFACE WATER CPATHAL VALLEY HYDION (NO. 5) TABLE B-4

|                                                   |                         | cari Mordhess 8 d - Co form Assissed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +040 |               |                  |           |               |               |             |             |             |                                         |        |      |         |
|---------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|------------------|-----------|---------------|---------------|-------------|-------------|-------------|-----------------------------------------|--------|------|---------|
|                                                   |                         | Co. form.<br>MPN/ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | median<br>kon | Marshall<br>7 on | Bin, i.a. |               |               |             |             |             |                                         |        |      |         |
|                                                   | 1                       | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | S             | -                | q         | S             | 2             | 8           |             |             |                                         |        |      |         |
|                                                   |                         | 0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 3             | ď.               | 6,0       | 8             | 2             | 1           | 1           |             |                                         | 8      | y    | 5       |
|                                                   |                         | Mord<br>PP.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | ž             | 3                | 170       | 0.00          | 1             | 8           | T           |             | 6                                       | 7      | 1    | 1       |
|                                                   |                         | 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 5             | 9                | er<br>V   | S             | 7             | m           | 2           |             | -                                       | 5      | 4    | 1       |
|                                                   | Total                   | 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de 20 de |      | 138           | 4.<br>27         | · Sa      | 180           | 620           | e la        | 1           |             | ţ.                                      | \$ COS | 100  | - B     |
|                                                   |                         | Other constituests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |               |                  |           |               | 41 11 PO 11 d |             |             |             | 100 10 00 00 00 00 00 00 00 00 00 00 00 |        |      |         |
|                                                   |                         | S.i.c.a<br>(5.0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |               |                  |           |               | 8             |             | 2           |             |                                         |        |      |         |
| 4                                                 | 0.0                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |               | 6                | 0.3       | al C          | -             | 6.0         | 9           |             | E . C                                   | 4      | -31  | 9       |
| SAN JOAQUIN RIVER AT MAZZ. HOAD BRIDGE (STA. 24a) | er motion               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |               |                  |           |               | 10.0          |             | 0.0         |             | 200                                     |        |      |         |
| of periody (see. )                                | aduivalents per         | N, Fluc-<br>trate ride<br>(NO <sub>9</sub> ) (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |               |                  |           |               | 0.3           |             | 2.2         |             | 3.6                                     |        |      |         |
| E RUAD                                            | 2 200                   | Coto-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 1119          | 8 8              | 36        | 8 6           | 0 2 2         | 9 F.        | 23          |             | 8/2                                     | 213    | 21   | 21.9    |
| AT MA                                             | ē                       | Sul-<br>fore<br>(50 <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |               |                  |           |               | 18            |             | 92.0        |             | 1 39                                    |        |      |         |
| TA HTAG                                           | atitue of it            | Bicar -<br>bonate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 2.46          | 110              | 2.30      | 21.75<br>2.15 | 3.03          | 8 K         | 3.3         |             | 8 8                                     | 10.7   | 2 2  | 38:     |
| Sun C Ma                                          | Minardi constituents in | Paias Carban (K. (CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 0.0           | 0.0              | 0.0       | 0.0           | 0.0           | 0.0         | 0.0         |             | 0.0                                     | 0.0    | 0 8  | c.k.    |
|                                                   | M                       | Patas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |               |                  |           |               | 6.6           |             | 7.2<br>0.18 |             | 9.70                                    |        |      |         |
|                                                   |                         | Sadium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 8 4           | 13.7 H           | 86        | 118           | 131           | 1135<br>5.8 | 157<br>6.83 |             | 3/2                                     | 252    | 8    | 2 K     |
|                                                   |                         | Magne<br>8:60<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |               |                  |           |               | 8 5           |             | 2 E         |             | 2 3                                     |        | E .  |         |
|                                                   |                         | aicium<br>(Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 3.35          | 0                | 3.58      | 1,600         | 2.50          | 5.16        | 3.34        |             | 38.                                     | 5.13   | g  S | N.      |
| -                                                 |                         | e I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 4.8           | 6.7              | 0.        | 4.00          | 5.            | 4.          | 6.3         |             | 4.                                      | 0.8    | . n  | 2       |
|                                                   | Decific                 | conductore pH c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 191           | 7.57             | Reo       | 1,040         | 1,110         | 1,170       | 1,300       |             | 1,170                                   | 1,180  | 747  | ш,      |
| -                                                 |                         | 9,000 (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 99            | 0                |           | 100           | 188           | 112 1       | 173 1.      |             | 1.48 1                                  | 6      | -    | £       |
|                                                   |                         | Discover Temp Dissolved in CFs in OF Osygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 4.9           | P. 9             | 9.1       | 4.0           | 12.3          | 9.7         | 13.9 1      |             | 1.7                                     | 7.8    | 9.5  | φ.<br>• |
| -                                                 |                         | G & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 25            | 52 8             |           | 4             | 75 12         | 4.          | 81 13       | 9.0         | 1                                       | S      | 65   | 9       |
| -                                                 |                         | ra e Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -    |               |                  | 9         |               | 185           | 235         | 532         | beldary res | 6                                       | 559    | g.   |         |
|                                                   |                         | Dische                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 1,930         | 1.89             | 1,680     | N50           | ţ.            | 2           | 2           | 8.05        | 2                                       | 69     | 8    | 98      |
|                                                   |                         | Dote<br>ompled<br>p S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1959 | 1/20          | 2/10             | 3/11      | 1500          | 5/11          | 100         | 7/30        | 8/          | 1600                                    | 1 9    | 1410 | 1135    |

-de 1 et 1 et 1 et

and the second of the second of the fill companies has the fill section to the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second

A control of the second of the control of the control of the Community Particles of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control

ANALYSES OF SURFACE WATER TABLE B-4

CRNTRAL VALLEY REGION (NO. 5)

|                                          | _                      |                                                             | _                     |      |              |                    |                 |       |                                           |       |       |             |                                                       |       |       |               | <br>         |  |
|------------------------------------------|------------------------|-------------------------------------------------------------|-----------------------|------|--------------|--------------------|-----------------|-------|-------------------------------------------|-------|-------|-------------|-------------------------------------------------------|-------|-------|---------------|--------------|--|
|                                          |                        | Anolyzed<br>by 1                                            |                       | SDSO |              |                    |                 |       |                                           |       |       |             |                                                       |       |       |               |              |  |
|                                          |                        | Hordness bid - Coliformh<br>as CaCO <sub>3</sub> 119 MPN/ml |                       |      | Median<br>36 | Maxfrein<br>2.kno. | Minimum<br>0.23 |       |                                           |       |       |             |                                                       |       |       |               |              |  |
|                                          |                        | - pi                                                        |                       |      | %            | 0.                 | 0               | v-    | 192                                       | £     | 8     | 130         | S                                                     | 52    | 55    | 0             |              |  |
|                                          |                        | 200                                                         | PPE                   |      | ~            | 7                  | 30              | 89    | 101                                       | 8     | 8     | 82          | 38                                                    | 33    | 59    | 70            |              |  |
|                                          |                        | Hordn<br>as Co                                              | Total N.C.<br>ppm ppm |      | \$           | 110                | 153             | 139   | 214                                       | 16    | 108   | 156         | 113                                                   | 138   | 188   | 8             |              |  |
|                                          |                        | to book                                                     |                       |      | 4            | 23                 | 15              | 43    | 74                                        | 24    | 23    | 69          | 99                                                    | 53    | 92    | 95            |              |  |
|                                          | otal                   | pexios<br>solios                                            | Edd                   |      | 116          | 278                | 208             | 308   | la la 5 T                                 | 191e  | 246   | 2%°         | 3006                                                  | 324   | poor, | 504°          |              |  |
|                                          |                        |                                                             | Other constituents    |      |              |                    |                 |       | Fe 0.07 PO <sub>k</sub> 0.30 <sup>d</sup> |       |       |             | Pe 0.08 A1 0.19 <sup>d</sup><br>PO <sub>4</sub> 0.255 |       |       |               |              |  |
|                                          |                        | Sinco                                                       | (S10 <sub>2</sub> )   |      |              |                    |                 |       | 12                                        |       |       |             | 11                                                    |       |       |               |              |  |
|                                          | 5                      | 1 5                                                         | (8)                   |      | 0.1          | 5                  | 0.3             | 0.3   | 0.2                                       | 1:0   | 0.1   | 0.1         | 0.2                                                   | 0.3   | 6.3   | 4.0           |              |  |
| 12)                                      | million<br>ser million | 1                                                           | (F)                   |      |              |                    |                 |       | 0.0                                       |       |       |             | 0.0                                                   |       |       |               |              |  |
| (STA. 2                                  | gourdents per million  | ž                                                           | (NO3)                 |      |              |                    |                 |       | 0.0                                       |       |       |             | 9.0                                                   |       |       |               |              |  |
| ENDOTA                                   | pd                     | Chio-                                                       | (CI)                  |      | 0.62         | 67<br>1.89         | 76              | 2.17  | 148                                       | 38    | 878   | 5.63        | 3.38                                                  | P. 5. | 3.98  | 149           |              |  |
| NEAR N                                   | E                      | Sul                                                         | (504)                 |      |              |                    |                 |       | 1.35                                      |       |       |             | 24                                                    |       |       |               |              |  |
| IN RIVE                                  | constituents           | Bicar-                                                      | (HCO <sub>3</sub> )   |      | 86.0         | 101                | 102             | 94    | 138                                       | 1.43  | 1.62  | 81.         | 91                                                    | 113   | 150   | 2.34          |              |  |
| SAN JGAQUIN RIVER NEAR MEMBOTA (STA, 25) | Minard con             |                                                             | (CO 2)                |      | 0.0          | 0.0                | 0.0             | 0.0   | 0.0                                       | 0.00  | 0.0   | 0.00        | 0.0                                                   | 0.00  | 0.00  | 0.0           |              |  |
| 60                                       | M.                     | Potos.                                                      | (K)                   |      |              |                    |                 |       | 3.4                                       |       |       |             | 3.6                                                   |       |       |               |              |  |
|                                          |                        |                                                             | (NO)                  |      | 19<br>0.83   | 56<br>2.44         | 2.57            | 2.13  | 3.44                                      | 30    | 57.48 | 5.70        | 3.26                                                  | 2.73  | 1111  | 113           |              |  |
|                                          |                        | Magne-                                                      | (Mg)                  |      |              |                    |                 |       | 27.2                                      |       |       |             | 1.15                                                  |       |       |               |              |  |
|                                          |                        | Calcium                                                     | (00)                  |      | 1.04         | 2.20               | 2.46            | 2.780 | 2,10                                      | 1.82° | 2.16  | 3.100       | 252                                                   | 2.50  | 3.76  | 3.92          |              |  |
|                                          |                        | F.                                                          |                       |      | 6.8          | 6.9                | 7.5             | 7.5   | 7.7                                       | 7.3   | 7.6   | 7.5         | 7.5                                                   | 7.5   | 7.5   | 7.5           |              |  |
|                                          | 0.000                  | conductance pH (micromhas pH                                | 0 0                   |      | 500          | 1480               | 517             | 533   | 811                                       | 331   | k77   | 1,030       | 919                                                   | 260   | 847   | 872           |              |  |
|                                          |                        | 9 5                                                         | % Sat                 |      | 8            | 101                | %               | 98.   | 16                                        | 6     | 104   | 68          | 68                                                    | 69    | 93    | 104           |              |  |
|                                          |                        | Dissolved                                                   | mdd                   |      | F. 6         | 10.7               | 9.3             | 9.1   | 6.7                                       | 8.0   | 9,6   | 7.7         | 7.6                                                   | 8.5   | 6.6   | 12,3          |              |  |
|                                          |                        | Temp<br>In or                                               | -                     | -    | 5.4          | 95                 | 63              | 1.9   | 19                                        | 71    | 87    | 7           | 32                                                    | %     | 55    | h7            |              |  |
|                                          |                        | Oischorge Temp                                              |                       |      | *92          | 100                | 164*            | 305#  | 263*                                      | 3240  | 386   | 60¢         | 305                                                   | 8     | 7.    | 53            | 440          |  |
|                                          |                        |                                                             | F.S.T                 | 1059 | 1/13         | 2/2                | 3/9             | 1125  | 5/4                                       | 1420  | 1245  | 8/5<br>07à5 | 9/10                                                  | 10/8  | 11/5  | 12/10<br>0915 | * Lad-y Meen |  |

a Field pH

c Sum of calcium and magnessum in epm. b Labaratory pH.

Sum of colicium and magnessum in elym.

Iron (Fe), oluminum (AI), arsence (AS), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Cr<sup>+6</sup>), reported here as \$\frac{0}{0}\$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. g Gravimetric determination

h Aural median and range, respectively, Calculated from analyses of displacene monthly somples made by Calcinania Department of Public Health, Division of Ledonorous, or United Stores Public Health Service

1 Maneal analyses made by United Stores Calcinated Barrelet (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores of Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) and the Stores (1967) an

CENTRAL VALLEY REGION (NO. 5)

|                   |                         | backtod of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B 5   |       |        |             |       |       | _     | _    |      |       | _   |     |     |  |
|-------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|-------------|-------|-------|-------|------|------|-------|-----|-----|-----|--|
| -                 |                         | cent Mordress in d. Colligerm. Analysed colling and colling population and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and colling and col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |        |             |       |       |       |      |      |       |     |     |     |  |
|                   | 100                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |       |        |             |       |       |       |      |      |       |     |     |     |  |
|                   |                         | Pardiese<br>es CaCOs<br>fatal % C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |        |             |       |       | -     |      |      |       |     |     |     |  |
| -                 | Per                     | 1685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |       |        |             | 3     | -     | 3     |      | T    | ,     | 7   |     | 3   |  |
|                   | Yote: A                 | spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine<br>spine |       | 4 1   | 3      | 911         | 1     | ţ.    | 8     | ī    |      | T     | 1   | Ŧ   | 1   |  |
|                   |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |        |             |       |       |       |      |      |       |     |     |     |  |
|                   | 100                     | Boron Suco<br>(8) (5:02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |        |             |       |       |       |      |      |       |     |     |     |  |
| militon           | 16 P                    | F100-<br>7:00<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |       |        |             |       |       |       |      |      |       |     |     |     |  |
| parts per million | equivolente per militan | N.<br>Irote<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | · ·   | 7      | 5.6         | 1.9   | 0.    | 1.6   | 1    | 1    | 20    | 3   |     | وا  |  |
| -                 | ainbe                   | Chigo-<br>ride<br>(Ci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 178   | 00     | 8           | 1992  |       | ×     | 24.6 | -    | 472   | 3   |     | 8   |  |
|                   | e,                      | Sul -<br>fote<br>(SO <sub>a</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 175   | 513    | 607         | 234   | 242   | 3 746 | 291  | 8    | 2     | 4   | 計   | şi. |  |
| ports per million | franti.                 | Bicor - S<br>bonate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 217   | 168    | 263         | 189   | 178   | 186   | 162  | 17.8 | 0     | 8   | 88  | 8   |  |
|                   | Mineral constituents    | Corbon-<br>ate<br>(CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | -     | 0.0    | - (         | ė,    |       | 1     |      | 0,0  | 6     | 1   |     | 2   |  |
| ١                 | M.o                     | Polos-<br>(×)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 57    |        | 1           | 7     |       | 1.0   | 0    | 1    | 1     | 2   |     | 9   |  |
|                   |                         | Sodium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 2 2   | 1.8    | 38%         |       | 1     | 173   | 191  | 2962 | 33    | 3   | 100 |     |  |
|                   |                         | 8,00%<br>(0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 8     | 2      | 7           |       | -     | 36    | 52   | 7    | œ     | 3   |     | E   |  |
|                   |                         | Calcium Nagne<br>(Ca) sum<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 21    | 3      | E           | 5     | 12    |       | 5    |      | 200   | Ē,  | 4   |     |  |
|                   |                         | T I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 6.    | 31     | -           |       | 4.5   | 111   | 9.   | 7 7  | 80,   | v.  | 2.  | 7   |  |
|                   | Specific                | conductorica pH<br>(micrombos<br>at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 1,240 | 1, 622 | 2,731       | 1,912 | 1,197 | 1     | 1 91 | 1.83 | 0 0 - | A . |     | 80  |  |
|                   |                         | Diesolved<br>Oaygen<br>ppm %Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |        |             |       |       |       |      |      |       |     |     |     |  |
|                   |                         | Orecnorge Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 34    | 95     | 1           | 0     | ٠     | 1     |      |      | 8     | -   | 2   |     |  |
|                   |                         | ond time<br>sompled<br>p S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10% ( | 58    | 1001   | To the same | 15    | = 1   | 7.    |      |      | 11    | 1   |     |     |  |

 $\frac{1}{2} \frac{1}{2} \frac{1}$ 

in the positive of the positive process and the boundary dependent of the first of the second of the positive positive process and the positive of positive process and the positive of positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive process and the positive pro

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (No. 5)

|                    |                         | Anolyzed<br>by 1                     |                     | 11303 |               |                    |                   |               |                    |       |       |       |                               |             |       |                   |       |
|--------------------|-------------------------|--------------------------------------|---------------------|-------|---------------|--------------------|-------------------|---------------|--------------------|-------|-------|-------|-------------------------------|-------------|-------|-------------------|-------|
|                    | 4                       | Os CoCO <sub>3</sub> ity MPN/mi by i |                     |       | Median<br>23. | Maximum<br>>7,000. | Minimum<br><0.045 |               |                    |       |       |       |                               |             |       |                   |       |
| ľ                  | Tur-                    | pid-                                 |                     |       | 8             | 0                  | 3                 | 9             | 99                 | 9     | 15    | 8     | 10                            | 3           | 8     | 35                |       |
| ľ                  |                         | 0000<br>0000                         | S E G               |       | ×             | 58                 | 8                 | 69            | 8                  | 8     | 92    | 83    | 79                            | 12          | 57    | 19                |       |
|                    |                         | Hordr<br>os Co                       | ppm                 |       | 977           | 191                | 162               | 202           | 239                | 232   | 246   | 5#6   | 245                           | 237         | 173   | 174               |       |
| 1                  | 9                       | - pog                                |                     |       | 23            | 47.                | 51                | 22            | ₹.                 | 52    | 53    | 15    | 53                            | ₹.          | 22    | 53                |       |
|                    | Totol                   | solids<br>solids                     | E da                |       | 30½°          | 423°               | 399e              | 1601<br>11016 | 1989               | 572°  | 9009  | 628   | 633 <sup>±</sup>              | 594°        | ,t34° | <sub>\$</sub> 964 |       |
|                    |                         | Other constituents                   |                     |       |               |                    |                   |               | A1 0.15 POt, 9.70d |       |       |       | At 0.09 Zn 0.05 d<br>F04 0.45 |             |       |                   |       |
|                    |                         | Silico                               | in the              |       |               |                    |                   |               | 8                  |       |       |       | ZJ                            |             |       |                   |       |
|                    | uo                      | Baran S                              |                     |       | 0.2           | 5                  | 0.2               | 0.3           | 0.3                | 0.2   | 5     | 0.2   | 0.2                           | 0.2         | 0.3   | 0.2               |       |
| 11100              | er mill                 | Fluor                                | (£)                 |       |               |                    |                   |               | 0.2                |       |       |       | 0.0                           |             |       |                   |       |
| media may million  | equivalents per million | Ni-                                  |                     |       |               |                    |                   |               | 3.4                |       |       |       | 0.0                           |             |       |                   |       |
| 1                  | equive                  | Chlo-<br>rids                        | (C)                 |       | 2,31          | 3.47               | 3.21              | 156           | 180<br>5.08        | 200   | 5.78  | 232   | 5.92                          | 198<br>5.58 | 3.67  | 142               |       |
|                    | Ē                       | Sul -<br>fote                        | (80%)               | _     |               |                    |                   |               | 2.39               |       |       |       | 1.56                          |             |       |                   |       |
| e III a see absent | constituents            | Bicar-                               | (HCO <sub>2</sub> ) |       | 103           | 126                | 124<br>2.03       | 162<br>2.66   | 3.05               | 25.32 | 3.08  | 3.02  | 3.33                          | 3.20        | 2,31  | 130               |       |
|                    | Minsrol con             | Corban-                              |                     |       | 0.0           | 0.00               | 0.00              | 0.00          | 0.00               | 0.0   | 0.0   | 0.00  | 000                           | 0.00        | 0.00  | 000               |       |
|                    | Mins                    | Potos-                               | Œ.                  |       |               |                    |                   |               | 0.13               |       |       |       | 6.4                           |             |       |                   |       |
|                    |                         | Sodium                               |                     |       | 2.61          | 3.78               | 3.44              | %<br>1.18     | 5.70               | 5:00  | 5.61  | 5.70  | 132<br>5.74                   | 5.52        | 3.61  | 3.92              |       |
|                    |                         | Magne-<br>aunh                       | (Mg)                |       |               |                    |                   |               | 2.09               |       |       |       | 24<br>2.01                    |             |       |                   |       |
|                    |                         | Calcium                              | (00)                |       | E.            | 3.22               | 3.24              | 10.04         | 2,69               | 29.4  | 1.92  | 28    | 2.89                          | 17.7        | 3.46  | 3.48              |       |
|                    |                         | H                                    |                     |       | 7.2           | 7.7                | 7.2               | 8.1           | 7.9                | 8.3   | 7.9   | 7.9   | 7.9                           | 7.8         | 7.6   | 7.3               |       |
|                    | Specific                | (micromhos<br>ot 25°C)               |                     |       | 538           | 748                | 705               | 873           | 1,070              | 1,010 | 1,060 | 1,110 | 1,090                         | 1,050       | 767   | TL.               |       |
|                    |                         | paya                                 | %Sot                |       | 82            | 93                 | 8                 | 151           | 72                 | 71    | 51    | B2    | 93                            | ಹೆ          | %     | 8                 |       |
|                    |                         | Dissolved                            | mdd                 |       | 4.6           | 10.5               | 8.8               | 13.6          | 4.8                | 10.3  | 4.    | 6.5   | 6.8                           | 7.7         | 10.4  | 1.1               |       |
|                    |                         |                                      |                     |       | 28            | 22                 | 8                 | 2             | #                  | 2     | 7.    | 82    | 62                            | 88          | 57    | 84                | <br>- |
|                    |                         | Dischorge Tamp                       |                     | Tidel |               |                    |                   |               |                    |       |       |       |                               |             |       |                   |       |
|                    |                         | Dots<br>and time<br>sompled          | P.S. T.             | 1959  | 1/13          | 2/10               | 3/12              | 1020          | 5/13               | 6/10  | 7/3   | 8/12  | 9/11                          | 10/8        | 11,77 | 12/11             |       |

b Laboratory pH.

Sum of colcium and magnesium in opm.

Jum of colcium and magnestum in spin. Hon (Fe), oluminum (Al), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>+5</sup>), reported here as 0.00 except as shown.

Darived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Annal median and transport and press of deplicate monthly samples mode by California Department of Poblic Mealth, Division of Laboratorus, or United States Public Mealth & Arrice.

Mental median press mode by United States Geological Assay, Quality of Merice Brook (1905), United States Median Mealth and States Cannot Public Mealth Assay (1907), United States Median Mealth and States Median Mealth and States Median Mealth and States Median (1907), Lab Angels Spantment of Mealth and Mealth (1907), Lab Angels Spantment of Mealth (1907), Ton Angels Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907), Ton Mealth (1907)

CPRITRAL VALLEY REGION (NO. ...

|                                                         |                        | 10   10   10   10   10   10   10   10    | - 60 |       |     |      |      |     | _     | 4000 |     |    |     |      |            |  |   |
|---------------------------------------------------------|------------------------|------------------------------------------|------|-------|-----|------|------|-----|-------|------|-----|----|-----|------|------------|--|---|
|                                                         |                        | Coll form by my                          |      |       |     |      |      |     |       |      |     |    |     |      |            |  |   |
|                                                         | 3                      | 000                                      |      |       |     |      |      |     |       |      |     |    |     |      |            |  |   |
|                                                         |                        | 000 Mg                                   |      |       |     |      |      |     |       |      |     |    |     |      |            |  |   |
|                                                         |                        | Total pam                                |      |       |     |      |      |     |       |      |     |    |     |      |            |  |   |
|                                                         | 9                      | 000                                      |      |       |     |      | 3    |     |       |      |     |    | 4   |      |            |  |   |
|                                                         | Tore16                 | 001.00<br>001.00<br>001.00               |      | 104   | 3   | 1    | 8    | 1   | 1     | 1    |     | ŝ  | 3   | dbb  | 4          |  |   |
|                                                         |                        | Other constituents                       |      |       |     |      |      |     |       |      |     |    |     |      |            |  |   |
|                                                         |                        | ( CO )                                   |      |       |     |      |      |     |       |      |     |    |     |      |            |  | 1 |
| 110)                                                    | 00                     | Boron Si ico<br>(B) (Si O <sub>2</sub> ) |      |       |     |      |      |     |       |      |     |    |     |      |            |  | Ť |
| y ( cyt.                                                | million<br>ier milli   | Fluo- 8                                  |      |       |     |      |      |     |       |      |     |    |     |      | _          |  | 1 |
| LONDAR                                                  | equivalents per milion | N.<br>1701e<br>(NO <sub>3</sub> )        |      |       | ~   |      | 3    |     | ¥     | 3    | 7   | Ţ. | 8   | 1    | 4          |  | 1 |
| W WATER                                                 | d o                    | Chio-<br>ride<br>(Ci)                    |      | 1     |     | 1    | 1    |     | k}    | 8    | il  | î, | ã   | ŝ    | X          |  | 1 |
| PAPPER                                                  | C.                     | Sul -<br>fate<br>(SO <sub>6</sub> )      |      | 116   | 5   |      | 139  | -   | į     | 2    |     | 36 | 172 | 8    | 3          |  | ĺ |
| VER AT                                                  | luen! ist              | Bicar-<br>banata<br>(MCO <sub>3</sub> )  |      | 0.0   | 121 | ~    | 2 47 | 3   | 1.1   | 4    | EN  | 0  | E   | 177  | 10         |  |   |
| CAM JOAQUIM RIVER AT PAINTHINN WATER FOMPARY (CTA, 276) | Mineral constituents   | Carbon-<br>(CO <sub>3</sub> )            |      |       | 3   | 1    |      | 8   | 1     |      | 1   | 8  |     | 3    | 4          |  |   |
| C 13 30                                                 | Min                    | Potos-                                   |      | 53    | 1   | -    | ما   | 7   |       |      |     | -  | 1   | 1    | 2          |  |   |
|                                                         |                        | Sodium<br>(No)                           |      | 13    | 2   | 88   | 185  | 129 | 1-7   |      | 9   | 与  | 2   | 1    | B          |  | 1 |
|                                                         |                        | Magne-<br>sum<br>(Mg)                    |      | 6     |     | -    | -    | 2   | d     | d    |     | 9  | 1   |      | 3          |  |   |
|                                                         |                        | (Colcium<br>(Co)                         |      | 5     | 2   | 2    | 6    | 2   | 2     | =    | 4   |    | 4   | d    | 2          |  |   |
|                                                         | -                      | I o                                      |      | π.    | 1,  | 7 7  | -    | -   |       |      | 7 - | F  |     |      | 3.         |  |   |
|                                                         | Specific               | conductorce pH<br>(m.crambos<br>o1 25°C) |      | 1,098 | 2)  | 2. 8 |      |     | 977.7 |      |     | -  | 9   | Ga . | The second |  |   |
|                                                         |                        | Dissolved<br>osygen<br>pam %5c           |      |       |     |      |      |     |       |      |     |    |     |      |            |  |   |
|                                                         |                        | Discharge Temp                           |      | 9     | 3   | -    |      | F   |       |      |     |    | -   |      |            |  |   |
|                                                         |                        | Dote<br>sompled<br>P S T                 | 161  | 50    |     | 11   | 35   | 98  | 21    | 100  |     | 31 |     | 100  | 1100       |  |   |

 $F_{\alpha} = A - (1 - A_{\alpha}) - A_{\alpha} - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{\alpha}) - (1 - A_{$ 

ete etti i i ytti stituents

A more in the contract of the contract of the contract PA more in the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract

ANALYSES OF SURFACE WATER TABLE B-4

CENTRAL VALLEY REGION (NO. 5)

|                                                 |                      |                                                     |      |      |          |      |      |      |       |       |       |       |       |       |       | <br> |
|-------------------------------------------------|----------------------|-----------------------------------------------------|------|------|----------|------|------|------|-------|-------|-------|-------|-------|-------|-------|------|
|                                                 |                      | by 1                                                | USBR |      |          |      |      |      |       |       |       |       |       |       |       |      |
|                                                 | -                    | Totol N.C ppm                                       |      |      |          |      |      |      |       |       |       |       |       |       |       |      |
| -                                               |                      | E A                                                 |      |      |          |      |      |      |       |       |       |       |       |       |       |      |
| r                                               | p- 4                 | COS OS                                              |      |      |          |      |      |      |       |       |       |       |       |       |       |      |
|                                                 | 1                    | Totol N C                                           |      |      |          |      |      |      |       |       |       |       |       |       |       |      |
|                                                 | Per                  | sod-                                                |      | 33   |          |      |      |      |       |       |       |       |       |       | 19    |      |
|                                                 | Tatol                | solved sod-<br>solids ium<br>in ppm                 |      | 156  | 252      | 809  | 548  | 530  | 700   | 682   | 896   | 812   | 929   | 852   | 1.124 |      |
|                                                 |                      | Other constituents                                  |      |      |          |      |      |      |       |       |       |       |       |       |       |      |
|                                                 | Ì                    | Sinca<br>(SiO <sub>2</sub> )                        |      |      |          |      |      |      |       |       |       |       |       |       |       |      |
|                                                 | lon                  | Boron<br>(B)                                        |      |      |          |      |      |      |       |       |       |       |       |       |       |      |
| 1111                                            | per million          | Fluo-<br>ride<br>(F)                                |      |      |          |      |      |      |       |       |       |       |       |       |       |      |
| OUGH (STA. 111b)                                | equivolents per      | ni-<br>trate<br>(NO <sub>3</sub> )                  |      | 9.0  | 6.2      | c    | 3.1  | 5.5  | 9.0   | 9.0   | 9.0   | 2.5   | 2.5   | 9.0   | 9.0   |      |
| ALT SLOT                                        | edninbe              | Chlo-<br>rids<br>(Cl)                               |      | 8    | 33       | 173  | 158  | 132  | 167   | 20 k  | 612   | 27.7  | 189   | 263   | 373   |      |
| ABOVE S                                         | Ç.                   | Sul -<br>fote<br>(SO <sub>4</sub> )                 |      | 58   | 27       | 13   | 72   | 89   | 93    | 102   | 107   | 8     | 12    | 88    | 115   |      |
| RIVER                                           | stituents            | Bicor-<br>bonate<br>(HCO <sub>3</sub> )             |      | 75   | 134      | 213  | 179  | 154  | 1774  | 187   | 186   | 186   | 176   | 362   | 300   |      |
| SAN JOAQUIN RIVER ABOVE SALT SLOUGH (STA. 111b) | Mineral constituents | arbon-<br>ore<br>(CO <sub>3</sub> )                 |      | 0.0  | 0.0      | 0,0  | 0,0  | 0.0  | 0.0   | 0.0   | 0,0   | 0.0   | 0.0   | 0.0   | 0.0   |      |
| SAN                                             | Min                  | Polas- Carbon-<br>sum ate<br>(K) (CO <sub>3</sub> ) |      | 1.6  | 0.0      | 2.5  | 0.0  | 3.5  | 2.7   | 3.9   | 5.5   | 5.9   | 5.5   | 2.3   | 4.3   |      |
|                                                 |                      | Sodium<br>(Na)                                      |      | 17   | 17       | 154  | 107  | 89   | 8     | 118   | 161   | 144   | 112   | 185   | 253   |      |
|                                                 |                      | Mogne-<br>sium<br>(Mg)                              |      | 2    | 12       | 1.5  | 8    | 19   | 53    | 98    | 30    | 53    | 23    | 42    | 32    |      |
|                                                 |                      | (Caleium<br>(Ca)                                    |      | 23   | 35       | 20   | 2    | 20   | 59    | 63    | 3     | 75    | 26    | 57    | 99    |      |
|                                                 | _                    | Ę                                                   |      | 7.3  | ω.<br>ο. | 7.7  | 7.5  | 7.7  | 7.7   | 7.4   | 7.5   | 0.0   | 8.1   | 0.0   | 9:1   | <br> |
|                                                 | Coacific             | conductonce<br>(micromhos<br>of 25°C)               |      | 248  | 376      | %    | 941  | 863  | 1,036 | 1,168 | 1,401 | 1,357 | 1,076 | 1,488 | 1,885 |      |
|                                                 |                      | lved<br>gen<br>%Sat                                 |      |      |          |      |      |      |       |       |       |       |       |       |       |      |
|                                                 |                      | Disso                                               |      |      |          |      |      |      |       |       |       |       |       |       |       |      |
|                                                 |                      | in on                                               | -    | 26   | - 25     | 8    | 8    | 72   | - 69  | 4     |       | 69    | 2     | 9     |       | <br> |
|                                                 |                      | Oischorge Tamp<br>in cfe in oF                      |      |      |          |      |      |      |       |       |       |       |       |       |       |      |
|                                                 |                      | Date<br>and time<br>sampled<br>P.S.T                | 1959 | 1/15 | 2/17     | 3/16 | 1240 | 5/13 | 1405  | 7/16  | 8/11  | 9/16  | 10/14 | 11/16 | 12/14 |      |

a Field pH.

Sum of calcium and magnessum in epm. b Labaratory pH.

Sam of celcium and magnestum in epm. Hon (Fe), aluminum (AI), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heavvolent chromium (Gr<sup>2</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annal melaon and range, respectively. Calcalated from and year of elutionia Organisms of Education of Laborations, or United States Public Health Services.

Mannel languages made by United States, Dodge of Service, Dodge of Serv

CENTRAL VALLEY REGION (NO. ...

|                                               |                         | 0 37 ed                                                                         | 7.   | _    |     |     |     |     |      |     |      |     |     |    |                |     |      |
|-----------------------------------------------|-------------------------|---------------------------------------------------------------------------------|------|------|-----|-----|-----|-----|------|-----|------|-----|-----|----|----------------|-----|------|
|                                               | -                       | 4                                                                               | .0.  |      |     |     |     |     |      |     |      |     |     |    |                |     |      |
|                                               |                         | Co test                                                                         |      |      |     |     |     |     |      |     |      |     |     |    |                |     |      |
|                                               |                         | 0.00                                                                            |      |      |     |     |     |     |      |     |      |     |     |    |                |     |      |
|                                               |                         | Cert Mordans Gid Co form? Anayzed  soll os CeCOs or Many/mu by:  or ord my pop. |      |      |     |     |     |     |      |     |      |     |     |    |                |     |      |
|                                               |                         | 108                                                                             |      | 70   |     |     |     |     |      |     |      | 9   |     | ī  |                |     | £.   |
|                                               | Total                   | 80 - 80 - 08 - 08 - 08 - 08 - 08 - 08 -                                         |      | ě    | -   |     |     | 1   | 3    |     | Ė    | 3   |     | 1  | 1              |     | 0    |
|                                               |                         | Other constituents                                                              |      |      |     |     |     |     |      |     |      |     |     |    |                |     |      |
|                                               |                         | Suice<br>(S.O.s.)                                                               |      |      |     |     |     |     |      |     |      |     |     |    |                |     |      |
|                                               | Hon                     | Fluo- Baran Sinca<br>(F) (S/Og)                                                 |      |      |     |     |     |     |      |     |      |     |     |    |                |     |      |
| STA.                                          | per a                   | Fluo-<br>ride<br>(F)                                                            |      |      |     |     |     |     |      |     |      |     |     |    |                |     |      |
| DING (                                        | equivalents per million | Ni-<br>trate<br>(NO <sub>3</sub> )                                              |      | 1.9  | 5.  | 1   | 0   | 4   |      |     | 1    | 1   | 7   |    | 1              | 1   | -    |
| BAS LA                                        | OAIDD B                 | CMO-<br>ride<br>(Ci)                                                            |      | 7    | 6.9 | 1   | 3   | 4   | -    | -1  | 1    | 1   |     |    |                | 3   | 21   |
| AN AND                                        | ē                       | Sul<br>fate<br>(50 <sub>4</sub> )                                               |      | =    | 22  | 27  | 70  | 2   |      | J   | -    |     | i   |    | -              | 2   | -1   |
| TER AT                                        | difuents.               | Brear S<br>bonate<br>(HCO <sub>3</sub> )                                        |      | 9    | 53  | 5   |     | ç.  |      |     |      | 1   |     |    | P <sub>1</sub> | 4   | 7    |
| SAN JOAQUIN RIVER AT SAN ANDREAS LANDING (STA | Mineral constituents    | Patas. Carbon<br>blum<br>(K) (CO <sub>3</sub> )                                 |      | N 0  | 7   |     | -   | 9   |      | 1   | -    | 1   |     | 9  | 1              | 1   | 1    |
| SAM JOA                                       | Mine                    | atos. C<br>(K)                                                                  |      | X.0  | 3   |     |     | 9   | 0    | c   | 3    | 1   |     |    | 9              | 9.1 | 1    |
|                                               |                         | Sadium<br>(Na)                                                                  |      | 9.4  | 7.8 | 18  | 7.6 | -2  | 61   | 62  | E.   | al  | -   |    |                |     | 1    |
|                                               |                         | Magne-<br>s.um<br>(Mg)                                                          |      | 5.6  | 5:0 | 0,0 | :   | 1.5 | 4.6  |     |      | 6.9 | 60  | =  | 57             | 9   |      |
|                                               |                         | Calcium<br>(Ca)                                                                 |      | 12   | 7   | 17  | 2   | 1c  | 9    | F-  | 92   |     | _   | -  | ~              | 11  | 90   |
|                                               |                         | T.                                                                              |      | 6.5  | 5.  |     | ¥.9 | -   |      |     | į.   | 4.7 |     | -, | -              | 7   | ec . |
|                                               | Sourche                 | Conductors p.M.<br>(m.crambos, p.M.<br>at 25°C)                                 |      | 152  | 153 | 7,  | Ä   | 3   | 33.8 | 199 | 2    | -   | 154 | 8  | X.             | 1.1 | 3,6  |
|                                               |                         | Dissalved<br>osygen<br>ppm %S                                                   |      |      |     |     |     |     |      |     |      |     |     |    |                |     |      |
|                                               |                         | Osconarge Temp                                                                  | Tide |      |     |     |     |     |      | 7   |      |     |     |    |                | 4   | 5    |
|                                               |                         | ond time<br>sampled<br>P S T                                                    | 1961 | 1101 | 587 | 21  | şή  | 6   | 18   | F   | 0 11 | 0 1 | 23  | 4  | Ň              |     | 13   |

a Cay shells to fig. sh Till san

A final of a present of the first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first fi

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5)

|                                           |                   | Hordness bid - Coliform Analyzed           |                            | USOS |               |                   |                 |       |           |          |      |        |           |       |       |       |   |  |
|-------------------------------------------|-------------------|--------------------------------------------|----------------------------|------|---------------|-------------------|-----------------|-------|-----------|----------|------|--------|-----------|-------|-------|-------|---|--|
|                                           |                   | Coliformh<br>MPN/mi                        |                            |      | Median<br>96. | Maximum<br>7,000. | Minimum<br>0.62 |       |           |          |      |        |           |       |       |       |   |  |
|                                           |                   | 100                                        | n ppm                      |      | 8             | 0                 | н               | 0     | 16        | 28       | 10   | 9      | 8         | 10    | 2     | 10    |   |  |
|                                           |                   | 888<br>CO3                                 | N C                        |      | 52            | 42                | 17              | 8     | 99        | 22       | 84   | 101    | 8.        | 11    | 52    | 89    |   |  |
|                                           |                   | Hordn<br>os Co                             | Total N.C.<br>ppm ppm      |      | 104           | 170               | 130             | 526   | 88        | 231      | 8    | 250    | 352       | 233   | 164   | 168   |   |  |
|                                           |                   | - po                                       | Ē                          |      | 23            | 82                | 75              | 64    | <u> -</u> | 25       | 52   | 23     | 23        | \$    | 53    | 51    |   |  |
|                                           | Ī                 | drs-<br>drs-<br>solved sod-                | Edd                        |      | 270°          | hh9°              | 3446            | 570°  | 455 f     | 5 h8     | 552° | 644    | 642       | 582e  | 1,20° | 123°  |   |  |
|                                           | F                 |                                            |                            |      |               |                   |                 |       | e         |          |      |        | 7 .SI     |       |       |       |   |  |
|                                           |                   |                                            | Other constituents         |      |               |                   |                 |       | POL 0.55  |          |      |        | Zn 0.01 d |       |       |       |   |  |
|                                           |                   |                                            | const                      |      |               |                   |                 |       |           |          |      |        | 전등        |       |       |       |   |  |
|                                           |                   |                                            | Other                      |      |               |                   |                 |       | Fe 0.0h   |          |      |        | Pe 0.05   |       |       |       |   |  |
|                                           |                   | 021                                        | 3:02)                      |      |               | -                 |                 |       | 8         |          |      |        | 8         |       |       |       |   |  |
|                                           | 1                 | S age                                      | (B) (SiO <sub>2</sub> )    |      | 0.0           | 7.1               | 0.3             | 0.3   | 0.5       | 6.0      | 0.3  | 0.3    | 0.3       | 0.3   | 0.1   | 0.1   |   |  |
|                                           | ports per million | 100                                        | (F)                        |      | -             |                   |                 |       | 10.0      |          |      |        | 0.0       |       |       |       |   |  |
| PA. 27                                    | ports per million | 4                                          |                            |      |               |                   |                 |       |           |          |      |        |           |       |       |       |   |  |
| S) SI                                     | ports             | ž                                          | (NO <sub>3</sub> )         |      |               |                   |                 | 10    | 1.8       | 10.      |      | teo    | 1.0       |       |       |       |   |  |
| VERNAL                                    | 100               | Chlo                                       | (CI)                       |      | 1.97          | 3.58              | 2.71            | 5.36  | 3.84      | 5.22     | 198  | 7.33   | 232       | 5.36  | 3.64  | 3.75  |   |  |
| SAN JOAQUIN RIVER NEAR VERNALIS (STA. 27) | Ē                 | - Ing                                      | fore<br>(SO <sub>d</sub> ) |      |               |                   |                 |       | 54        |          |      |        | 1.29      |       |       |       |   |  |
| RIVER                                     | tuents            |                                            | (HCO <sub>3</sub> )        |      | 1.57          | 2.33              | 1.79            | 166   | 164       | 182      | 2.31 | 2.03   | 3.20      | 3.10  | 133   | 25.00 | - |  |
| MINDY                                     | constituents      |                                            |                            |      |               |                   | -               |       | _         | _        |      |        |           |       |       |       |   |  |
| SAN JO                                    | Minerol           |                                            | (CO <sub>3</sub> )         |      | 0.0           | 0.0               | 0.0             | 0.0   | 0.0       | 0.0      | 0.0  | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   |   |  |
|                                           | N                 |                                            | Sium<br>(K)                |      |               |                   |                 |       | 0.11      |          |      |        | 6.4       |       |       |       |   |  |
|                                           |                   | Sodium                                     |                            |      | 2.35          | 108               | 3.00            | 100   | 3.61      | 111      | 3.44 | 132    | 134       | 132   | 3.70  | 3.48  |   |  |
|                                           |                   | Mogne-                                     | (Mg)                       |      |               |                   |                 |       | 1.83      |          |      |        | 2.15      |       |       |       |   |  |
|                                           |                   |                                            | (CO)                       |      | 5.07°         | 3.40°             | 2.600           | 4.520 | 2.15      | 7.50     | 4.05 | \$.00c | 2.89      | 7.64c | 3.280 | 3.36  |   |  |
|                                           |                   |                                            |                            |      | 6.5           | 7.1               | 7.3             | 8.1   | 4.8       | e0<br>00 | 8.1  | 6,0    | 8.1       | 8.1   | 7.5   | T.7   |   |  |
|                                           |                   | Specific a<br>conductonce<br>(micromhos pH | ot 25°C)                   |      | 11.77         | 194               | 609             | 1,010 | 801       | 1776     | 9776 | 1,140  | 1,130     | 1,030 | 743   | 743   |   |  |
|                                           |                   |                                            |                            |      | 8             | 33                | 88              | 86    | 108       | 117      | 125  | 86     | 8         | 86    | 104   | 108   |   |  |
|                                           |                   | Dissolved                                  | mdd                        |      | 3.5           | 10.5              | 9.4             | 60    | 7.01      | 10.2     | 11.0 | 7.8    | 8.0       | 0.6   | 10.6  | 12.1  |   |  |
|                                           |                   | Temp<br>In of                              |                            |      | 90            | 0,                | 22              | 10    | 19        | 2        | 72   | 8      | 79        | 89    | 65    | 15    |   |  |
|                                           |                   | Oischorge Temp                             |                            |      | 2,560         | 2,020             | 2,930           | 780   | 1,070     | 715      | 392  | 323    | 929       | 1,000 | 1,010 | 1,210 |   |  |
|                                           |                   | Dore<br>ond time                           |                            | 1960 | 1/12          | 2/2               | 3/9             | 1350  | 5/6       | 6/1      | 7/3  | 8/12   | 9/10      | 10/8  | 11/5  | 12/10 |   |  |

b Loboratory pH.

c. Sum of sciencium and majoressum in sept... of Iran (Fe), outurnium (A1), arrenance (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr\*5), reparted here as 0.00 except as shawn. c Sum of colcium and magnesium in epm.

e Derived from conductivity vs TDS curves.

Annual median and roops respectively. Classified from analyses of diplicate manthy samples mode by California Department of Public Health, Durston of Laboritance, or United Stones Pablic Health Service.

Laboritance and the Stones Gool by Laboritance and Lister Stones (LISCS), Health Assistance (LISCS), Laboritance and the Stones Control of Lister Stones (LISCS), Laboritance and the Stones Control of Lister Stones (LISCS), Laboritance and Stones Control of Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), Lister Stones (LISCS), LISCS, LIS Determined by addition of analyzed constituents. Grovimetric determination.

#### ANALYSES OF SURFACE WATER STEAL ALLY HERE & (10. 5.) TABLE B-4

|                         | Accipred<br>by 1                   | 1                        |       |                  |        |         |      |      |                                              |            |      |             |          |     |     |      |
|-------------------------|------------------------------------|--------------------------|-------|------------------|--------|---------|------|------|----------------------------------------------|------------|------|-------------|----------|-----|-----|------|
|                         | Hordness 6-6 Coliform Accision 691 |                          | a     | antima<br>, Oil. | -      |         |      |      |                                              |            |      |             |          |     |     |      |
|                         | 37.00                              |                          |       |                  |        |         |      |      |                                              |            |      |             |          |     |     |      |
|                         | Mordness<br>os CoCO <sub>S</sub>   |                          | -     | 70               | 3.     |         |      |      | P                                            |            | 1    |             | 6        | 15  | 2   | 0    |
| -                       | P S P O O                          |                          | 1     | ×                | ź      | 7       | Ξ    | 8    | 1.                                           | -          | ő    | 1           | 4        |     |     | 7    |
| - 4                     |                                    | -                        |       |                  |        | -1      | 8    | 3    | 8                                            | 1          | *    |             | ,        |     |     |      |
| 1010                    | dis.<br>colved cod.                |                          | 7     | 9                | 141    | =,      | 10   | 3    | 1                                            | 7          | 8    | 1           | 3        | 1   |     | 1    |
|                         | Other constituents                 |                          | 17.   | re u.c.          | 7e . 1 | Fe 0,48 | -    | 1    | 1                                            |            | 10.  | 37          | 8        |     | 100 | 3    |
|                         | (\$0.5)                            |                          | 2     | 9                | 0      | 1       | Н    | - 1  | rå.                                          | 4          | M    | -6          | 4        | 1   | 1   | 1    |
| 100                     |                                    |                          |       | 3                | al     | 3       | -    | 1    |                                              |            | 3    |             | 1        | 1   | 1   |      |
| antition<br>ar mili     | Fruo-<br>ride<br>(F)               |                          | J.    | 7                | : :    | t       |      |      | 7                                            | -11        |      |             |          | .[: |     | 1    |
| equicolents per million | 11016<br>(NO <sub>3</sub> )        |                          | ::0   | -13.0            | 16.    | 1       |      |      | j.                                           | 15         | 根    | 1           | 11       | .13 |     |      |
| 9 20 0                  | CNO.                               |                          | 17.   | 97.              | 12.    | *       | J.   | 8.   | L                                            |            | 317  | = .         |          | ď.  |     | de   |
| ē                       | Sul -<br>fore<br>(50e)             |                          | 98    | 0.0              | J.     | J.      |      | -18  | 134                                          | 19         | -    | 1.          | 1        | 1.  | 1.  | 43   |
| a filtenti              | Bicor-<br>bonote<br>(HCOs)         |                          | 2,1   | at.              | 1      | 21.     | 9/1  | 1:   | 2                                            | =  ×.      |      | þ.          | <u> </u> | 17. | ij. | ď.   |
| Mineral constituents    | Corbon                             |                          | 0.00  | 5 0              | 18     | 8.      | 0.0  | 15   | ×.                                           | ,(0<br>,.( | Æ    | _8          | 18:      | 13: | 18: | 13.  |
| ž                       | Poros.                             |                          | 100   | 1 1              | 1.     | -10     | #    | 1.   |                                              | 15         | 1    |             | 4        | 1   |     | 99   |
|                         | Sodiem<br>(No)                     |                          | = -   | 2/3              | J.     | 1       | 1.   | 1    | $=$ $\begin{bmatrix} n \\ s \end{bmatrix}$ . | 1          | 1.   | <u>-</u>  - | Ji.      | F.  | 1   | 40   |
|                         | Mogne.<br>6:4m<br>(Mg)             |                          | = 0   | 1.1.             | 4:     | 7       | , 1  | . 0  | 1                                            | -1:        | - 18 | .E          | -1.      | J.  | 11  | . 15 |
|                         | Colc.um<br>(Co)                    |                          | 4     | d:               | 19:    | +       | 1.   | Als: | Ŀ                                            | B          | .0   |             | 18       | /13 | 1,  |      |
|                         | I d                                |                          |       | ě.               |        |         |      |      |                                              |            | 4    |             |          |     |     | 31   |
| Specific                | (micrombos<br>or 25°C)             |                          | ò     | ł                |        |         |      |      | 5                                            | ì          | ų    |             |          | 8   |     |      |
|                         | Dissolved<br>osygen<br>pom %50     |                          |       |                  |        |         |      |      |                                              |            |      |             |          |     |     |      |
|                         | Discharge Temp                     | Nyeruze<br>Daily<br>Mean | 876,1 |                  | 51     |         | Į    | Q *1 | š                                            | и.         | į    | ı           | ,        | 3   |     |      |
|                         | ond time<br>compied<br>P S T       | 5                        | 2     | -                |        |         | Meni | 1.00 | 10                                           |            |      |             |          | * : |     |      |

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

A service of the control of the dependent of the Depandent PP Heads on the control of the Service Service of the Service of the Bears and the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the

ANALYSES OF SURFACE WATER TABLE B-h (Continued

CENTRAL VALLEY REGION (10. 1)

|                                          | Analyzed<br>by i                          | E E          |             |            |         |             |             |             |         |         |               |         |             |         |              |   |
|------------------------------------------|-------------------------------------------|--------------|-------------|------------|---------|-------------|-------------|-------------|---------|---------|---------------|---------|-------------|---------|--------------|---|
| 4                                        | bid - Colform a lty MPN/ml                |              |             |            |         |             |             |             |         |         |               |         |             |         |              |   |
| - L                                      | - prq                                     |              |             |            |         |             |             |             |         |         |               |         |             |         |              | _ |
|                                          | Hordness<br>os CoCOs<br>Totol N C<br>ppm  | ž.           | 8.          | 8          | ä       | 25          | 128         | 113         | 89      | 8       | 3.7           | *       | 9           | 5       | 3            | _ |
|                                          |                                           | 3            | 18          | 242        | 270     | 982         | 262         | 272         | 5#5     | 552     | 165           | 8       | 178         | 171     | 11.1         | _ |
| 4                                        | a can                                     | ·.;          | ~           | 7          | 3       | 2           | 9.          | 52          | 7       | 15      | 64            | 22      | 20          | 55      | 52           |   |
| Total                                    | spilos<br>spilos<br>in ppm                | 95           | 9           | 659        | ê.      | 748         | 101.        | 138         | £       | 675     | 45.3          | 9       | 1991        | 451     | 475          |   |
|                                          | Other constituents                        | Pe (.00      | he 0,00     | Pe 0.01    | Pb 0,00 | Pe 0.01     | Fo 0.00     | Fe 0.01     | Fe 0,01 | Fe 0,01 | % <u>0.03</u> | Po 0.01 | Pe 0.03     | Pe 0,02 | Pe 0.03      |   |
|                                          | (SIO <sub>2</sub> )                       | q            | 7           | 9          | 9       | 18          | R           | 07          | 99.     | Ħ       | 었             | 2       | Ħ           | 2       | 81           |   |
| LOI                                      |                                           | - 7          | 0.2         | 3          | 7       | 3           | 7           | 7,*0        | 0.2     | -51     | 0.1           | 5       | 0,1         | 0,2     | 0.2          |   |
| per million                              | Flua-<br>ride<br>(F)                      | 0.01         | 0.0         | 0.0        | 0.2     | 0.2         | 0.2         | 0.2         | 0.2     | 0.2     | 0.0           | 0.0     | 0.0         | 0.0     | 0.2          |   |
| ports per million<br>equivolents per mil |                                           | 25.0         | 0.00        | 2.6        | 0.00    | h.1<br>0.07 | 5.0         | 2.0         | 0.03    | 2.0     | 3.8           | 3,1     | 3.6         | 3.6     | 1, 7<br>0,08 |   |
| o doing                                  | Chlo-<br>ride<br>(CI)                     | 168          | 2 S         | 512        | 64.9    | 385         | 275         | 7.61        | 5.92    | 555     | 3.36          | 185     | 137<br>3.86 | 3.81    | 3.98         |   |
| ē                                        | Sul -<br>fate<br>(SO <sub>4</sub> )       | 91<br>11.98  | 2.10        | 1.58       | 2.08    | 83          | 1.39        | 1.19        | 1.35    | 1.52    | 39            | 1.60    | 1.35        | 1.27    | 1.44         |   |
| #11fuenfe                                | Bicar-<br>banote<br>(HCO <sub>3</sub> )   | 1.76<br>2.83 | 2.95        | 3.05       | 3.15    | 3.08        | 164         | 3.18        | 3.18    | 3.34    | 2.56          | 3:17    | 2.36        | 2.23    | - 18         |   |
| Mineral constituents                     | Corbon-<br>(CO <sub>3</sub> )             | 100.0        | 000         | 0000       | 00.0    | 000         | 00.0        | . 18        | 000     | 00.0    | 00.0          | 0.0     | 0.0         | 000     | 0000         |   |
| Min                                      | Potos-<br>sum<br>(K)                      | 6.6          | 7.0<br>0.18 | 7.6        | 0.19    | 9.6         | 0.8         | 0.8         | 6.4     | 6.6     | 6.9           | 5.4     | 0.12        | 0.10    | 9:00         |   |
|                                          | Sodium<br>(No)                            | 11.83        | 5.61        | 5.87       | 146     | 55.74       | 158<br>6.87 | 140<br>6.09 | 2.28    | 5.57    | 3.35          | 1113    | 3.74        | 3.74    | 3.96         |   |
|                                          | Mogne-<br>sum<br>(Mg)                     | 200          | 18.8        | 1.95       | 31.51   | 3.53        | 25.53       | 25.5        | 10.00   | 2.16    | 1.35          | 2,01    | 1.56        | 1.47    | 1.59         |   |
|                                          | Coleium<br>(Ca)                           | 2/3          | 2.50        | 58<br>2.89 | 2.89    | 3.19        | 9 6         | 3.24        | 2.84    | 2.94    | 1.95          | 2.59    | 3 8         | 1.95    | 1:95         |   |
|                                          | ° E                                       | 6.1          | 2           | ~          | 3       | 2.          | 85          | 3           | 7.5     | 3       | Z             | 7.6     | 7.3         | 7.3     | 7.4          |   |
| 2000                                     | conductance<br>(micromhos<br>of 25°C)     | 1-6          | SFR.        | 1,110      | 1,130   | 1,260       | 1,140       | 1,210       | 1,050   | 1,120   | 735           | 1,010   | 781         | 764     | 783          |   |
|                                          | Oissolved<br>osygan<br>ppm %Sat           |              |             |            |         |             |             |             |         |         |               |         |             |         |              |   |
|                                          | Temp<br>in oF                             |              |             |            |         |             |             |             |         |         |               |         |             |         |              |   |
|                                          | Dischorgs Temp<br>in cfs in oF<br>Average | Menn<br>766  | 7999        | 1771       | 108     | 302         | 279         | 30%         | 558     | 563     | 1,260         | 783     | 7116        | 1,011   | 1,100        |   |
|                                          | Date<br>ond time<br>sompled<br>P.S.T      | 5/19-41      | 6/1-9       | 06-01/9    | 7/1-8   | 1/6~50      | 1/21-31     | 8/1-19      | 8/20-31 | 9/1-17  | 9/19-58       | 10/7-15 | 10/16-31    | 11/1-15 | 11/16-29     |   |

o Field pH

Sum of colcium and magnesium in apm. b Lobaratory pH.

Sum of colcium and magnesium in spm.
Iron (Fa), aluminum (A1), aismaic (A2), copper (CU), field (Pb), manageness (Mn), zinc (Zn), and hexavelent chromium (Cr.\*), reparted here as  $\frac{0.0}{0.00}$  except as shown.

Determined by addition of analyzed constituents. Derived from canductivity vs TDS curves

Amond medion and strape-trape-trape). Calculated from and yeas of deal care anothly samples model by Caldernia Department of Poblic Health, Distrian of Laboratories, or United Strates Public Health, Service Management of the Internet Strates of Service Operatory Code for New Broads, 1905, Librated Strates Public Health, Service (1997-195), Lea Amendian Code of Poblic Health (1997-195), Lea Amendian Code of Service (1997-195), Lea Amendian Strates of Service (1997-195), Lea Amendian Strates (1997-195), Lea Amendian Strates (1997), Lea Amendian Strates (1997), Lea Amendian Strates (1997), Territorian Strates (1997), Lea Amendian Strates (1997), and the Service (1997), and the Service (1997), Territorian Strates (1997), Lea Amendian Strates (1997), Territorian Strates (1997), Lea Amendian Strates (1997), Territorian Strates (1997), Lea Amendian Strates (1997), Territorian Strates (1997), Lea Amendian Strates (1997), Territorian Strates (1997), Lea Amendian Strates (1997), Territorian Strates (1997), Lea Amendian Strates (1997), Territorian Strates (1997), Lea Amendian Strates (1997), Territorian Strates (1997), Lea Amendian Strates (1997), Territorian Strates (1997), Lea Amendian Strates (1997), Territorian Strates (1997), Lea Amendian Strates (1

CENTRAL VALLEY SUGION (NO. "

Ann pred ł HOLDNORS TWO FORMS AS OF COCCOS TO MARKANIA TO SOCCOS TO SOME TO SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE SOCK THE S Tota Per dis solved cos so ds Olhar constituents (\$10,0) JOACHIN RIVER MEST STANI LAUS I. D INTAKE ("A. 275 Boron (B) ports per million F 100-Chide (C) constituents 010000 Mineral Potos (K) SAB. Mogne (also (Ca) Descive a conductore by a conductore of conductore of conductore of conductore of contuctore of cont Discharge Temp Dissolved Dote sempled p s 7

a te tere li as apl s mus

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

|       |                |     |                                 |                                       |     |           |                         |                | Mine                    | Mineral constituents                 | 1.tuents                                | ē                                   | ports ps<br>equivolents | ports per million | per million           | 6                   |                  |                    | Total                                       | Para  |            | F     | - 10                                                                                   | -    |                  |
|-------|----------------|-----|---------------------------------|---------------------------------------|-----|-----------|-------------------------|----------------|-------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|-------------------------|-------------------|-----------------------|---------------------|------------------|--------------------|---------------------------------------------|-------|------------|-------|----------------------------------------------------------------------------------------|------|------------------|
| Orach | Orachorga Temp |     | Dissolved<br>oxygen<br>ppm %Sof | conductance<br>(micrombos<br>at 25°C) | T.  | Calcium N | Mogne- S<br>sum<br>(Mg) | Sodium<br>(No) | Potas- C<br>sium<br>(K) | Carbon-<br>ate<br>(CO <sub>3</sub> ) | Bicor-<br>banate<br>(HCO <sub>3</sub> ) | Sul -<br>fore<br>(SO <sub>4</sub> ) | Chlo-<br>ride<br>(Ci)   |                   | Fluo-B<br>rids<br>(F) | Boron (S)<br>(B) (S | (S)(Ca<br>(S)(Ca | Other constituents | solved sod -<br>solved sod -<br>ium ppm ium | - pog | Total N.C. | N COS | Hordness bid - Coliform" Analyzed os CoCO <sub>3</sub> lift MPN/mi by i ppm Total N.C. | N/ml | Anolyzad<br>by i |
|       |                | -   |                                 |                                       |     |           |                         |                |                         |                                      |                                         |                                     |                         |                   |                       |                     |                  |                    |                                             |       |            |       |                                                                                        |      | USBR             |
| 33    |                | 51  |                                 | 81                                    |     |           |                         |                |                         |                                      |                                         |                                     |                         |                   |                       |                     | _                |                    | 62                                          |       |            |       |                                                                                        |      |                  |
| 9     |                | 897 |                                 | 101                                   |     |           |                         |                |                         |                                      |                                         |                                     |                         |                   |                       |                     |                  |                    | 2                                           |       |            |       |                                                                                        |      |                  |
| 2.6   |                | 17  |                                 | 197                                   |     |           |                         |                |                         |                                      |                                         |                                     |                         |                   |                       |                     | -                |                    | 128                                         |       |            |       |                                                                                        |      |                  |
| 35    |                | 5.  |                                 | 141                                   |     |           |                         |                |                         |                                      | _                                       |                                     |                         |                   |                       |                     |                  |                    | 132                                         |       |            |       |                                                                                        |      |                  |
| 23    |                | 88  |                                 | 118                                   |     |           |                         |                |                         |                                      |                                         |                                     |                         |                   |                       |                     |                  |                    | 8                                           |       |            |       |                                                                                        |      |                  |
| 77    |                | 89  |                                 | 901                                   | 6.9 | 9.8       | 0.7                     | 8.5            | 0.0                     | 0.0                                  | 98                                      | 15                                  | 19                      | 9.0               |                       |                     |                  |                    | 89                                          | 9     |            |       |                                                                                        |      |                  |
| 44    |                | 19  |                                 | 18                                    |     |           |                         |                |                         |                                      |                                         |                                     |                         |                   |                       |                     |                  |                    | 69                                          |       |            |       |                                                                                        |      |                  |
| 68    |                | 15  |                                 | 88                                    |     |           |                         |                |                         |                                      |                                         |                                     |                         |                   |                       |                     |                  |                    | 89                                          |       |            |       |                                                                                        |      |                  |
| 30    |                | 89  |                                 | H .                                   | 9.9 | 6.4       | 1.8                     | 7.7            | 1.6                     | 0.0                                  | 2                                       | 4.5                                 | 8.5                     | 0.0               |                       |                     |                  |                    | \$                                          | 39    |            |       |                                                                                        |      |                  |
| 15    |                | 10  |                                 | 78                                    |     |           |                         |                |                         |                                      |                                         |                                     |                         |                   |                       |                     |                  |                    | 99                                          |       |            |       |                                                                                        |      |                  |
| 12    |                | 98  |                                 | 8                                     |     |           |                         |                |                         |                                      |                                         |                                     |                         |                   |                       |                     |                  |                    | 09                                          |       |            |       |                                                                                        |      |                  |
| 36    |                | 8   |                                 | 116                                   |     |           |                         |                |                         |                                      |                                         |                                     |                         |                   |                       |                     |                  |                    | 12                                          |       |            |       |                                                                                        |      |                  |
| 56    |                | 88  |                                 | 76 7                                  | 7.5 | 8.9       | 1.1                     | 6.9            | 1.5                     | 0.0                                  | 8                                       | 5.8                                 | 0.9                     | 9.6               |                       |                     |                  |                    | 52                                          | 54    |            |       | _                                                                                      |      |                  |
| 77    |                | 81  |                                 | 8                                     |     |           |                         |                |                         |                                      |                                         |                                     |                         |                   |                       |                     |                  |                    | 8                                           |       |            |       |                                                                                        |      |                  |

b Laboratory pH.

c. Sum of calcium and magnessum in epin. dea (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Gr<sup>+6</sup>), reported here as  $\frac{6.0}{0.00}$  except as shown. d Iran (Fe), aluminum (A1), arsenic (As), casenic (As). c Sum of calcium and magnesium in epm.

e Derived from canductivity vs TDS curves

Determined by addition of analyzed constituents.

h Amal median and soage, respectively. Calculated from analysts of digiticate monthly samples made by Calcionic Department of Poblic Health, Division at Lebonoviers, or United States Department of Manual controls and respectively. Calcionis developed Severy, Cacholy, at West Beach, Edit States Cancel Department of States Cancel Department of States Cancel Department of States Cancel Department of States Cancel Department of States Cancel Department of States Cancel Department of States Cancel Department of States Cancel Department of States Cancel Department of States Cancel Department of States Cancel Department of States Resources (DMR), as indicated. Under States Cancel Department of States Cancel Department of States Cancel Department of States Resources (DMR), as indicated.

#### ANALYSES OF SURFACE WATER CENTRAL VALLET REGION (NO. " ! TABLE B-1

|                                                  | _                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _    |     |      | _  |     |      |    |   | _ |     |    |
|--------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------|----|-----|------|----|---|---|-----|----|
|                                                  |                         | Garage Medicals and Carlorm Analyzed to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166 to 166  | 485  |     |      |    |     |      |    |   |   |     |    |
|                                                  |                         | N/8 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |      |    |     |      |    |   |   |     |    |
|                                                  | -                       | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -    |     |      |    |     |      |    |   |   |     |    |
|                                                  |                         | 80 UE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |      |    |     |      |    |   |   |     |    |
|                                                  |                         | Merden<br>oto<br>opm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |      |    |     |      |    |   |   |     |    |
|                                                  |                         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |      |    |     |      |    |   |   |     |    |
|                                                  | Torese                  | 601.08<br>601.08<br>601.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |     | \$   |    | 9   |      | ī  |   |   |     |    |
|                                                  |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |      |    |     |      |    |   |   |     |    |
|                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |      |    |     | -    |    |   |   |     |    |
| par                                              | 100                     | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |      |    |     |      |    |   |   |     |    |
| 'On 10:                                          | million                 | Fluo-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |      |    |     |      |    |   |   |     |    |
| 74. 24E                                          | equivalents per million | N. Fluo- Boron Silica<br>(NO <sub>3</sub> ) (F) (SO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |      |    | œ.  |      |    |   |   |     |    |
| (4) (d)                                          | 0 3                     | Chio<br>ride<br>(Ci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |      |    | 2   |      |    |   |   |     |    |
| WITH                                             | 6.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |      |    | -   |      |    |   |   |     |    |
| IVER AT                                          | transit to              | Brcar -<br>bonate<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |      |    | 99  |      |    |   |   |     |    |
| AN JOAQUIN RIVER AT MRITHRAFT (974, 24t on insed | Mineral constituents in | Calcum Wagne Sadum Polas- Carbon Brear Sul<br>(Ca) (Mg) (Na) 9um 010 bonds late<br>(X) (Ca) (HCa) (SCa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |      |    | 3   |      |    |   |   |     |    |
| Ah J                                             | Min                     | Potas-<br>6:um<br>(K.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |      |    | 9   |      |    |   |   |     |    |
|                                                  |                         | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |      |    |     |      |    |   |   |     |    |
|                                                  |                         | Mogne<br>erom<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |      |    | 5.3 |      |    |   |   |     |    |
|                                                  |                         | Calc.um<br>(Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |      |    | 5   |      |    |   |   |     |    |
|                                                  |                         | , I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |      |    | -   |      |    |   |   |     |    |
|                                                  | Spacific                | anductance<br>micrambos<br>of 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | ķ   |      | 43 | E   | 1    | 1  | 2 | 2 | 7.4 | 25 |
|                                                  |                         | Discharge Temp Dissolved conductoristics and c |      |     |      |    |     |      |    |   |   |     |    |
|                                                  |                         | Temp<br>In Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 8   | ī    |    | 2   | 2    | 28 | 5 |   |     | 3  |
|                                                  |                         | Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 7   | 36   | U  | 4   |      | ٤  | 0 | = |     |    |
|                                                  |                         | Dond Time<br>tompled<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 80 | 8/= | 1000 | 58 |     | 1111 | N  |   |   |     |    |

Department of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con

ANALYSES OF SURFACE WATER TABLE B-4

CENTRAL VALLEY REGION (NO. 5)

|                                         | pezajou     | by i                                                   | nsas |              |                  |                |      |                                        |      |               |      |                    |      |             |       |   |  |
|-----------------------------------------|-------------|--------------------------------------------------------|------|--------------|------------------|----------------|------|----------------------------------------|------|---------------|------|--------------------|------|-------------|-------|---|--|
|                                         | H H         | os CoCO <sub>3</sub> 1ty MPN/ml by 1<br>Total N.C. ppm |      | Medten<br>12 | Maximum<br>7,000 | Minimum<br>2.3 |      |                                        |      |               |      |                    | -    |             |       |   |  |
| -                                       | - Pr        | E A                                                    |      | 8            | 0                | -              | С    | 10                                     | 10   | 5             | К    | -                  | m    | 5           | 30    |   |  |
|                                         | F 200       | CO.S.<br>DEC.S.                                        |      | or           | С                | 64.            | С    | 0                                      | 0    | 0             | С    | 0                  | 0    | С           | с     |   |  |
|                                         | Hordn       | Total<br>ppm                                           |      | 22           | 102              | c <sub>1</sub> | 108  | 103                                    | 112  | 110           | 106  | 112                | 116  | 113         | 107   |   |  |
|                                         | - Bran      | - E                                                    |      | 18           | 45               | 15             | 7.   | 15.                                    | 8    | 80            | К    | К.                 | %    | %           | %     |   |  |
|                                         | dis-        | solids<br>andq ni                                      |      | 988          | 179              | 69             | 191  | 177                                    | 500  | 185           | 178  | 1961               | 207  | 30%         | 184   |   |  |
|                                         |             | Other constituents                                     |      |              |                  |                |      | Po. 0.02 Zn 0.01 d<br>Po. 0.30 Al 0.06 |      | 7ot. Alk. 157 |      | PO, 0.20 Cu 0.01 d |      |             |       |   |  |
|                                         | ľ           | Silico<br>(SiO <sub>2</sub> )                          |      |              |                  |                |      | %                                      |      |               |      | 35                 |      |             |       |   |  |
| 1                                       | million     | Boron<br>(B)                                           |      | 0.0          | c,               | 0.0            | 0.0  | 0.0                                    | 0.0  | 0.0           | 0.0  | 0.0                | 0.1  | 0.0         | 0.0   |   |  |
| million                                 | per mil     | Fluo-<br>ride<br>(F)                                   |      |              |                  |                |      | 0.1                                    |      |               |      | 0.1                |      |             |       |   |  |
|                                         |             | Ni-<br>frote<br>(NO <sub>3</sub> )                     |      |              |                  |                |      | 0.03                                   |      |               |      | 0.03               |      |             |       |   |  |
| pot.                                    | equivalents | Chlo-<br>ride (CI)                                     |      | 0.1          | 0.25             | 3.5            | 9.5  | 8.5                                    | 0.95 | 8.5           | 0.83 | 0.37               | 0.39 | 8.8         | 8.5   |   |  |
|                                         | Ī           | Sul -<br>fore<br>(SO <sub>4</sub> )                    |      |              |                  |                |      | 0.16                                   |      |               |      | 9.0                |      |             |       | - |  |
| 900000000000000000000000000000000000000 | 1000        | Bicor-<br>bonote<br>(HCO <sub>3</sub> ) (              |      | 96.9         | 2.20             | 87.0<br>0.79   | 2.39 | 2.33                                   | 2.51 | 147           | 150  | 2.59               | 163  | 156<br>2.56 | 136   |   |  |
| Manage Inches                           |             | Potos- Corbon-<br>sum ote<br>(K) (CO <sub>3</sub> )    |      | 0.0          | 0.0              | 0.0            | 0.0  | 0.0                                    | 0.0  | 5 0.17        | 0.0  | 0.0                | 0.0  | 0.0         | 0.0   |   |  |
| Man                                     | l l         | Potos-<br>Sium<br>(K)                                  |      |              |                  |                |      | 2.1                                    |      |               |      | 0.0                |      |             |       |   |  |
|                                         |             | Sodium<br>(No)                                         |      | 5.4          | 1.5              | 3.5            | 0.70 | 15                                     | 1.5  | 0.74          | 0.70 | 18                 | 19   | 18          | 0.74  |   |  |
|                                         |             | Mogne-<br>Stum<br>(Mg)                                 |      |              |                  |                |      | 9.8                                    |      |               |      | 0.84               |      |             |       |   |  |
|                                         |             | (Co)                                                   |      | 1.04         | 2.04             | 0.83           | 2.16 | 1.25                                   | 2.24 | 2.3           | 2.12 | 28                 | 2.32 | 2.26        | 2.14  |   |  |
| -                                       |             | e Ha                                                   |      | 7.3          | 1.1              | 4.5            | 7.5  | 7.3                                    | 7.3  | 7.3           | 7.3  | 7.3                | 7.3  | 7.5         | 4.    |   |  |
|                                         | Specific    | (micromhos pH & C                                      |      | 130          | 596              | 103            | 283  | 267                                    | 597  | 2775          | 192  | 287                | 307  | 162         | 273   |   |  |
|                                         |             | lved (r                                                |      | 55           | 88               | 8              | TIT. | 8                                      | 6    | 32            | %    | 99                 | 98   | 100         | 101   |   |  |
|                                         |             | Dissolved<br>oxygen<br>ppm %Sat                        |      | 8.5          | F. 6             | 9.8            | 6.6  | 80                                     | 7.8  | 7.5           | 9.9  | 7.0                | 7.7  | 10.0        | 11.3  |   |  |
|                                         |             |                                                        |      | 96           | 55               | - 23           | 17   | 29                                     | 0.2  | 19            | 48   | 62                 | 89   | 8           | 15    |   |  |
|                                         |             | Discharge Temp<br>in cfs in of                         |      | 409          | 287              | 1,120          | 132  | 139                                    | 76   | 83            | 56   | 14                 | 1.45 | 109         | 160   |   |  |
|                                         |             | ond time<br>sompled<br>P.S.T                           | 1950 | 1/12         | 2/2              | 3/9            | 1330 | 5/4                                    | 6/1  | 7/3           | 8/12 | 9/10               | 10/8 | 11/5        | 12/10 |   |  |

o Field pH.

5 Sum of colcium and magnessum in epm. b Laborotory pH.

s. Sum of colcium and magnesium in apm.

2 Sum of colcium and magnesium in apm.

3 00 except as shown.

4 Iran (Fe), aluminum (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haravalent chromium (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haravalent chromium (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haravalent chromium (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haravalent chromium (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haravalent chromium (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haravalent chromium (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haravalent chromium (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haravalent chromium (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and haravalent chromium (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), arsenic (A3), arsenic (A

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

h Amand median and mage, respectively Calculated from analysts of displacent examples made by Calcinaria Department of Public Health, Division of Laboratorist, or United States Debit Health Service.

In American Process made by Linned States Geological Servey, Doubly of Word Warms (1902) Servey, Doubly of Word States Servey, Doubly of Word States Servey, Doubly of Word States Servey, Doubly of Word States Servey, Doubly of Word States Servey, Doubly Critical States of Servey, Servey, Double States Office Servey States of Servey, Double States of Servey, Department of Public Models, Department of Public Health (1904); Immail Stating Associates, Inc. (T.L.), and Calcinate Department of Word States Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of Servey, Department of

# ANALYSES OF SURFACE WATER CTWITTAL VALLEY RESIDN (RO. 5)

TABLE PLY

|                                               |                      | Hordness and Collorm Analysed as Cocky 17 MPN/md By 100 Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into Mpn Into M | ,Sun |            |        |             |       |                    |       |       |       |                 |      |      |           |  |  |
|-----------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|--------|-------------|-------|--------------------|-------|-------|-------|-----------------|------|------|-----------|--|--|
|                                               |                      | MPN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | - 1 · 0 ·  | Î.     | a a company |       |                    |       |       |       |                 |      |      |           |  |  |
|                                               |                      | 30.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |            |        |             |       |                    |       | ×     |       |                 |      | -    |           |  |  |
|                                               |                      | 100 mag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 1          | ٢      | 0           |       |                    |       |       |       |                 |      |      |           |  |  |
|                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | d          | 9      | 4.          | 200   | 5                  | T     | π     | Ŧ     | Ĭ,              | 1    | T    |           |  |  |
|                                               |                      | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Ą          | 2      | 4.          | Ė.    |                    |       |       |       | 1               | Ť    |      |           |  |  |
|                                               | Total                | 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 62         | - 4    | ,           | \$ C  | T <sub>4</sub>     | 100   | 4.    | T.    | 'n              | 5    | 5_   |           |  |  |
|                                               |                      | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |            |        |             |       | of War Post of the |       |       |       | PO. 9 = 1 - 1 & |      |      |           |  |  |
|                                               |                      | 20.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |            |        |             |       | 31                 |       |       |       | CC.             |      |      |           |  |  |
|                                               | 100                  | Fluo Boron Sinco<br>ride (B) (5:0g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |            |        | c.          | 1     | =1                 | 1     |       |       | T               |      | 1    |           |  |  |
| . 20m                                         | million              | Fluo<br>erde<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |            |        |             |       | - F                |       |       |       | 10              |      |      |           |  |  |
| MM (                                          | ports per milion     | N.<br>frote<br>(NO <sub>S</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |            |        |             |       | 000                |       |       |       | 1               |      |      |           |  |  |
| ALTON D                                       | od onnoe             | Chid<br>ride<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 9.8<br>0.0 | 0.0    | 0.0         | 9.8   | 0.04               | 1.5   | 0.0   | T     | 10              | T    | J    |           |  |  |
| PT.OU.TV                                      | ĕ                    | Sut<br>fote<br>(S.O <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |            |        |             |       | 7.7                |       |       |       | 210             |      |      |           |  |  |
| RIVER                                         | efiluente            | Brcor-<br>banate<br>(MCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 67.0       | 12.0   | 30          | 0.51  | 20                 | × 00  | 86    | 00 00 | 14.3            | 200  | 200  |           |  |  |
| STANISLAUS RIVER BELOW THILDER DAM (STA. 20m) | Mineral constituents | Potos- Carbon<br>sum<br>(K (COs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 0.0        | 0.0    | 0.00        | 0 8   | 0 8                | 0.0   | 0.0   | e le  |                 | 16   | 3 0  |           |  |  |
| 1                                             | ž                    | 0 0 to 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |            |        |             |       | 2 5                |       |       |       | 18              |      |      |           |  |  |
|                                               |                      | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 2.6        | 3.2    | 0.11        | 0.10  | 7.0                | 9.8   | 2.5   | 5.5   | 500             | 4/2  | 8,00 |           |  |  |
|                                               |                      | (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg. (0.000 mg.  |      |            |        |             |       | 2.0                |       |       |       | a F             |      |      |           |  |  |
|                                               |                      | Caterum Magner<br>(Ca) (Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | S.RH°      | O. Har | 0.69        | 0.68  | 0 0                | E.    | 0.450 | 10    | v X             | 18:  | 1    |           |  |  |
|                                               |                      | I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | £4.        | 7.0-   | F.C         | 4.0°  | e                  | 7.1   | 1     | 0.0   | C.              | 7.13 | 2    |           |  |  |
|                                               |                      | onductore<br>on crambos<br>of 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 89.1       | 102    | 99.98       | 60.05 | 4. E               | 53.1  | 57.2  | 57.6  | 8               | 4.7  | ē    |           |  |  |
|                                               |                      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | E          | ž      | 89          | 8     | 8                  | £     | 2     | F     | 2               | 90   | 0    |           |  |  |
|                                               |                      | Distatived<br>asygen<br>ppm %55at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 10.0       | 10.1   | 9.8         | 4.6   | 9.0                | 6     | 6.8   | 6.8   | 9.              |      | ö    |           |  |  |
|                                               |                      | a.u.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -    | 69         | 89     | 25          | 95    | 19                 | ź     | Z     | 45    | 9               | 9    | 6    | belder    |  |  |
|                                               |                      | Discharge Temp Distalved Conductoric BH conductoric BH caygen (micromhos BH conductoric) ppm (%5.50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 111        |        | 3           | 1,421 |                    |       | E     |       | 1               |      |      | N. C. and |  |  |
|                                               |                      | Dove<br>cond lime<br>p S Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1959 | 1/16       | 8/4    | 3/10        | 1730  | 5/6                | 1,420 | 1/8   | R/t   | 9/1             | 1100 | 1 9  | 100       |  |  |

ANALYSES OF SURFACE WATER TABLE B-4

CENTRAL VALLEY REGION (NO. 5)

|                       |              | Anolyzed<br>by 1                                          | UBGS  |                |                    |                |       |                   |       |       |      |                                          |                   |       |               |
|-----------------------|--------------|-----------------------------------------------------------|-------|----------------|--------------------|----------------|-------|-------------------|-------|-------|------|------------------------------------------|-------------------|-------|---------------|
|                       | -            | bid - Coliform<br>ily MPN/ml                              |       | Median<br>230. | Maximum<br>>7,000. | Minimum<br>2.3 |       |                   |       |       |      |                                          |                   |       |               |
|                       | Tur-         | - pid<br>- in<br>ppm<br>- in                              |       | 15             | н                  | 10             | 55    | 95                | 22    | 35    | 32   | ·^                                       | 8                 | 8     | 54            |
| ı                     |              | Total N.C.                                                |       | 75             | 51                 | 78             | 72    | 33                | 24    | 17    | 27   | -#                                       | &                 | 17    | 28            |
|                       |              | Hordness<br>as CoCO <sub>S</sub><br>Total N.C.<br>ppm ppm |       | 148            | 160                | 124            | 139   | 158               | 125   | 102   | 977  | 166                                      | 182               | 174   | 174           |
| Ì                     |              | e de la cant                                              |       | 84             | 52                 | 83             | 90    | 1.7               | 14    | 3     | .9   | 57                                       | 45                | 53    | 52            |
|                       | Total        | solids<br>eolids                                          |       | 352°           | 330°               | 3062           | 332°  | 363°              | 277°  | 203   | 227° | 1941<br>1                                | 7 38 <sub>6</sub> | 1,28° | 1,118°        |
|                       |              | Other canetituents                                        |       |                |                    |                |       | A1 0.03 PO4 0.3 d |       |       |      | A1 0.11 Zn 0.06 d<br>PO <sub>4</sub> 1.5 |                   |       |               |
|                       |              | (Si02)                                                    |       |                |                    |                |       | 25.4              |       |       |      | 21                                       | -                 |       |               |
| (0                    | uo           | Boron (8)                                                 |       | 0.1            | 0.3                | 0.2            | 0.2   | 0.2               | 0.2   | 0.1   | 0.1  | 0.8                                      | 0.2               | 0.3   | 0.2           |
| STA, 100)             | par million  | Fluo-<br>ride<br>(F)                                      |       |                |                    |                |       | 0.2               |       |       |      | 0.0                                      |                   |       |               |
| SLAND (               |              | Ni-<br>trate<br>(NO <sub>3</sub> )                        |       |                |                    |                |       | 0,02              |       |       |      | 0.03                                     |                   |       |               |
| RINDGE ISLAND (STA.   | porte pa     | Chia-<br>rids<br>(CI)                                     |       | 2.96           | 3.27               | 2.12           | 25.59 | 72 2.03           | 2.09  | 1.30  | 61   | 152                                      | 142               | 3.72  | 24E           |
| 8                     | Ē            | Sui -<br>fote<br>(SO <sub>6</sub> )                       |       |                |                    |                |       | 40<br>0.83        |       |       |      | 98                                       |                   |       |               |
| IP CHAM               | constituents | Bitar -<br>bonats<br>(HCO <sub>3</sub> )                  |       | 1.69           | 2.18               | 2.00           | 2.00  | 106               | 2.02  | 1.70  | 1.7  | 3.25                                     | 3.05              | 162   | 142<br>2,33   |
| STOCKTON SHIP CHANNEL | Minsraf con  | Carban-<br>ate<br>(CO <sub>3</sub> )                      |       | 0.0            | 0.0                | 0.0            | 0.0   | 0.00              | 0.0   | 0.0   | 000  | 0.0                                      | 0.0               | 0.0   | 0.00          |
| STO                   | Min          | Potas-<br>erum<br>(K)                                     |       |                |                    |                |       | 3.4               |       |       |      | 8.6                                      |                   |       |               |
|                       |              | Sodium<br>(Na)                                            |       | 2.74           | 3.52               | 2.36           | 63    | 2.18              | 2.18  | 1.61  | 35   | 107                                      | 8/3               | 3.87  | 3.83          |
|                       |              | Magne-<br>erum<br>(Mg)                                    |       |                |                    |                |       | 13                |       |       |      | 1.32                                     |                   |       |               |
|                       |              | Calcium<br>(Co)                                           |       | 2.95           | 3.200              | 2.48           | 2.780 | 1:30              | 2.500 | 2.040 | 2.33 | 3 8                                      | 3.64°             | 3.48  | 3.18          |
|                       |              | d d                                                       |       | 7.2            | 7.3                | 7:2            | 7.9   | 7.3               | 8.1   | 7.3   | 7-3  | 7.3                                      | 7.3               | 7.5   | 7.4           |
|                       | Soscific     | conductance<br>(micramboe<br>at 25°C)                     |       | 634            | 71.8               | 521            | 265   | 451               | 88    | 396   | 904  | 810                                      | 787               | 770   | 752           |
|                       |              | lved<br>gen<br>%Sof                                       |       | 82             | 92                 | 5              | 132   | 92                | 117   | 85    | 78   | 23                                       | 8                 | 83    |               |
|                       |              | Distolved<br>oaygen<br>ppm %Sof                           |       | 8.0            | 8.8                | 7-5            | 12.5  | 7.0               | 10.1  | 7.0   | 6.8  | 0.9                                      | 7.3               | 8.3   |               |
|                       |              | 0 U U                                                     |       | 去              | 9                  | 3              | 65 1  | 22                | 1/2   | 92    | 8    | 6                                        | 89                | 3     | 25            |
|                       |              | Dischorge Temp                                            | Tidel |                |                    |                |       |                   |       |       |      |                                          |                   |       |               |
|                       |              | ond time<br>compled<br>P.S.T                              | 1959  | 1/12           | 2/9                | 3/12           | 1,4/1 | 5/12              | 6/8   | 7/1   | 8/12 | 17/cm                                    | 10/6              | 11/6  | 12/11<br>1415 |

o Field pH.

B-178

Sum of soletum and ingeression in spin. In spin. In sold (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ct\*6), reported here as  $\frac{0.0}{0.00}$  except as shown iron (Fe), aluminum (Al), areasinic (As), response (Gu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ct\*6), reported here as  $\frac{0.0}{0.00}$  except as shown. Sum of colcium and magnesium in apm. b Laboratory pH.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annel media and energy, respectively. Calculated from analyses of deplicant monthly senales most by California Department of Poblic Health, Division of Laboratories, or United States Poblic Health Service.

Come of Darrier is SECTOD, prosper and a State of California (MPD). Lat Angels Department of the Intervent Service of State and State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of S

CENTRAL VALLEY REGI'N (No. 5)

|                                        | Annyzed<br>by 5                                            |                          |   |         |      |      |      |      |      |      |      |       |      |      |     |  |
|----------------------------------------|------------------------------------------------------------|--------------------------|---|---------|------|------|------|------|------|------|------|-------|------|------|-----|--|
|                                        | Merdness e.d Corform? Aneryzed os CeCOs in the MPN/ms by i |                          |   |         |      |      |      |      |      |      |      |       |      |      |     |  |
|                                        | 30.0                                                       |                          |   |         |      |      |      |      |      |      |      |       |      |      |     |  |
|                                        | 000 p                                                      | Torol N.C.               |   | Ξ       | 1    |      |      |      |      |      |      |       |      |      |     |  |
|                                        | Merd<br>00 Co                                              | Totol                    |   | 7       | 8    |      |      |      |      |      |      |       |      |      |     |  |
|                                        | 000                                                        | 5                        |   |         |      |      |      | - 0  |      | -    |      |       |      |      |     |  |
| Total                                  | 00.00                                                      | E 80 C                   |   |         | 1    | 1    | T    | T    | 7    | 1    |      | 7     | 4    |      | ÷   |  |
|                                        |                                                            | Constituent Constituents |   |         |      | 7    |      | 1000 |      | 114  |      | 10000 |      |      |     |  |
|                                        | Silico                                                     | (Zois                    |   | 2.      | -    | :11  |      |      | al.  |      |      |       |      |      |     |  |
| 00                                     |                                                            | (8)                      |   | 1       | H    |      | 37   |      | -ali | 1    |      |       |      |      |     |  |
| porte per million                      | F 140-                                                     | (F)                      |   | ck      | - K  | 1 8  | 18   | 1    | T    | - 8  | 1 k  | - K   |      | 12   | 1   |  |
| porte per million                      | i.                                                         | (NO.9)                   |   | - 60    | a le | 10 0 | 18   | 10 8 | 1    |      | ,    | =E    |      |      | 4   |  |
| d anne                                 | C PIO.                                                     | (C1)                     |   | 8 %     | 86   | 1 0  | 114  | 1 C  | 710  | - 1  | 3.6  | ell   | 16   | :6   | .E  |  |
| 9                                      | Sul                                                        |                          |   | 1 K     | 2 12 | B    | 7 11 | -1   | 216  |      | - 18 | all.  |      | 1    | 85  |  |
| #1.fuent                               | Bicor                                                      | (HCO <sub>3</sub> )      |   | FIG     | 100  | 1.9  | 123  | ~ 0  | 13.  | 3 6  | - R  | 1     |      | 1    | 100 |  |
| Mineral constituents in educations par | Corbon                                                     | (00)                     |   | 0000    | 00 0 | 0 03 | - 18 | -    | 36   | 3 6  |      | E     | ;B   | - 12 | 18  |  |
| Min                                    | Polos.                                                     | (x)                      |   | ~       | -18  | 3 6  |      | -10- | - 18 | F    | 1    | 1     |      | -1   | -1  |  |
|                                        |                                                            | (N 0)                    |   | 24      | 100  | 3 65 | 30   | 5 57 | 116  | 2    | 1    | 21 C  | - 15 | F    |     |  |
|                                        | Mogne                                                      | (Mg)                     |   | 70      | 1.3  | - 12 | 1    | F    | 16   | 1    |      | 2     |      | -    | -/- |  |
|                                        |                                                            | (00)                     |   | 26.     | 34   | 15   | 19   | - 7  | E    | = [- |      | Ú.    | 10   | 70   | 1   |  |
|                                        | π χ m                                                      |                          |   | -7<br>F |      |      | 7 7  |      | è    |      |      |       |      |      |     |  |
|                                        | onductonce<br>nicrombos                                    | 2                        |   | 9       | Ž.   | Ŧ    | 96   | î    |      |      | 4    | 2     | Ē    | 8    | 7   |  |
|                                        | 9 4                                                        | 1050%                    |   | 4       |      | ŝ    |      |      | ,    | 7    | -    |       | E    | %    |     |  |
|                                        | Discolv                                                    | ppm %501                 |   |         | -    |      | ·    |      | 3    | Ξ    | -    |       |      |      |     |  |
|                                        | 0 4 E                                                      | -                        |   |         |      |      |      |      |      | Ŧ    |      |       |      |      |     |  |
|                                        | Dischorge Temp Discolved conductoring                      |                          |   | ÷       | Y    | ı    | -    | 4,   | į    | à    | d    | W. 1  | į.   |      |     |  |
| 1                                      |                                                            | P S T                    | 1 | si      | 38   | 33   | 100  | 2000 | e l  | 100  | 240  | 200   |      | 1960 | 38  |  |

Fel A sen As or led P

der i dan de de des las participas de la Salvaga des lagramentes frances de la companya de la companya de la c Persona de la companya del companya de la companya de la companya del companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya del companya de la companya de la companya del companya de la companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya del companya A grant of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta

the last a constant to the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the con

ANALYSES OF SURFACE WATER TABLE B-4

|                                          |                                       | Hordness bid - Collform Analyzed os COCOS nppm   DPM/mi by i DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM   DPM | 25011 |         |         |              |      |                         |             |             |             |             |             |             |             |      |
|------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|---------|--------------|------|-------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
|                                          | £                                     | MPN/mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Meditar | May mim | Minimum P. C |      |                         |             |             |             |             |             |             |             |      |
|                                          | - Jo                                  | Prid -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | -       |         | ç            |      | ٤                       |             |             |             |             |             |             |             |      |
|                                          |                                       | Hordness<br>os CoCO <sub>3</sub><br>Totol N.C.<br>ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | -       | 77      | 17           | 5    | 0                       |             |             |             |             |             |             |             | <br> |
|                                          |                                       | Totol<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | ٤       | 14.     | 104          | 170  | 145                     |             |             |             |             |             |             |             | <br> |
|                                          | Par                                   | Sod L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 7       | 2       | 10           | 17   | Ę.                      |             |             |             |             |             |             |             | <br> |
|                                          | Total                                 | solved<br>solids<br>in ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |         | o b b   | 1676         |      | 197                     |             |             |             |             |             |             |             |      |
|                                          |                                       | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |         |         |              |      | Pe 0.02 Al 0.06 Pou Pou |             |             |             |             |             |             |             |      |
|                                          |                                       | 0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |         |         |              |      | 되                       |             |             |             |             |             |             |             |      |
|                                          | ion                                   | Boron Silico<br>(B) (SiO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |         | 귀       | 0.1          | 5    | 0.2                     |             |             |             |             |             |             |             |      |
| Ē                                        | per million                           | Fluo-<br>ride<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |         |         |              |      | 0.0                     |             |             |             |             |             |             | _           |      |
|                                          | ports per million<br>volents per mill | ni-<br>trote<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |         |         |              |      | 0.0                     |             |             |             |             |             |             |             |      |
| TONY CREEK NEAR HAMILTON CLTY ( "1, 1511 | ports pe                              | Chlo-<br>ride<br>(CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 19 67   | 70      | 0.48         | 17   | 18                      |             |             |             |             |             |             |             |      |
| R HAMII                                  | 5                                     | Sul -<br>fote<br>(SO <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |         |         |              |      | 14                      |             |             |             |             |             |             |             |      |
| SEEK NEA                                 | Mineral constituents in               | Bicor-<br>bonofe<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 2.49    | 2 12    | 130          | 2.19 | 163                     |             |             |             |             |             |             |             |      |
| TONY OF                                  | erol con                              | Potos- Corbon-<br>Stum ote<br>(K) (CO <sub>S</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 0.0     | 2/2     | 0.00         | 0.00 | 0.0                     |             |             |             |             |             |             |             |      |
|                                          | Mın                                   | Potos-<br>srum<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |         |         |              |      | 0.0                     |             |             |             |             |             |             |             |      |
|                                          |                                       | Sodium<br>(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | F 22    | 0.0     | 13           | 13   | 1.6                     |             |             |             |             |             |             |             |      |
|                                          |                                       | Magne-<br>sum<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |         |         |              |      | 1.04                    |             |             |             |             |             |             |             |      |
|                                          |                                       | Colcium Mogne-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 3.840   | 3.20    | 2.48         | 2.80 | 36                      |             |             |             |             |             |             |             |      |
|                                          |                                       | HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 7.5     | 5:5     | e.           | 7.7  | 7.5                     |             |             |             |             |             |             |             |      |
|                                          | Spacific                              | Dissolved conductance ph oxygen (m:crombos ph oxygen of 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         | 379     | 589          | 328  | 339                     |             |             |             |             |             |             |             |      |
| 1                                        |                                       | se d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |         | 0.1     | 305          | 96   | 77                      |             |             |             |             |             |             |             |      |
|                                          |                                       | Dissolved<br>oxygen<br>ppm %Sot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |         |         | u<br>Ç       | 60   | 6.9                     | Dry         |      |
|                                          |                                       | Temp<br>oF<br>oF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |         | (Q)     | 8            | 99   | E                       | - pale      | - par       | - par       | - per       | paled -     | - peld      | - per       |      |
|                                          |                                       | Discharge Tamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | ₩.      |         | 404          | 6.0  | 5.58                    | Not Sampled | Not Sampled | Not Sampled | Not Sampled | Not Sampled | Not Sampled | Not Sampled |      |
|                                          |                                       | Dote<br>ond time<br>beignos<br>P S.T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1959  | 1/7     | 1200    | 3/17         | 1000 | 5/11                    | 6/11        | 1/17        | 8/11        | 1/6         | 10/13       | 11/4        | 15/5        |      |

b Loborotory pH. a Field pH

c Sum of colcium and magnesium in apm.

Sum of calcium and magnesium in spin.
Iron (Fe), aluminum (A1), areance (A3), copper (CJ), lead (Pb), manganeza (Mn), zinc (Zn), and heavelont chromium (C1<sup>16</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

h Awad media and etap, resectively. Calculated from indivisors of deplican monthly samples mode by Calcinatio Department of Public Health, Division of Laboratories, or United States Build. Health Sames person and the Calcination of Laboratories, and the Calcination of Laboratories, and the Calcination of Laboratories and the Calcination of Laboratories and the Calcination of Laboratories and the Calcination of Laboratories and the Calcination of Laboratories and Calcination of Laboratories and Calcination of Laboratories and Calcination of Laboratories and Calcination of Laboratories and Calcination Organization of Laboratories (JMR), as indicated.

|                         | sed to the particle of the property of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the particle of the par | 7    |                  |          |       |       |              |      |     |      |   |       |   |   | - |   |   |   |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|----------|-------|-------|--------------|------|-----|------|---|-------|---|---|---|---|---|---|--|
|                         | Eo form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                  |          |       |       |              |      |     |      |   |       |   |   |   |   |   |   |  |
| -                       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                  |          |       |       |              |      |     |      |   |       |   |   |   |   |   |   |  |
|                         | 0 N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 2                | 10       | ~     |       | 1            |      |     |      |   |       |   |   |   |   |   |   |  |
|                         | TOT BEOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 3                |          |       | 11    | 1            |      |     |      |   |       |   |   |   |   |   |   |  |
|                         | 1 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                  | -1       |       | =     |              | *    |     |      |   |       |   |   |   |   |   |   |  |
| Total                   | 200 ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 1                | 77       | =     | 1     |              | 1    |     |      |   |       |   |   |   |   |   |   |  |
|                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                  |          |       |       | Fe A A d     |      |     |      |   |       |   |   |   |   |   |   |  |
|                         | (ZO:S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                  | 긕        | 1     | 의     | 01           | 14   |     |      |   |       |   |   |   |   |   |   |  |
| 40                      | (B) (SiC <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 0.4              | 2        | 3     | 0,0   | 2            | 1    |     |      |   |       |   |   |   |   |   |   |  |
| million<br>er mill      | Flua-<br>ede<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Ę.               | 333      | 000   | 7 7   | 1.           | 0.00 |     |      |   |       |   |   |   |   |   |   |  |
| equivalents per million | N:<br>Inote<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 000              | 10.0     | C17   | 3     | 5.0          | 13.  |     |      |   |       |   |   |   |   |   |   |  |
| painba                  | CP10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 1.               | 25.5     | 2.08  | 5:0   | 6.17         | 0.17 |     |      |   |       |   |   |   |   |   |   |  |
| 5                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  | 0.07     | 47    | 7.    | 0.40         | 1.   |     |      |   |       |   |   |   |   |   |   |  |
| 01000011                | Brcor - Sul<br>bonate fate<br>(HCO <sub>3</sub> ) (SO <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 32               | W:       | 1, 1  | 1. 1. | 26.          | 18   |     |      |   |       |   |   |   |   |   |   |  |
| Minaral canatituents in | Potos- Carban - B<br>sium ote<br>(K) (CO <sub>S</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 1.               | - 18     | 300   | 15    | 0,0          | . 0  |     |      |   |       |   |   |   |   |   |   |  |
| Mose                    | otos-<br>ecom<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 200              | 0.0      | 0.0   | ~ · · | F. 0.0       | 1.0  | _   |      |   |       |   | _ |   |   | _ | _ |  |
|                         | Sadium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 2                | 2000     | 77.0  | 201.  | 31           | 5. B |     |      |   |       |   |   |   |   |   |   |  |
|                         | (Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 0,21             | 0,40     | 1,00  | 10,0  | 2.95         | 5.07 |     |      |   |       |   |   |   |   |   |   |  |
|                         | Colcium Magne:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 2000             | 91:      | 100   | 91.1  | 1.0          | 1    |     |      |   |       |   |   |   |   |   |   |  |
|                         | e I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 3.               | 4.       | ;     |       | -            |      |     |      |   |       |   |   |   | _ |   |   |  |
| Specific                | inductance<br>sucrambae<br>st 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 577              | 168      | ÷     | 3     | -,           | 61.  |     |      |   |       |   |   |   |   |   |   |  |
|                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 1.1              | Z<br>eri | 90    | ,,    | ~            | ď    |     |      |   |       |   |   |   |   |   |   |  |
|                         | Dissalved<br>019940<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 11.0             | 1        | 0.00  | 7     |              | 9.0  |     |      |   |       |   |   |   |   |   |   |  |
|                         | Temp<br>No F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 69               | 9<br>-7  |       | 4     | 1            | £    |     |      |   |       |   |   |   |   |   |   |  |
|                         | Discharge Temp Dissalved conductorce pH in cfs in OF 0 year (microshos pH 0) o 500 of 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Not<br>Available | Mathable | 15000 | V 17  | 6)<br>6<br>6 | 0.0  | -2, | 1    | ř | 7     | 7 | P |   |   |   |   |  |
|                         | Date<br>and time<br>sampled<br>p S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1949 | 1300             | 1 70     | 3,13  | 2 4   | 30           | 011  | 1 5 | 1,10 | - | 11011 |   |   |   |   |   |   |  |

ANALYSES OF SURFACE WATER

|                      | Anolyzed<br>by l                                                       | 1000 |       |       |             |            |                 |      |               |          |                    |             |             |             |   |  |
|----------------------|------------------------------------------------------------------------|------|-------|-------|-------------|------------|-----------------|------|---------------|----------|--------------------|-------------|-------------|-------------|---|--|
| -                    | Hordness bid - Coliform os CaCO <sub>3</sub> ity MPN/mil Total N C ppm |      |       |       |             |            |                 |      |               |          |                    |             |             |             |   |  |
| 5                    | - bid<br>ity<br>in pom                                                 |      |       |       |             |            | 30              |      |               |          | ~                  |             | er          |             |   |  |
|                      | N C O S                                                                |      | Ж     |       |             | ^          |                 | α.   | 77            | <u>0</u> | 25                 | 4           | ¥           | 77          |   |  |
|                      | Hordn<br>os Ca<br>Totol<br>ppm                                         |      | 101   | ž.    |             | - 53       | 88              | 8    | 117           | 145      | 15.9               | 170         | 179         | 198         |   |  |
| Par                  | god -                                                                  |      | 2     | 2     |             | С          | С               | 6,   | 17            | 8        | 2,                 | 8           | 8           | 18          |   |  |
| Total                | salved<br>solids<br>in ppm                                             |      | 17.0  | d dd  | 744         | 67.5       | Ro.             | 116  | 157           | 216      | 227E               | 2 hof       | 25,Re       | 267         |   |  |
|                      | Other constituents                                                     |      |       |       |             |            | Fe 0.03 A) 0.12 |      | Tot. Alk. 114 |          | A1 0 05 POL 0 00 d |             | The Alk 162 |             |   |  |
|                      | (2015)                                                                 |      | 77    | 2     | 2           | e:         | 0               | 11   | 6             |          | 9 2                |             |             | 6           |   |  |
| 6                    |                                                                        |      | cl    | el.   | e)          | []         | c               | c    | 0.1           | 0.0      | 0.2                | 0.3         | - C         | 0.3         |   |  |
| per million          | Fluo-<br>ride<br>(F)                                                   |      | - C   | - C C | 0.0         | 5.0        | 0.0             | c  C | 0 8           | 0.01     | 000                | 0.0         |             | 0.0         |   |  |
|                      | N - strote (NOs)                                                       |      | 9 6   | c 8   | 0.00        | 0.0        | 0.0             | 0.0  | 4.0           | 0.00     | 0.0                | 0.00        |             | 0.0         |   |  |
| equivalents          | Chia-<br>ride<br>(CI)                                                  |      | C C   | 0.0   | 2.2         | 0.06       | 0.12            | 0.50 | 16            | 36       | 1.21               | 1.02        | 55 0.0      | 38          |   |  |
|                      | Sul -<br>fate<br>(SO <sub>4</sub> )                                    |      | 28    | 12    | 7.7         | 3.8        | 3.8<br>0.0      | 14   | 21            | 35       | 39                 | 100<br>0.83 |             | 34          | - |  |
| difuents             | Bicar-<br>bonote<br>(HCO <sub>3</sub> )                                |      | 120   | 1.31  | 99          | 1.00       | 1.23            | 8    | 110           | 1.8      | 1.90               | 150         | 2.46        | 188<br>7.08 |   |  |
| Mineral constituents | Corbon-<br>ate<br>(CO <sub>S</sub> )                                   |      | 000   | 0.00  | 0.0         | 0 0        | 0.0             | 0.0  | 0.07          | 0.00     | 0.00               | 0.0         | 90.50       | 0.0         |   |  |
| Min                  | Potos-<br>Sium<br>(K)                                                  |      | 0.0   | 0.03  | 0.3         | 0.0        | 0.0             | 0.0  | 0.03          | 0.02     | 1.7                | 0.03        |             | 0.03        |   |  |
|                      | Sodium<br>(No)                                                         |      | 9.6   | 3.7   | 8.9<br>0.12 | 0.11       | 3.1             | 5.6  | 11            | 17.0     | 0.83               | 19          | 0.91        | 0.87        |   |  |
|                      | Magna-<br>sium<br>(Mg)                                                 |      | 0.93  | 5.5   | 3.8         | 3.2        | 3.9             | 6.3  | 7.2           | 0.95     | 13                 | 1.10        |             | 1.37        |   |  |
|                      | Calcium<br>(Ca)                                                        |      | 11.55 | 1,05  | 27.0        | 16<br>0.80 | 1.00            | 1.25 | 35            | 39       | 2.00               | 2.30        | 3.58        | 52          |   |  |
|                      | e F                                                                    |      | 5     | 7.7   | 7.7         | 5.         | 7 7             | 7.7  | 6.0           | E.       | 8.3                | 60          | c.          | 7.9         |   |  |
| Space                | canductance<br>(m.cramhas<br>at 25°C)                                  |      | 345   | 160   | 127         | 116        | 143             | 981  | 2R2           | 362      | 330                | 110         | 434         | 1463        |   |  |
|                      | gen (r                                                                 |      | 2     | 8     | 86          | 93         | 93              | 8.   | 104           | 98       | 121                | 107         | 100         | 106         |   |  |
|                      | Dissolved<br>oxygen<br>ppm %Sot                                        |      | 0 01  | 771   | 30.8        | 976        | 60              | 6.0  | 4.8           | 8.0      | 10.1               | 80.0        | 10.3        | 11.5        |   |  |
|                      |                                                                        |      |       |       |             | 85         | 2               | 42   | 18            | 8        | 82                 | 89          | 90          | 15          |   |  |
|                      | Discharge Temp                                                         |      | 71    |       | 1475        | II.        | 153             | 86   | 6.4           | 1.2      | 6.6                | 7.1         | 5.1         | 6.4         |   |  |
|                      | Dote<br>and time<br>admpted<br>P S.T                                   | 1001 |       |       |             | 4/11       | 5/11<br>1450    | 6/1  | 1/14          | 8/11     | 9/2                | 10/13       | 11/3        | 12/2        |   |  |

b Laboratory p.H. a Field pH.

c. Sum of calcium and magnesium in spm. death of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat c Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

h Annol metion and maps, respectively. Calculated from mulystass of duplicate monthly samples made by Calculation Department of Public Health, Division of Laboratories, or Duned Stores Public Health Service.

Laboratories and by United Stores Geological Service, Danier of Health Stores Beamed (1952), Laboratories and the Common (1958), United Stores Public Health Service (1954); Son Bernatine Canney Flood Composition of Endowards Adordered Stores Colleges (1964), Laboratories and Stores (1964); Son Bernatine of Endowards (1964), Canney England Stores (1964), Canney Engl

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 4) TABLE B.4

|                                       | -                    | _                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _    | -           | -      |                | -       |                                        |      |       |       |     |       |       |       |  |  |
|---------------------------------------|----------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|--------|----------------|---------|----------------------------------------|------|-------|-------|-----|-------|-------|-------|--|--|
|                                       |                      |                         | Cont Portrains on Low form Andressed one on Co.Co. 17 MPN/ms as 1 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 | 1    |             |        |                |         |                                        |      |       |       |     |       |       |       |  |  |
|                                       |                      |                         | MPN/est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | )<br>} =    | Marina | Name of Street |         |                                        |      |       |       |     |       |       |       |  |  |
|                                       |                      | - 30 1                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |             |        |                |         |                                        |      |       |       |     |       |       | 8     |  |  |
|                                       |                      |                         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |             |        |                |         |                                        |      |       |       |     |       |       |       |  |  |
|                                       |                      | -                       | Total<br>Pam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 3           | 1      |                |         | 8                                      | 8    | 3.    |       |     |       | 1     | 1     |  |  |
|                                       |                      | 10 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |             |        |                |         |                                        | - 6  |       | A.    |     |       |       | =     |  |  |
|                                       |                      | Total                   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 2.0         | i.     | -              | 1       | E                                      | 1    | T     | •     |     |       | 5     | 1     |  |  |
|                                       |                      |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |             |        |                | Alk 144 | 7° A1 0 67                             |      |       |       |     |       |       |       |  |  |
|                                       |                      | r                       | (\$.0 <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |             |        |                |         | 12                                     |      |       |       |     |       |       |       |  |  |
|                                       |                      | 1100                    | Boron<br>(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | -1          | 1      | āl             |         | ~                                      | 31   | 3     |       |     |       |       | 21    |  |  |
| _                                     | million.             | 16. mil                 | Fluc- Boron (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |             |        |                |         | 0.03                                   |      |       |       |     |       |       |       |  |  |
| FT4. 91                               | porte per million    | equivalents per militon | frate<br>(NO <sub>B</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |             |        |                |         | 80.0                                   |      |       |       |     |       |       |       |  |  |
| THILE RIVER MEAN POSTERVILLE (STA. 91 | bo                   | painba                  | Chia-<br>ride<br>(Ci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 0.31        | 13     | 8.4            | 417     | 0 TH                                   | 210  | - 12  | 100   |     |       | 100   | 1     |  |  |
| POPTE                                 | 6.                   |                         | Sul -<br>fore<br>(SD <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |             |        |                |         | 3.8<br>0.08                            |      |       |       |     |       |       |       |  |  |
| VER MEA                               | 11100716             |                         | Brear-<br>bonate<br>(HCD <sub>p</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 3.2H        | 3.87   | 2.13           | 3.2     | 0 8                                    | 3.97 | 3.8   | 3.5   |     |       | 19.9  | -2 -2 |  |  |
| TULK RI                               | Mineral constituente |                         | Carbon-<br>ote<br>(CO <sub>5</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 0.00        | 0.0    | 0.0            | 0.07    | 0.00                                   | T.   | 0.0   | 0.00  |     |       | :18   | 600   |  |  |
|                                       | 2                    |                         | Palos<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |             |        |                |         | -16                                    |      |       |       |     |       |       |       |  |  |
|                                       |                      |                         | Sadium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1.8<br>0.7H | 0.91   | 125            | 0.52    | 0.52                                   | 1    | -100: | ×  2  |     |       | 1 35  | = 8   |  |  |
|                                       |                      |                         | Magne.<br>(Mag)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |             |        |                |         | 200                                    |      |       |       |     |       |       |       |  |  |
|                                       |                      |                         | Calcium Magne.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | P. HAR      | 3.40   | L.Has          | 1.3     | E                                      | 8    | 1.28  | 3.100 |     |       | J. J. | K.    |  |  |
|                                       |                      | _                       | H 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 5           | 9.1    |                | ٠.      | -                                      |      | 7.6   | 1     |     |       | 1.    | 1     |  |  |
|                                       |                      | Specific                | arcrombos<br>at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 342         | 8      | 227            | 36      | 270                                    | 108  | 3.0   | Ē.    |     |       | 6 4   | 900   |  |  |
|                                       |                      |                         | 7,0 Sat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 100         | i.     | 8              | 8       | 8                                      | 8    | 1     | 3     |     |       | π,    | >     |  |  |
|                                       |                      | Dissol                  | asyan<br>ppm %3at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | п.          | 11.3   |                | =       |                                        | c    | 1     |       |     |       | 1     | 4     |  |  |
|                                       | -                    | 000                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 2           | 3      | -              | 9       | 1                                      |      | -     |       |     |       |       |       |  |  |
|                                       |                      | Taconomi                | in cfe in of pom %3at at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 8           | į.     | P.             | 11      | 95                                     | -    |       |       | Dey | Dery  | Ċ     |       |  |  |
|                                       |                      | Dote                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19/9 | 1/16        | 111    | 03             | 1 h 4   | × 11 × 11 × 11 × 11 × 11 × 11 × 11 × 1 | 100  | 1     | 1000  | 3.  | 11100 | 000   | 53    |  |  |

Ferring A second second in the Polymers No in I have a second second and second second second second Mi to the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second

A control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont

ANALYSES OF SURFACE WATER TABLE B-4

CENTRAL VALLEY REGION (NO. 5)

|                                                |              | by b                                                                         | 1908 |               |                 |                 |              |                     |             |          |             |                   |       |       |       |      |  |
|------------------------------------------------|--------------|------------------------------------------------------------------------------|------|---------------|-----------------|-----------------|--------------|---------------------|-------------|----------|-------------|-------------------|-------|-------|-------|------|--|
| ŀ                                              | Æ            | Hardness bid Coliform Analyzad ac CaCCOs h ppm MPN/mi by i Potoi N C ppm ppm | -    | Median<br>2,3 | Maxtmum<br>230. | Minfmim<br>0.21 |              |                     |             |          |             |                   |       |       |       |      |  |
| -                                              |              | N E                                                                          |      |               |                 |                 |              |                     |             |          | _           |                   | r     | _     | _     | <br> |  |
| +                                              | 'n           | a a cif                                                                      |      | 7 30          | C               | · ·             | 0            | с с                 | 0           | 0 10     |             |                   | -     | 3 10  | 0 17  | <br> |  |
|                                                |              | Hardness<br>as CaCO <sub>3</sub><br>Total N.C.<br>ppm ppm                    |      |               |                 |                 | 17           | 6                   | 2           | œ        |             |                   | 15    | 15    | 13    | <br> |  |
| -                                              | -            | P P P P                                                                      |      | 17 28         | 2 2             | 18              | 2            | 98                  | 200         | -2<br>-2 |             |                   | 2     | 12    | 2     | <br> |  |
| -                                              | - B          | n sod -                                                                      |      |               |                 |                 |              |                     |             |          |             |                   |       | e 56  | 286   | <br> |  |
|                                                | To to        | sollos<br>pevios<br>in ppm                                                   |      | 0,17          | 305             | η <sub>0</sub>  | 33           | 36                  | 8           | 10°      |             |                   |       | %     | ά.    | <br> |  |
|                                                |              | Other constituents                                                           |      |               |                 |                 |              | 41 0,02 PO1, 0,00 d |             |          |             |                   |       |       |       |      |  |
|                                                |              | Silic o<br>(SiO <sub>2</sub> )                                               |      |               |                 |                 |              | 7.6                 |             |          |             |                   |       |       |       |      |  |
|                                                | million      | Boron<br>(B)                                                                 |      |               | <u>-</u>        | 11              |              | c]                  | 0           | 0.0      |             |                   | 0.7   | 0,1   | 0,0   |      |  |
| 318)                                           | per mil      | Fluo-<br>ride<br>(F)                                                         |      |               |                 |                 |              | 0.0                 |             |          |             |                   |       |       |       |      |  |
| W (STA.                                        | :   "I       | rrate<br>(NO <sub>3</sub> )                                                  |      |               |                 |                 |              | 0.0                 |             |          |             |                   |       |       |       |      |  |
| PEDRO DA                                       | equivolents  | Chla-<br>ride<br>(Cl)                                                        |      | 2.0           | 0.00            | 9.0             | 0.03         | 8.00                | 0.0         | 0.07     |             |                   | 0.07  | 0.04  | 0.06  |      |  |
| NOG M                                          | <u>e</u>     | Sul -<br>fate<br>(SO <sub>4</sub> )                                          |      |               |                 |                 |              | 0.00                |             |          |             |                   |       |       |       |      |  |
| VER BELO                                       | constituents | Bicar-<br>bonate<br>(HCO <sub>3</sub> )                                      |      | 36            | 13              | 28              | 0.33         | 0.25                | 0.50        | 0.20     |             |                   | 0.23  | 15    | 16    |      |  |
| TUCLUMONE RIVER BELOW DON PEDRO DAM (STA. 31a) | Mineral cons | Corbon-                                                                      |      | 0.0           | 0.0             | 0.0             | 0.0          | 0.0                 | 0.0         | 0.0      |             |                   | 0.00  | 0.0   | 0,0   |      |  |
| TUO                                            | Mine         | sium<br>(K)                                                                  |      |               |                 |                 |              | 0.02                |             |          |             |                   |       |       |       |      |  |
|                                                |              | (No)                                                                         |      | 0.10          | 0.08            | 0.10            | 0.0          | 0.10                | 1.8         | 0.12     |             |                   | 0.08  | 1.9   | 0.07  |      |  |
|                                                |              | Magne-<br>sum<br>(Mg)                                                        |      |               |                 |                 |              | 0.5                 |             |          |             |                   |       | 0.13  |       |      |  |
|                                                |              | Calcium Magner S<br>(Ca) (Mg)                                                |      | 0.56°         | 0.320           | 0.46            | 0.346        | 0.20                | 0.20        | 0.16     |             |                   | 0.300 | 3.6   | 0,260 |      |  |
|                                                |              | PH                                                                           |      | 6.9           | 6.9             | 7.1             | 6.7          | 6.8                 | 6.8         | 6.7      |             |                   | 6.8   | 6.8   | 6.8   |      |  |
|                                                | Spacefic     | (micromhos pH at 25°C)                                                       |      | 57.8          | 39.4            | 60.1            | h3.0         | 35.3                | 25.8        | 94.9     |             |                   | 6.0a  | 33+3  | 36.8  |      |  |
|                                                |              | gan<br>%Sat                                                                  |      | 4             | 8               | 2               | 98           | 18                  | 62          | 92       |             |                   | 1     | 1     | 48    |      |  |
|                                                |              | osygan<br>ppm %Sq                                                            |      | 0.6           | 6.0             | 4.              | 4.6          | 6,3                 | 4.9         | 7.5      |             | neit              | 7.7   | 7.6   | 8.7   |      |  |
|                                                |              | E o C                                                                        |      | 95            | 99              | 9               | 53           | 58                  | 65          | 19       | pelo        | in Treat          | 19    | 19    | 25    |      |  |
|                                                |              | Dischorge Temp                                                               |      | 985           | 1,340           | 1,500           | 2,480        | 2,390               | 2,390       | 2,220    | Not Sampled | Broken in Transit | 1,500 | 1,500 | 1,500 |      |  |
|                                                |              | ond time<br>sompled<br>P.S.T                                                 | 1959 | 1/20          | 2/10            | 3/11            | 4/14<br>0915 | 5/11                | 6/8<br>0820 | 7/14     | /8          | /6                | 10/8  | 11/14 | 12/17 |      |  |

b Laboratory pH. o Field pH

c Sum of calcium and magnesium in apm.

e. Sum of calcum and magnessium in agm.

4. Inon (Fe), aluminum (A1), arsonic (As), capper (Cu), lead (Pb), manganase (Mn), zinc (Zn), and hexavolent chromium (Ci 15), reported hare as 0.0 except as shown.

a Derived from conductivity vs. TDS curves.

h Annual median and storgs, respectively. Calculated from analyses of deplicate monthly samples made by Caldonia Department of Public Houlth, Division of Laboratowis, or United Stores Deplicated Navier, Darlin of Winner Based (1952) and the Mark Stores Department of Manie Indiana of Indiana Indiana Stores (1959). United Stores Department (1969), Lab Angels Department of Manie and Person of Redementon (1969), United Stores (1969). Stores (1969) and Caldonia Caldonia (1969), Lab Angels Department of Manie and Person (1969), Chy of Lab Angels Caldonia (1969). Stores (1969), Chy of Lab Angels (1968), Chy of Lab Angels (1969), Chy of Lab A f Determined by addition of analyzed constituents

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (BO. 5) TABLE B-4

|                                                  | _                       | 1                                                                               | -    | -                                       |           | -                                     |       |                   |         |     | -             | _                 |        |      |       |
|--------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|------|-----------------------------------------|-----------|---------------------------------------|-------|-------------------|---------|-----|---------------|-------------------|--------|------|-------|
|                                                  |                         | A D D D                                                                         | 1990 |                                         |           |                                       |       |                   |         |     |               |                   |        |      |       |
|                                                  |                         | Mardness 8 d Co form" Analyzed os CaCO <sub>8</sub> "y with ma 8 y i pom Toto N |      | 12.187                                  | # a C C . | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       |                   |         |     |               |                   |        |      |       |
| ı                                                | 3                       | 0.0                                                                             |      | S                                       |           | 4                                     |       | *                 | e       | c   |               |                   |        | -    |       |
|                                                  |                         | Mardhess<br>os CaCOs<br>Toto Ne                                                 |      | 0                                       | 5         |                                       | 18    | *                 | 5       | E   |               |                   | 0      | P.   |       |
|                                                  |                         | Toto<br>PBM                                                                     |      | S                                       | ş         | 2                                     | 0     | 2                 | 1       |     |               |                   | 2      | 2    | x     |
|                                                  | ě,                      | 5 25                                                                            |      | 20                                      | g.        | 2                                     | 39    | 0,                | -       |     |               |                   | 0      | 2    | 5     |
|                                                  | 7010                    | Solited Solite                                                                  |      | °¢                                      | 61.       | t d                                   | 2AL.  | 2694              | o yet   | 9   |               |                   | action |      | *5    |
|                                                  |                         | Other constituents                                                              |      |                                         |           |                                       |       | A1 0.76 POL 115 d |         |     |               |                   |        |      |       |
|                                                  |                         | 8.0%                                                                            |      |                                         |           |                                       |       | -                 |         |     |               |                   |        |      |       |
| 106                                              | 0.01                    | Boron Siica<br>(B) (5.0 <sub>2</sub> )                                          |      |                                         | 0.0       | 0.0                                   | 0.1   | 3                 |         |     |               |                   |        | gl.  |       |
| (STA.                                            | mullion<br>av mil       | Fluo-<br>fride<br>(F)                                                           |      |                                         |           |                                       |       | 0.0               |         |     |               |                   |        |      |       |
| RRIDOF                                           | equivalents per million | N.<br>Prate<br>(NO <sub>S</sub> )                                               |      |                                         |           |                                       |       | 8.0               |         |     |               |                   |        |      |       |
| TERFORD                                          | 0 4 105 4               | Cnto<br>ride<br>(C1)                                                            |      | 17<br>7.08                              | 14        | 14 0.39                               | 3 18  | 8 6               | 11.01   | ξE  |               |                   | 111    | d K  | = [   |
| 100.8-10                                         | ē                       | Sul<br>fate<br>(SO <sub>e</sub> )                                               |      |                                         |           |                                       |       | A. A.             |         |     |               |                   |        |      |       |
| R AT REC                                         | tituente                | Bonate<br>(HCO <sub>3</sub> )                                                   |      | 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.0       | 0.69                                  | 100   | 1.59              | 35      | 181 |               |                   | 110    | 200  | 86    |
| NOCIDION SIVER AT MICHORALMATERFOLD BRIDGE (STA. | Mineral constituents in | Corban-<br>ote<br>(CO <sub>9</sub> )                                            |      | 0.00                                    | .00.0     | 00.0                                  | 0.0   | 0.0               | 00.0    | 00. |               |                   | 0.0    | 0 0  | - JE  |
| 1100.09                                          | Mine                    | Potos-                                                                          |      |                                         |           |                                       |       | 5.1               |         |     |               |                   |        |      |       |
|                                                  |                         | Sod-um<br>(No)                                                                  |      | 8.6                                     | 9.3       | 8.5                                   | 20 S  | 046               | 2.63    | 5   |               |                   | 2.53   | 8.0  | E C   |
|                                                  |                         | Bugne<br>Brum<br>(Mu)                                                           |      |                                         |           |                                       |       | 8.1               |         |     |               |                   |        | 0 12 |       |
|                                                  |                         | Colcum Magne<br>(Ca) sum<br>(Mg)                                                |      | 0.R0c                                   | 0.60      | 0.7%                                  | 2.94  | 2K:               | 2.34    | .34 |               |                   | 27.65  | 9.82 | 2.53  |
|                                                  |                         |                                                                                 |      | ~ ~                                     | 7.3       | 4.0                                   | 8.3   |                   | 9.      | 27  |               |                   | 8.2    | 7.2  | 7.    |
|                                                  | Sperific                | onductorical<br>nicrombos<br>at 25°C)                                           |      | 125                                     | 104       | 121                                   | 989   | 193               | \$55    | 2   |               |                   | 519    | 118  | 10    |
|                                                  |                         | 0 Sot                                                                           |      | 8                                       | 8         | 90                                    | 6     | 8                 | E       | 3   |               |                   | 8      | S.   | 2     |
|                                                  |                         | Dissolved<br>oaygen<br>ppm %5of                                                 |      | 0.0                                     | 0.0       | 10.6                                  | 4.7   | 8.3               | ec<br>o | ec. |               | anest c           | . 09   | 8.0  | 6.0   |
|                                                  |                         | S OF                                                                            |      | C.                                      | 95        | 29                                    | 95    | 4                 | 2       | ť   | pelda         | to Tr             | 0.9    | S    | 15    |
|                                                  | E                       | Discrete Temp Dissolved conductores phinciples phinciples of cases of 25°C).    |      | Į.                                      | ř         | 1                                     | ř     | -                 | ij.     | ·   | Political Sca | Arokeo to Transit | 9      | 2    | 3     |
|                                                  |                         | Dote and time sampled P S T                                                     | 0%01 | \$ 14<br>14                             | 2/17      | 1/11                                  | 11/10 | 11/1              | 1030    | 10  | 8/            | /6                | 1.115  | 150  | 1 /11 |

CENTRAL VALLEY REGION (NO. 5)

ANALYSES OF SURFACE WATER

|                                   |                                              | P                                                           |                     |     |        |         |          |       |                 |       |               |             |                                     |       |             |            | _ | _ | 7 |
|-----------------------------------|----------------------------------------------|-------------------------------------------------------------|---------------------|-----|--------|---------|----------|-------|-----------------|-------|---------------|-------------|-------------------------------------|-------|-------------|------------|---|---|---|
|                                   |                                              | Analyzed<br>by 1                                            |                     |     | 5000   |         |          |       |                 |       |               |             |                                     |       |             |            |   |   |   |
|                                   |                                              | Hardness bid - Califormh<br>os CoCO <sub>S</sub> 11y MPN/ml |                     |     | fedtan | Sad mum | training |       |                 |       |               |             |                                     |       |             |            |   |   |   |
|                                   |                                              | - pid                                                       | ,                   |     | 4      | н       | m        | 20    | -21             | g     |               |             | 0                                   | 9     | 10          | 17         |   |   |   |
|                                   |                                              | COS                                                         | S C<br>D B C        |     | 22     | 13      | 8        | 6     | 10              | 69    | 72            |             | 79                                  | 72    | 37          | 277        |   |   |   |
|                                   |                                              | Hards<br>08 Co                                              | Tatal               |     | 8      | 22      | 95       | 117   | 171             | 192   | 306           |             | 21.7                                | 220   | 86          | 59         |   |   |   |
|                                   | Γ.                                           | cent                                                        | 5                   |     | 93     | 52      | - 27     | 23    | 4               | 25    | 175           |             | 25                                  | %     | 83          | R          |   |   |   |
|                                   | Total                                        | solved<br>solved                                            | mdd ui              |     | 3766   | 31199   | 300      | 1,57° | 19171           | 508   | 5535          |             | JUS                                 | 588   | 2368        | 164        |   |   |   |
|                                   |                                              |                                                             |                     |     |        |         |          |       | A1 0.08 PU 0.80 |       |               |             | Fe 0,15 Su 0,02<br>Po, 0,75 Al n,01 |       |             |            |   |   |   |
|                                   |                                              | Sinco                                                       | (30)                |     |        |         |          |       | 의               |       | 뭐             |             | 21                                  |       |             |            |   |   | 1 |
|                                   | 5                                            | 1 5                                                         | (8)                 |     |        | 0.0     | 9]       | 0,1   | 링               | 31    | 9             |             | 2 0                                 | 0,2   | 0,1         | 0          |   |   | 1 |
| . 31)                             | ar million                                   | Fluo-                                                       | (F)                 |     |        |         |          |       | 100             |       | 100           |             | 0.1                                 |       | - 01        | - 01       |   |   | - |
| TT (ST)                           | parts per million<br>equivalents par million | ž                                                           | (NO <sub>3</sub> )  |     |        |         |          |       | 3.1             |       | 9 70          |             | 1.4                                 |       |             |            |   |   | - |
| DINNE C                           | od nba                                       | Chla-                                                       | (C)                 |     | 75     | 577     | 67       | 177   | 169             | 210   | 306           |             | 222                                 | 238   | 86<br>2.4.3 | 1.75       |   |   | 1 |
| AT TH                             | E.                                           | Sul                                                         |                     |     |        |         |          |       | 12              |       | 26            |             | 9.0<br>0.19                         |       |             |            |   |   |   |
| THE PERSON AT THE CORR CITY (STA. | constituents                                 | Brear-                                                      | (HCO <sub>3</sub> ) |     | 1,16   | 1,8     | 1:30     | 2.36  | 2,33            | 151   | 161           |             | 3.05                                | 2,97  | 774         | 50<br>7.82 |   |   |   |
| buil d                            | Mineral con                                  |                                                             | (CO3)               |     | 0.0    | 0000    | 0000     | 0,0   | 0000            | 0.00  |               |             | 0000                                | 0,0   | 000         | 000        |   |   |   |
|                                   | Min                                          | Potas-                                                      | (K)                 |     |        |         |          |       | 6.8<br>0.17     | 7.14  | 10<br>0,26    |             | 0.25                                |       |             |            |   |   | 1 |
|                                   |                                              | Sodium                                                      |                     |     | 38     | 29      | 34       | 3,87  | 3.78            | 102   | 5.09          |             | 177                                 | 5.52  | 2,13        | 2.3        |   |   |   |
|                                   |                                              | Magne-                                                      | (Mg)                |     |        |         |          |       | 13              |       | 17            |             | 18                                  |       | 9.6         |            |   |   | 1 |
|                                   |                                              | Colcium                                                     |                     |     | 1,600  | 21.1    | 10.00    | 3,54  | 24.35           | 3,846 | 25.7          |             | 2.89                                | 1.10c | 25          | 1.300      |   |   |   |
|                                   |                                              | I G                                                         |                     |     | 7.29   | 7.3     | 7.34     | 7.83  | 9, La           | 7.84  | 7.9b          |             | 7.9ª                                | 7. La | 7.33        | 7.24       |   |   | 1 |
|                                   | Spacific                                     | conductance<br>(micramhos pH                                |                     |     | 380    |         | 700      | 802   | 798             | 890   | 963           |             | 166                                 | 1,030 | 5177        | 288        |   |   |   |
|                                   |                                              |                                                             | % Sot               |     | 72     |         | 2        | 2     | 112             | 63    | 11.3          | _           | 23                                  | 78    | 72          | 19         |   |   | 1 |
|                                   |                                              | Dissolvs d<br>oxygen                                        | e da                |     | 2*.    | 0       | 2        | 6*9   | 7.6             | 2°F   | ş             |             | 6.1                                 | 7.1   | CV.         | 0*0        |   |   | 1 |
|                                   |                                              | Temp<br>no PF                                               |                     |     | 9      | es.     | 8        | 6     | 72              | 272   | 92            | Pe          | - 17                                | 69 7. | 09          | 9.         |   |   | - |
|                                   |                                              | Dischorge Temp                                              |                     |     | 19-3   | 1,200   | 1,00     | 10    | 38              | 58    | . 092         | Not Sampled | 052                                 | 585   | 98          | 598        |   |   |   |
|                                   |                                              |                                                             | P.S.T               | 135 | 1/20   |         |          | 74.   | /11<br>12l/5    | 1715  | 7/2\L<br>1/00 | 3/ 12       | 9/2                                 | 20/0  | 1500        | 12/16      |   |   |   |

a Field pH.

Laboratory pH.

Sum of calcium and magnesium in epm.

Sum of scalcum and angiversal min spin. (Ca), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr<sup>16</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

A hazed medies and energy, respectively, Calculated more wedges to Calculate models yearlines models yearlines models yearlines models yearlines and between the Parks of the Calculate State Delice Health Survey. Quality of West Branch MISSI United States Designment of the Internet States (Branch Missing States Generalized Navey, Quality of West Branch MISSI United States Designment of the Internet States (Branch Missing States States) and States States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missing States) and States (Branch Missin g Gravimetric determination.

CENTRAL VALLEY PEGION (NO. 5)

|                                    |                         | Annyted                         | T       | 5000 |               |      |             |      |                  |      |       |                                         |                |       |       |         |      |   |
|------------------------------------|-------------------------|---------------------------------|---------|------|---------------|------|-------------|------|------------------|------|-------|-----------------------------------------|----------------|-------|-------|---------|------|---|
|                                    |                         | Sad - os CaCOs if p MPN/ad by I |         |      | catter<br>c 2 | 200  | Maria Maria |      |                  |      |       |                                         |                |       |       |         |      |   |
|                                    |                         | 10.00                           |         |      |               | 9    | a           |      | ^                |      |       | 0                                       | 8              |       |       |         |      |   |
|                                    |                         | 0 C O B                         | 500     |      | 9             | ×c   | -           | -    | c                | ×-   | 52    |                                         | 2              | 3     | L     | 0       |      |   |
|                                    |                         | Mere<br>O C                     | pom     |      | 0             | Cq.  | #           | 2    | 5                | 3    | 44    | 40                                      | , r            | 5     | ъ     | F       |      |   |
|                                    |                         | 200                             |         |      | 22            | 5    | 2           | =    | 5                | 77   |       | 5                                       |                |       | 13    | Co.     |      |   |
|                                    | Tate                    | 601.00<br>801.00<br>801.00      |         |      | 75            | 47   | *65         | *5   | 2.               | 63*  | 11.7  | *************************************** | 100            | ì     | 4     | 'n      |      |   |
|                                    |                         | Other constituents              |         |      |               |      |             |      | 70 003 A1 0 05 d |      |       |                                         | 70 0. 1 41 m d |       |       |         |      |   |
|                                    |                         | (\$0.2)<br>(\$0.2)              |         |      |               |      |             |      | 47               |      |       |                                         | 8              |       |       |         |      |   |
|                                    | £0.                     |                                 |         |      | 8             | F    | e e         | 0.0  | 0.0              | 0.0  | 0.1   | 0.0                                     | 0.0            | 0.0   | 0.0   | 0.0     |      |   |
| ,                                  | millian<br>sr mill      | Flua-                           |         |      |               |      |             |      | 100              |      |       |                                         | 10.0           |       |       |         |      |   |
| STA. 21                            | squivalents per million | Profe                           | 18 0 18 |      |               |      |             |      | 0.0              |      |       |                                         | 4.0            |       |       |         |      |   |
| SVILLE                             | 9 0014                  | Chio                            | -       |      | 3.5           | 200  | 2.5         | 1.5  | 5.5              | 3,3  | 0.0   | 1.0                                     | 0.0            | 5.5   | 0.0   | 3.0     |      |   |
| AT MARY                            | e e                     | Sul<br>Fate                     |         |      |               |      |             |      | 0.00             |      |       |                                         | 0.35           |       |       |         |      |   |
| TUBA RIVER AT MARTSVILLE (STA. 21) | treutite:               | Bicar                           | 2       |      | 62            | 0.72 | 37.0        | 35   | 0.65             | 0.75 | 8 E.  | 4 K                                     | 2 K            | 22    | 8 .   | æE      |      |   |
| TUB                                | Minaral constituents    | Carban-                         | 602     |      | 0.0           | 0.0  | 0.0         | 0.0  | 0.0              | 0.0  | 0.00  | 0.0                                     | 0.0            | 0.0   | 0.0   | 0.0     |      |   |
|                                    | 26                      | Potos-                          |         |      |               |      |             |      | 0.00             |      |       |                                         | 0.03           |       |       |         |      |   |
|                                    |                         | Sadrum<br>(Na)                  |         |      | 2.5<br>5.15   | 2.9  | 0.00        | 1.9  | 0.10             | 0.12 | 0.50  | 0.30                                    | 0.1            | 0.30  | 5.9   | 0.21    |      |   |
|                                    |                         | Brum<br>Brum<br>(Ma)            |         |      |               |      |             |      | 0.18<br>0.18     |      |       |                                         | 9.53           |       |       |         |      |   |
|                                    |                         | Colcium Magne-                  |         |      | 17.7          | O.RE | 0.63        | 0.64 | 9.6              | 0.85 | 1.520 | 1.50                                    | 600            | 1.36  | 06.1  | 10<br>0 |      |   |
|                                    |                         | , I                             |         |      | 7.7           | 7.3  | ç.          | 7.3  | 7.3              | 7.3  | 7.5   | 7.7                                     | 7.7            | 7.7   | 7.6   | 7.3     |      |   |
|                                    | Specific                | (micramhos) PH                  |         |      | 121           | 93.1 | 75.0        | 69.1 | 75.7             | 7:14 | 162   | 154                                     | 165            | 36    | 8     | 8       |      |   |
|                                    |                         | P 10                            | 200     |      | 101           | Ь    | 3           | 100  | 8                | 102  | 8     | 108                                     | 101            | F     | 901   | 101     |      | ٦ |
|                                    |                         | Dissalved<br>osygen             | 2       |      | 11.6          | 11.5 | 10.9        | 10.2 | 6.7              | 9.6  | 8.7   | 8.5                                     | 6.0            | 9.7   | 9.7   | 10.8    |      |   |
|                                    |                         | Eo c                            |         |      | 0,4           | 3    | 9           | 9    | *0               | 8    | 1,1   | 8                                       | 98             | I.    | 63    | 22      |      | 7 |
|                                    |                         | Discharge Temp                  |         |      | - 1 × 10      | į    | •           | 5.   |                  | 1    | ×     | 3                                       | f              | a     | 4     | 1       |      |   |
|                                    |                         | and 1-me<br>sampled             |         | 1999 | 1/8           | 0660 | 3/10        | 1304 | 5/12             | 1500 | 7/7   | 1210                                    | 9/1            | 10/14 | 11/13 | 13/3    | 1000 |   |

A leg of the supporter of the form of state of the control of particles of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co

CENTRAL VALLEY REGION (NO. 5)

| F-                                   | 7                                                                    |      |                |                  |                 |       |                                           |      |      |       |                    |       |            |      |      |
|--------------------------------------|----------------------------------------------------------------------|------|----------------|------------------|-----------------|-------|-------------------------------------------|------|------|-------|--------------------|-------|------------|------|------|
|                                      | Anolyzed<br>by 1                                                     | SDSD |                |                  |                 |       |                                           |      |      |       |                    |       |            |      |      |
|                                      | Hardness bid Coliform Analyzed os CoCO <sub>3</sub> IIIy MPN/ml by I |      | Median<br>0.62 | Mextroum<br>230. | Minimum<br>0.06 |       |                                           |      |      |       |                    |       |            |      |      |
|                                      | - Add                                                                | -    | 10             | 15               | 0               | С     | н                                         | ac   | *    | 0.    | 0.                 | p-1   | -          | c.   |      |
| -                                    | # C O E                                                              |      | m              | .0               | ٥.              | 0.    | 0.                                        | m    | 9    | 0     | c                  | 6     | m          | -2   |      |
|                                      | Mardness<br>os CaCO <sub>3</sub><br>Tatal N C<br>ppm ppm             |      | 95             | 38               | 30              | 86    | 2                                         | 34   | 39   | F4    | 55                 | 63    | 57         | 25   |      |
| -                                    | sod the                                                              |      | 15             | 32               | 15              | 15    | c.                                        | 14   | 11   | 13    | 25                 | 12    | 15         | 14   |      |
| Totol                                | solvad<br>solids<br>in ppm                                           |      | 890            | 264              | 516             | P-1-9 | 184                                       | 6.75 | ,e9  | 75    | 80                 | 8     | 93,        | 83.  |      |
|                                      | Other constituents                                                   |      |                |                  |                 |       | Fe 0.01 A1 0.03 d<br>PO <sub>k</sub> 0.00 |      |      |       | A1 0.05 POL 0.00 d |       |            |      |      |
|                                      | 5102                                                                 |      |                |                  |                 |       | 13                                        |      |      |       | 16                 |       |            |      |      |
| loi                                  | Boran Silica<br>(B) (SiO <sub>2</sub> )                              |      | 0,0            | 0.0              | 0.0             | 0.0   | 0.0                                       | 0.5  | 0.0  | 0.0   | 0.0                | 0.1   | 0.1        | 0.3  |      |
| million<br>per million               | Fluo-<br>cids<br>(F)                                                 |      |                |                  |                 |       | 0.1                                       |      |      |       | 0.0                |       |            |      |      |
| parts per million<br>volents per mil |                                                                      |      |                |                  |                 |       | 0.0                                       |      |      |       | 0.2                |       |            |      | <br> |
| squivalents                          | Chio-<br>rids<br>(Ci)                                                |      | 3.5            | 2.5              | 0.07            | 1.2   | 2.7                                       | 1.5  | 1.8  | 0.03  | 3.5                | 3.2   | 3.5        | 3.2  |      |
| th Shaur                             | Sul -<br>fata<br>(SO <sub>4</sub> )                                  |      |                |                  |                 |       | 1.9                                       |      |      |       | 6.0                |       |            |      |      |
| Constituents in squivolents per mi   | Bicor -<br>bonats<br>(HCO <sub>3</sub> )                             |      | 1.07           | 141              | 34              | 32    | 35                                        | 38   | 69.0 | 0.98  | 1.05               | 1.08  | 66<br>1.08 | 9.0  |      |
| Mineral constituents                 | Corbon-<br>ots<br>(CO <sub>3</sub> )                                 |      | 0.0            | 0.0              | 0.00            | 0,00  | 0.0                                       | 0.00 | 0.0  | 0.0   | 0.0                | 0.00  | 0.0        | 0.00 |      |
| Mine                                 | Patos-<br>(K)                                                        |      |                |                  |                 |       | 0.2                                       |      |      |       | 9.0                |       |            |      | <br> |
|                                      | (No)                                                                 |      | 3.6            | 0.13             | 0.11            | 1.9   | 0.09                                      | 0.11 | 3.7  | 3.3   | 3.5                | 3.8   | 9.6        | 3.9  |      |
|                                      | Mogns-<br>sium<br>(Mg)                                               |      |                |                  |                 |       | 1.9                                       |      |      |       | 3.6                |       |            |      |      |
|                                      | Calcium Mogns-                                                       |      | 1.12           | 0.76             | 09.0            | 0.56  | 9.2                                       | 0.68 | 0.78 | 0.940 | 15<br>0.75         | 1.26  | 1.14       | 1.04 |      |
|                                      | Ē                                                                    |      | 7.2            | 7:3              | 4.              | 7:3   | F.                                        | F. 3 | 7.5  | 7.7   | 7.6                | 7.9   | 9.         | 7.3  |      |
|                                      | conductonce<br>(micromhas<br>ot 25°C)                                |      | 125            | 82.7             | 71.5            | 4.59  | 69.3                                      | 75.9 | 87.5 | 105   | 118                | 129   | 130        | 116  |      |
| -                                    | ygan (m                                                              |      | 100            | 101              | 8               | 8:    | 100                                       | 101  | 101  | 109   | 105                | 76    | 8          | 108  |      |
|                                      | Ossalvad<br>osygan<br>ppm %Sot                                       |      | 11.8           | 15.1             | 11.4            | 10.3  | 8.6                                       | 6.3  | 9.1  | 6.6   | 6.0                | 6.1   | 10,0       | 6.11 |      |
|                                      |                                                                      |      | - ta           | 94               | 69              | - 25  | 29                                        | 8    | 0,   | 91    | 92                 | 19    | 1 95       | 25   |      |
|                                      | Dischorge Tamp<br>in cfs in of                                       |      | 1,98           |                  | 2,200           | 9,30  | 1,720                                     | 776  | 0440 | 094   | CON                | 100   | 500        | 150  |      |
|                                      | Dots<br>ond time<br>sampled<br>P.S.T                                 | 1959 | 1/8            | 2/9              | 3/10            | 1,100 | 5/12                                      | 6/10 | 11/7 | 8/7   | 9/1                | 10/14 | 11/2       | 12/3 |      |

b Laboratory pH. Hd blaid o

c. Sum of calcium and magnessium in spin.
d Iron (Fe), aluminum (A1), orsance (A2), capper (Cu), Iead (Pb), manganese (Mn), 2.nc (Zn), and hexavalent chramum (Cr<sup>10</sup>), reported here os 0.0 except as shown. c Sum of calcium and magnesium in apm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Gravimatric determination.

Amend median and anough, respectively. Calculated from mody yeas of duplicate monthly samples mode by California Opportment of Poblic Health, Division of Laboratories, or United States Geological Survey, Galariey of Water Banch (1955), Indeed States Desponsation of the Internet States of Health States Calculated States (1957), Internet States of States and States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States of States

LAHOWTAN REGION (N . F

On on property by the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property fluor Boron Sill o Diner onstituents 1 0 E Mineral jonstifuents in Bucor-bonate (HC fig) (4) 4 :10 B. 6 Mugne Brum (Mul - 3 n ft, n of caspen (m.c.umbos pH or ft, n of payer (m.c.umbos pH or caspen (m.c.umbos pH or caspen) De Sale + N

ANALYSES OF SURFACE WATER LAHCNTAN HEGION (NO. 6)

CARSON RIVER, WELT FORM AT MOUDPOINDS (STA. 115a)

|         |                          |                                       |         |      |               |                 |                 |                 |                 |             |      |             |                                 |             |                   |       |      | <br>- |
|---------|--------------------------|---------------------------------------|---------|------|---------------|-----------------|-----------------|-----------------|-----------------|-------------|------|-------------|---------------------------------|-------------|-------------------|-------|------|-------|
|         |                          | Anolyzed<br>by i                      |         | 0800 |               |                 |                 |                 |                 |             |      |             |                                 |             |                   |       |      |       |
|         | å                        | De CaCO <sub>3</sub> ity MPN/mil      |         |      | hedlan<br>b.c | haxamum<br>430° | Kinibam<br>U.13 |                 |                 |             |      |             |                                 |             |                   |       |      |       |
|         | Tur                      | n ppm                                 |         |      |               |                 |                 |                 | 9               | 3           |      |             | а_                              |             |                   | v     |      |       |
|         |                          | N COS                                 | mdd     |      | 0             |                 | 0               | 0               | 0               | 0           | 0    | 0           | 0                               | 0           |                   | 0     |      |       |
| Ì       |                          | Hordn<br>on Ca                        | mdd     |      | 97            |                 | 8               | 9               | 297             | 3           | २    | e,          | ₹.                              | 33          |                   | R     |      |       |
|         | D art                    | Fod -                                 |         |      | 7)            |                 | 2               | 2               | 16              | 29          | 19   | 57          | 3                               | 23          |                   | 7.7   |      |       |
|         | Total                    | solids<br>solids<br>in ppm            |         |      | Jac           |                 | J09             | $_{i_{i}3}^{f}$ | 36f             | JM          | J09  | olf         | 752                             | 5           |                   | 999   |      |       |
|         |                          | Other constituents                    |         |      |               |                 |                 |                 | Fe 0.05 th 0.03 |             |      |             | м <u>п.от</u> Ро <u>цо.оц</u> ф |             |                   |       |      |       |
|         |                          | Silica<br>(SiO <sub>2</sub> )         |         |      | 31            |                 | ঝ               | 긔               | 21              | 21          | 7]   | 9]          | খ                               | 위           |                   |       |      |       |
|         | 000                      | Boron S<br>(B)                        |         |      | ી             |                 | 3,0             | 0.0             | 0.0             | 9           | 93   | 0.0         | 100                             | 읭           |                   | ी     |      |       |
|         | per million              | Fluo-                                 | (4)     |      | 0 3           |                 | 000             | 000             | 0.0             | 000         | 0.01 | 0.0         | 0.01                            | 0000        |                   |       |      |       |
|         | ports per<br>equivalents | - in<br>trote                         | (Car)   |      | 7*0           |                 | 000             | 000             | 0.00            | 0.00        | 0.00 | 0.00        | 1.5                             | 00.0        |                   |       |      |       |
|         | a vinbe                  | Chlo-                                 | 101     |      | 3.5           |                 | 0.0             | 3.8             | 0.03            | 0.02        | 0.07 | 0.0         | 0.03                            | 2.0         |                   | 0.03  |      |       |
|         | e i                      | Sul -<br>fate                         | _ 1     |      | 000           |                 | 0.08<br>0.08    | 000             | 0.06            | 4.8<br>0.10 | 0.02 | 0.12        | 0.02                            | 0.02        |                   |       |      |       |
| toni fu | setituent                | Bicor-<br>bonate                      | (FCO3L) |      | 47            |                 | 37<br>0,61      | 0.59            | 25              | 28          | 36   | 4.5<br>0.74 | 51<br>0,84                      | 3.75        |                   | 0,09  |      |       |
|         | Mineral constituents     | Carban                                | 1003/   |      | 0.0           |                 | 0.00            | 00.0            | 0.00            | 0000        | 000  | 0.0         | 0.00                            | 00.0        |                   | 000   |      |       |
| , N     | Min                      | Potos-<br>sium                        | (W)     |      | 2.0           |                 | 0.9             | 0.0             | 0.02            | 0.03        | 0.04 | 10.0        | 1.8                             | 1.4         |                   |       |      |       |
|         |                          | Sodium<br>(Na)                        |         |      | 3.7           |                 | 54              | 0.08            | 2.0             | 2.2<br>0.10 | 0.13 | 3.6         | 0.21                            | 0.20        |                   | 0.22  |      |       |
|         |                          | Mogne                                 | (BWI)   |      | 1.8           |                 | 0.12            | 0.20            | 0.0             | 5.12        | 0.08 | 2.7         | 2.2                             | 2,2<br>0,18 |                   |       |      |       |
|         |                          | Calcium<br>(Ca)                       |         |      | 7.4           |                 | 07.0            | 6.4             | 0.30            | 6.4         | 8.8  | 8.8         | 0.50                            | 8.8         |                   | 0,3Ce |      |       |
|         |                          | g I                                   |         |      | 7.2           |                 | 3.3             | 7.3             | 7.3             | 7.3         | 7.3  | 7.3         | 7.4                             | 7.8         |                   | 7.1   |      |       |
|         | Coacific                 | conductance<br>(micromhos<br>at 25°C) |         |      | 72.6          |                 | 00 - 1          | 0*6*7           | 5.54            | 53.2        | 63.6 | 80,2        | 87.2                            | 79.0        |                   | 78.1  |      |       |
|         |                          | 9 0 0                                 | % Sat   |      | Ş             |                 | 18              | 28              | 63              | 38          | es.  | 82          | 78                              | 78          |                   | 90    |      |       |
|         |                          |                                       | mdd     |      | 11.0          |                 | 11.5            | 10.1            | 10,3            | 00<br>00    | 9.6  | 0,2         | 7.8                             | 7.6         | 101t              | 11.5  |      |       |
|         |                          |                                       |         |      | 28            | pale            | *               | 4               | 1,3             | 09          | 25   | 9           | ž                               | 5           | n Trac            | 7.    | <br> | <br>- |
|         |                          | Discharge Temp                        |         |      | 38            | Not Sampled     | 38              | 1,88            | 182             | 88          | 32   | 8           | 7*6                             | 91          | Broken in Trunsit | 12    |      |       |
|         |                          | Date<br>and time<br>sompted           | . S     | 1959 | 1/22          | 2/              | 3/10            | 14,30           | 5/15            | 6/16        | 7/9  | 8/14        | 9/3                             | 10/13       | 11/10             | 12/2  |      |       |

b Labaratory pH a Field pH.

c. Sum of colicium and magnessium in opim.
d. Ison (Fe), alumnum (A1), arsenic (A2), copper (Cu), lead (Pb), manganese (Mn), zinc (Za), and hexavalent chromium (Cr<sup>+6</sup>), reported here as  $\frac{0.0}{0.00}$  except as shown. c Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Amel metion and crops, respectively. Calculated from analyses of deplicate monthly samples most by Calculation Department of Poblic Health, Division of Laboratories, or United States Public Health Service.

Sample Market Bachery, Branch States, Quality of States Bacher (1925), Juned States Public Health Service (1924); San Barmadian County Flood

County Division and 1924(20), Branch and States (1924); Let Angeles Department of More and Public Health Service (1924); San Barmadian County Flood

Public Health (1924); Tambel Laboratories, Life (17 Like States (1924) Department of More Resources (1928); as and crosed.

Public Health (1924); Tambel Teamy Laboratories, Life (1924) Department of More Resources (1925); as and crosed.

ANALYSES OF SURFACE WATER LAHONTAN REGION (NO. 6) TABLE 8-5

| _                       |                                                                      |      |                  |         |                 |      |                     | -          |          | -     |                                         |       |        |      |  |
|-------------------------|----------------------------------------------------------------------|------|------------------|---------|-----------------|------|---------------------|------------|----------|-------|-----------------------------------------|-------|--------|------|--|
|                         | A ogiyzed<br>Dy 3                                                    | John |                  |         |                 |      |                     |            |          |       |                                         |       |        |      |  |
|                         | Mardness Bid - Celiform Analyzed os CBCO <sub>3</sub> in MPN/mu By i |      | Nethala<br>Leads | Pat. Ba | Manage<br>0.000 |      |                     |            |          |       |                                         |       |        |      |  |
| 1                       | 1                                                                    |      | 5                |         | 4               | -    |                     | -          | -        | -     | 4                                       | 3     | -4     |      |  |
|                         | Mardness<br>es CaCO <sub>S</sub><br>eso: N C                         |      | ,                |         | 0               | -    |                     |            |          |       |                                         |       |        |      |  |
|                         | Herd<br>es Ce                                                        |      | 3                |         | ×               | N    | 3                   | 0          | II,      | Z.    | 3                                       | 2     | •      | 3    |  |
|                         | 200                                                                  |      | 5                |         | 3               | 3    | 9                   | 9          | 4        | F- 7  | 7                                       | 6     | 2      | 2    |  |
| Tote                    | 200 00 00 00 00 00 00 00 00 00 00 00 00                              |      | 67.              |         | 600             | 21.0 | '                   | 1          | 3        | 650   | 200                                     | P     | *,     | *50  |  |
|                         | Other constituents                                                   |      |                  |         |                 |      | له ساين لم كدين ران |            |          |       | P Area " Lund da                        |       |        |      |  |
|                         | 80.0m Silico                                                         |      |                  |         |                 |      | a                   |            |          |       | -1                                      |       |        |      |  |
| 601                     | (8)                                                                  |      |                  |         | 이               | 010  | 0;                  | 0,0        | 0,0      | 0.0   | 0.0                                     | 6.3   |        | 100  |  |
| million<br>11.m /ec     | Fiuo-<br>Fide<br>(F)                                                 |      |                  |         |                 |      | 08                  |            |          |       | 塘                                       |       |        |      |  |
| equivalents per million | Profe (NO <sub>3</sub> )                                             |      |                  |         |                 |      | 08                  |            |          |       | 18                                      |       |        |      |  |
| 04:06+                  | Chio-                                                                |      | 0.00             |         | 0.12            | 5.0  | 0.03                | 2000       | 0.00     | 0/8   | 0.0                                     | 76    | 5.0    | 100  |  |
| ē                       | Sul -<br>fare<br>(50 <sub>e</sub> )                                  |      |                  |         |                 |      | 3/3                 |            |          |       | 0.00                                    |       |        |      |  |
| 11.fuenta               | Bicor-<br>bonale<br>(MCO <sub>3</sub> )                              |      | 5.00             |         | 02.0            | 69.0 | 69.0                | 08.0       | 0,42     | Z : 1 | 25.0<br>.0.0                            | 213   | , se 6 | 75°  |  |
| Mineral constituents    | Potas- Corbon-<br>Num<br>(K) (CO <sub>3</sub> )                      |      | 00.0             |         | 00.0            | 18   | 98                  | 000        | 18       | 0/8   | 18                                      | 18    | 13.    | 33.  |  |
| M                       | Potas,<br>(K)                                                        |      |                  |         |                 |      | 12.7                |            |          |       | 0.05                                    |       |        |      |  |
|                         | Sodium<br>(No)                                                       |      | 50.23            |         | 5.48<br>5.55    | 0.26 | 2 50                | 9 7        | 0.30     | 0.28  | 4.0                                     | 7.5   | 0.30   | 0.31 |  |
|                         | Magne-<br>6-um<br>(Mg)                                               |      |                  |         |                 |      | 7:10                |            |          |       | 0.19                                    |       |        |      |  |
|                         | Colerum M                                                            |      | 0.70c            |         | 0.64            | 0.54 | 77.0                | 0.700      | 0,680    | 0.080 | 4 to 2 to 2 to 2 to 2 to 2 to 2 to 2 to | 274.2 | 9.4.   | 2890 |  |
|                         | e H                                                                  |      | 7.3              |         | 7.7             | 7.5  | 2.0                 | 7.5        | 7.5      | 7.6   | 9.0                                     | 7.7   | 3      | į.   |  |
| 0001610                 | inductance<br>vicrambos<br>it 25°C)                                  |      | 94.5             |         | 91.4            | 75.4 | 76.1                | -*06       | 93.5     | 7. 6  | .50                                     | 170   | 95.6   | 6.96 |  |
| 97                      | Dissaived (m<br>osygan (m<br>ppm 9/6501                              |      | 16               |         | 8               | E    | 9                   | F          | 0        | 8     | Ę                                       |       | 22     | 5    |  |
|                         | Disso                                                                |      | 6.6              | v       | 6.5             | 0 0  | 0                   | 7.9        | 10<br>20 | 20    | 5                                       | 7.7   | 7.9    | 7 0  |  |
|                         | Je o                                                                 |      | 3                | ampled  | 3               | ~    | ×                   | 3          | 70       | 5     | ç                                       | æ     | 2      | 3    |  |
|                         | Unechange Temp Dissolved conductores pH incorporation ppm 96.501     |      |                  | Mot     |                 |      |                     |            |          |       |                                         |       |        |      |  |
|                         | ond time<br>sompled<br>P S T                                         | 696  | E di             |         | 72              | 773  | 71                  | A15<br>430 | - 0      | 28    | -3                                      | 100   |        | 96   |  |

 $F_{ij}$  ,  $P_{ij}$  ,

3 = 00 tato: 1

And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

ANALYSES OF SURFACE WATER

LAHONTAN REGION (NO. 6)

|                                | Anning                  | by i                                      | assa           |                  |                   |            |             |                                           |      |       |         |                             |                  |              |      |
|--------------------------------|-------------------------|-------------------------------------------|----------------|------------------|-------------------|------------|-------------|-------------------------------------------|------|-------|---------|-----------------------------|------------------|--------------|------|
|                                | -                       | as CaCO <sub>3</sub> in ppm<br>foto! N.C. | Median<br>0.23 | 7axd mun<br>230, | Minimum<br>O.Oùi5 |            |             |                                           |      |       |         |                             |                  |              |      |
|                                | - Joh                   | n ppm                                     |                |                  | 8.0               | 200        | н           | 02                                        | 0.2  | 0     | 9_      | 6.0                         |                  | н            | a    |
|                                |                         | SCO S                                     |                | 0                | 0                 | 0          | 0           | 0                                         | 0    | 0     | 0       | 0                           | 0                | 0            | 0    |
| L                              |                         |                                           |                | 7                | 23                | 23         | ×           | ሐ                                         | 33   | *     | 74      | 22                          | R                | 33           | 품    |
| L                              | Per-                    | sod -                                     |                | 88               | 58                | 27         | R           | 22                                        | 52   | 53    | 쮰       | 29                          | 28               | 렸            | 8    |
|                                | Total<br>det-           | solved<br>solids<br>in ppm                |                | 63               | 636               | 929        | 63e         | 11,1                                      | 62°  | 63    | 63      | 62 <sup>£</sup>             | 636              | 636          | 979  |
|                                |                         | Other constituents                        |                |                  |                   |            |             | A1 0.01 <sup>d</sup> PO <sub>1</sub> 0.00 |      |       |         | Pe 0.01 Al 0.01 PO PO D.000 |                  |              |      |
|                                | ŀ                       | (\$105)                                   |                |                  |                   |            |             | 킈                                         |      |       |         | 21                          |                  |              |      |
|                                | uo!                     | Boron (B)                                 |                |                  | 3                 | 31         | 3           | 9                                         | 9    | 0,0   | 3       | <u></u>                     | 라                | ी            | 링    |
| nillion                        | II m 18                 | Fluo-<br>ride<br>(F)                      |                |                  |                   |            |             | 00.0                                      |      |       |         | 0000                        |                  |              |      |
| ports per million              | equivalents per million | trote<br>(NO <sub>3</sub> )               |                |                  |                   |            |             | 000                                       |      |       |         | 1000                        |                  |              |      |
| od                             | equivo                  | Chlo-<br>rids<br>(Cl)                     |                | 25.0             | 1,2,1,<br>0,12    | 0.11       | 2.8         | 1.8                                       | 2.2  | 0.07  | 2.0     | 2.5                         | 3.0              | 2.5          | 2.0  |
| Miles of                       | ç                       | Sul -<br>fate<br>(SO <sub>4</sub> )       |                |                  |                   |            |             | 7°30                                      |      |       |         | 2.0<br>0.01                 |                  |              |      |
| DANE PAROE AL INTOE CALL COLOR | strtuent                | Bicor-<br>bonots<br>(HCO <sub>3</sub> )   |                | S 2              | 282               | 44<br>0.72 | 525<br>0.85 | 0.82                                      | 0.79 | 51.84 | 0,82    | 0,01                        | 0.84             | 15.<br>0.81. | 0.81 |
| DAME IN                        | Mineral constituents    | Carbon-<br>ote<br>(CO <sub>3</sub> )      |                | 00.0             | 0000              | 0,00       | 0,00        | 000                                       | 0.0  | 0.0   | 000     | 000                         | 000              | 0.0          | 000  |
|                                | Min                     | Potos-<br>sium<br>(K)                     |                |                  |                   |            |             | 1.7                                       |      |       |         | 0.05                        |                  |              |      |
|                                |                         | Sodium<br>(No)                            |                | 0.2              | 0.26              | 200        | 0.28        | 5.9                                       | 5.7  | 0.28  | 6.9     | 6.2                         | 8.9              | 0.0          | 0.29 |
|                                |                         | Mogns-<br>Sium<br>(Mg)                    |                |                  |                   |            |             | 0.03                                      |      |       |         | 2,2                         |                  |              |      |
|                                |                         | Calcium<br>(Ca)                           |                | 289*0            | 39.0              | 099°U      | 0,541       | 13                                        | 29°0 | 0.68  | 0,688   | 9.2                         | 0.760            | 0,66         | 99.0 |
|                                |                         | I                                         |                | -6-              | 7.5               | 7.78       | 7.73        | 7.68                                      | 7.78 | 7.7   | 7.73    | 7.6ª                        | 0.2 <sup>R</sup> | 7.9ª         | t-   |
|                                | Spacific                | conductonce<br>(micromhos<br>at 25°C)     |                | _i               | - 1<br>- 3        | 5.<br>5.   | 93.1        | 0.00                                      | 92*6 | 93.7  | 93.9    | 977.6                       | 0.14.19          | 93.5         | 95.7 |
|                                |                         | lved<br>gen<br>%Sof                       |                |                  |                   | 5          |             | 22                                        | 8    | 56    | 50      | 42                          | ec.              | E S          | 66   |
|                                |                         | Disso                                     |                |                  |                   | 5          | 5.5         | 9*3                                       | 5    | 8.5   | m<br>er | 7.5                         | 7                | 8,8          | 7    |
|                                |                         | E of                                      |                |                  |                   | .4         | 81          | 52                                        | 84   | 8     | g       | 15                          | 8.               | 7            | \$   |
|                                |                         | Oischorge Tamp                            |                |                  |                   |            |             |                                           |      |       |         |                             |                  |              |      |
|                                |                         | ond time<br>sampled<br>P.S.T              | 1959           | 1/8              |                   |            | 1500        | S/EL<br>11/00                             | 2/15 | 1,78  | 8/13    | 9/2                         | 10/15            | 11/9         | 12/1 |

b Laboratory pH a Field pH.

c. Sum of calcium and magnessum in spm. d of the capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Cr <sup>16</sup>), reported here as 0.0 except as shown. d Iron (Fe), alumnum (AI), arsenic (As), capper (Cu), lead (Pb) manganese (Mn), zinc (Zn), and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont c Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

Annal median and ranga, respectively. Calculated from prolyters of Applicate constity samples media by Calcinnia Department of Poblic Health, Division of Laboratories, or United States Public Health Service.

Missent insulpass made by United States Cooling Streets, Onlyte of New Beamed (1952), United States Department of New Pools, United States Public Health Service, (1954); San Bermadian County Flood

Count Daniel (1967), United States Cooling Streets, Onlyte of Missen (1967), Lab Anniels States County Flood

San States County (1967), Laboratories of States (1967), Laboratories of Missen (1967), Laboratories of Missen States (1967), Laboratories of Missen States (1967), Laboratories of Public Health L. ADPH), City of Long Beach, Department of

Public Health, Laboratories, L

TABLE B-5
ANALYSES OF SURFACE WATER
LABORAN REGION (Nr. 6)

ETA LATTA BATA OF

Analyzed Hordows as Co form A co CoCO Part A con CoCO Part Manual A company and CoCO Part Manual A company and CoCO Part Manual A company and CoCO Part Manual A company and CoCO Part Manual A company and CoCO Part Manual A company and CoCO Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manual A coco Part Manua All. Totol Per-dis-colsed sos-so de 1 1 1 1 2 5 7 V 0 4 1 AD . W Other constituents Fivo- Boron Silico (F) (B) (Og) 4 1 e juvolente per mili ports per million N. 1, rote (NO4) 7 Chio ride (CI) ->-: D. 0 180 0 41 15 75.5 Sul -fote (50g) Bicor -bonote (HCOs) 8°.8 Corbon-9 10. 13 F # 1 Sodium (No) 0.8 10. 1: 1. 1. 1: Mogne. 1. X. (Co) Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Specific Spe Dote and time sompled P S T 28 15

Marie Control

LAHOWTAN REGION (NO. 6)

|                                      |                   | Anolyzed                                 |            | 51.60 |               |               |                   |                 |                                      |      |       |      |                                            |       |                  |       |  |  |
|--------------------------------------|-------------------|------------------------------------------|------------|-------|---------------|---------------|-------------------|-----------------|--------------------------------------|------|-------|------|--------------------------------------------|-------|------------------|-------|--|--|
|                                      |                   | De CoCO3 In ppm MPN/ml by I              |            |       |               | Median<br>6.2 | Maximum<br>2,400. | Minimum<br>0.06 |                                      |      |       |      |                                            |       |                  |       |  |  |
| ı                                    |                   |                                          |            |       |               | er .          | -17               | 52              | 0                                    |      | ej.   |      | ~                                          | m     | -                | -4    |  |  |
|                                      |                   | 2000<br>2000<br>2000<br>2000             | O E G G    |       |               | -             | С                 | Ç.              |                                      |      |       |      | С                                          | 0     | С                | 0     |  |  |
|                                      |                   | Hordn<br>os Co                           | Total N.C. |       |               | 29            | 14                | 83              | 3                                    | -    | 19    | 93   | P.O                                        | 85    | 4                | 82    |  |  |
|                                      |                   | Sod -                                    |            |       |               | 77            | 5                 | 0,              | 99                                   | 316  | 61    | 15   | 2                                          | 15    | 16               | 15    |  |  |
|                                      | Total             | solved sod -                             | E dd e     |       |               | 105           | 95 <sub>e</sub>   | 76°             | 727                                  | 306  | 134°  | 152° | 148                                        | 131e  | 129 <sup>e</sup> | 132e  |  |  |
|                                      |                   | Other constituents                       |            |       |               |               |                   |                 | Fe 0.09 FO <sub>4</sub> 0.00 A1 0.00 |      |       |      | Re 0.06 PO <sub>1, 0.10</sub> <sup>d</sup> |       |                  |       |  |  |
|                                      |                   | Silico                                   | (Znic)     |       |               |               |                   |                 | 8                                    |      |       |      | 24                                         |       |                  |       |  |  |
|                                      | 001               | 1 8                                      | (8)        |       |               | 21            | 0.0               | ç.              | 0.0                                  | 0:0  | 0.0   | 0:   | 0.0                                        | 0.0   | 0.0              | c     |  |  |
|                                      | million           | - Juo-                                   | ()         |       |               |               |                   |                 | 0.0                                  |      |       |      | 0.0                                        |       |                  |       |  |  |
| SUSAN RIVER AT SUSANVILLE (STA. 17b) | parts per million | ż                                        |            |       |               |               |                   |                 | 0.0                                  |      |       |      | 0.0                                        |       |                  |       |  |  |
| WILLE (                              | 0.                | Chio.                                    | (C)        |       |               | 0.04          | 0.06              | 0.03            | 0.03                                 | 0.0  | 0.03  | 0.03 | 9.0                                        | 8.08  | 0.0              | 0.03  |  |  |
| T SUSA                               | e e               | Sul                                      |            |       |               |               |                   |                 | 1.9                                  |      |       |      | 0.0                                        |       |                  |       |  |  |
| RIVER A                              | constituents      | Bicor -                                  | (HCO3)     |       |               | 1.29          | 1.00              | 0.92            | 0.8                                  | 1.26 | 11.00 | 2.20 | 2.10                                       | 11.85 | 1.80             | 114   |  |  |
| SUSAN                                | Mineral con       | Corbon-                                  | (00)       |       |               | 0.0           | 0.0               | 0.00            | 0.00                                 | 0.00 | 0.00  | 0.0  | 0.00                                       | 0.0   | 0.0              | 0.0   |  |  |
|                                      | Min               | Potos                                    | (K)        |       |               |               |                   |                 | 0.7                                  |      |       |      | 4.5                                        |       |                  |       |  |  |
|                                      |                   |                                          | (NO)       |       |               | 0.30          | 0.17              | 3.0             | 3.6                                  | 5.0  | 8.4   | 7.6  | 7.7                                        | 6.8   | 6.7              | 6.8   |  |  |
|                                      |                   | Mogns-                                   | (Mg)       |       |               |               |                   |                 | 4.6                                  |      |       |      | 0.83                                       |       |                  |       |  |  |
|                                      |                   | Colcium                                  | 00         |       |               | 1.24          | 16:0              | 96.0            | 8.8                                  | 1.12 | 1.62  | 1.86 | 19                                         | 1.64  | 1.58             | 1,64  |  |  |
|                                      |                   | e H                                      |            |       |               | 7.3           | 4.5               | 7.3             | 7.5                                  | 4.   | 7.5   | 7.6  | 7.6                                        | 7.6   | 7.3              | 7.3   |  |  |
|                                      |                   | Specific a<br>conductance<br>(micromhos) | 0          |       |               |               | 108               | 100             | 86                                   | 122  | 178   | 102  | 198                                        | 173   | 171              | 175   |  |  |
|                                      |                   | 9 5                                      | % Sot      |       | puno          | 88            | 98                | 25              | 8                                    | 11   | 92    | 18   | 78                                         | 82    | 81               | 16    |  |  |
|                                      |                   | Dissolved                                | Edd        |       | Snowbound     | 11.0          | 11.9              |                 | 8.7                                  | 7.9  | 7.3   | 7.9  | 60                                         | 9.6   | 11.0             | 11.8  |  |  |
|                                      |                   |                                          | -          |       | - pare        | 3.1           | 36                | 97              | 95                                   | 82   | 64    | 39   | 19                                         | 200   | 3.1              | 33    |  |  |
|                                      |                   | Dischorge Temp                           |            |       | Not Sampled - | 19.4          | 18                | 108             | 163                                  | 21.6 | 3.9   | 80.  | 4.3                                        | 9.8   | 9.3              | я     |  |  |
|                                      |                   |                                          | PST        | 1050  | 1/            | 2/5           | 3/6               | 6/4             | 5/7                                  | 6/5  | 7/17  | 8/13 | 9/10                                       | 10/15 | 11/12            | 12/10 |  |  |

b Loborotory pH

c. Sum of calcium and magnesium in opm.

c. Sun of calcum and magnessum in spin.
d. Iran (Fe), clumnism (A1), arsenic (As), capper (Cu), lead (Pb), manganese (Vin), 2 rnc (Zn), and hexavalent chromum (Cr ' '), reported here as  $\frac{0}{0}$  except as shown.

Determined by addition of analyzed constituents a Derived from conductivity vs TDS curves

Amai media and anga, respectively. Calculated from most years of distinctive monthly samples monthly samples monthly samples monthly camples m

#### ANALYSES OF SURFACE WATER LAHUNTAN REGION (NC. 6) TABLE 8-5

|                                  |                         | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |           | -      |      |          | -                     |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |       | - |  |
|----------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|--------|------|----------|-----------------------|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|-------|---|--|
|                                  | _                       | A Para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3    |           |        |      |          |                       |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |       |   |  |
|                                  |                         | disconnections by the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property |      | he 11 at. |        | 0 11 | ALC: BAS |                       |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |       |   |  |
|                                  |                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 3         |        |      | -10      | X.                    | 1     | 3    | н    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -            | ,     | 7     |   |  |
|                                  |                         | 0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |           |        |      |          |                       | -     |      |      | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |       |       |   |  |
|                                  |                         | Toto<br>Ppp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 1,        |        |      | 2        | 3                     | 1     | 4    | 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            | 4     |       |   |  |
|                                  | -                       | 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 9         |        | 1    | 1,7      | 0.0                   | ×     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3            |       | -     |   |  |
|                                  | Toto                    | 90 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 3         |        | 0    | *        | 3                     | 5     | 3    | 8    | 7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2            | 6     | d1°   |   |  |
|                                  |                         | Other constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |           |        |      |          | 12 Pr 5.11 Pr, 5.15 4 |       |      |      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |              |       |       |   |  |
|                                  |                         | Boron Siico<br>(8) (5:0 <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |           |        |      |          |                       |       |      |      | 긔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |       |       |   |  |
|                                  | Hion                    | Boron<br>(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |           |        | 9    | 일        | 0,0                   | 3.5   | 9    | 9    | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4            | 3     | 1     |   |  |
|                                  | per m                   | F (uo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |           |        |      |          | 000                   |       |      |      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |       |       |   |  |
| ,                                | equivolents per million | Irota<br>(NO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |           |        |      |          | 70.0                  |       |      |      | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |       |       |   |  |
| UKAD (                           | 9 04:00                 | Chlo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 2000      |        | 41.  | 0.00     | -12                   | ·   C | 43   | D .  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.5<br>0.25 | 20    | . Se. |   |  |
| NEAR P                           | Ē                       | Sul -<br>fore<br>(50 <sub>6</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |           |        |      |          | P                     |       |      |      | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |       |       |   |  |
| THUCKEE IL TEH REAR FAHAD ( TA ) | frituent.               | Bicor -<br>bonote<br>(HCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 949       |        | , G. | 38       | 10.0                  | 87.0  | 67.0 | 1.   | .93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , 10g.       | 900   | E     |   |  |
| THUCKE                           | Mineral constituents    | Corbon-<br>pte<br>(CO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | .00       |        | 000  | 0.00     | 100                   |       | 0.00 | 0    | 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18:          | 18    | 8.    |   |  |
|                                  | 2                       | Potos-<br>erum<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           |        |      |          | 0,02                  |       |      |      | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |       |       |   |  |
|                                  |                         | Sodium<br>INo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 0.16      |        | 7.°2 | 1.5      | d                     | 4     | 0.18 | 6.7  | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.9          | 0.0   | 9.44  |   |  |
|                                  |                         | Magne-<br>eum<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           |        |      |          | 117                   |       |      |      | 0,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |       |       |   |  |
|                                  |                         | (Co)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 0.72c     |        | 300  | 0.64     | 95                    | 0.48  | 197  | 0.72 | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.760        | .76c  | 2780  |   |  |
|                                  |                         | T C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 7.3       |        | 2.5  | 2        | *,                    | 7.    | 7.7  | 7.7  | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0          | 1     | 2.4   |   |  |
|                                  | Specific                | onductano<br>m.crombol<br>of 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 6.7       |        | 8,3  | 2        | of of                 | 7.10  | 78.9 | 103  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.79         | 5     | 106   |   |  |
|                                  |                         | 0,000 men                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 8         |        | 8    | 5        | d                     | Ę     | 63   | 26   | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,6          | 96    | 0.1   |   |  |
|                                  |                         | Despired<br>Daygen<br>ppm   %Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 10.9      |        | 6.   | 6.0      | 0                     | 6.1   | 0.0  | 7.6  | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10           | -     | ٦.    |   |  |
|                                  |                         | 0 0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 2         | amble: | ;    | 7        | Z.                    | 8     | 6    | 0    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63           | if    | 8     |   |  |
|                                  |                         | Discourge Temp Dissolved conductors and a supplementation of 25 a Cl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 607       | Not 14 | 967  |          | 8                     | 7.0   | 530  | 20 % | 61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ž.           | j     | 37.0  |   |  |
|                                  |                         | ond time<br>sompled<br>P S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1959 | 1,1       | >      | 3 6  | 55       | 1130                  | 6/15  | 7/6  | 1000 | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100          | 12.19 | 1441  |   |  |

ANALYSES OF SURFACE WATER

LAHONTAN REGION (NO. 4)

|                        | Angiyzed<br>by i                                                   | 29211 | -                |                 |                   |       |                              |       |                 |       |                                            |       |                 |            |
|------------------------|--------------------------------------------------------------------|-------|------------------|-----------------|-------------------|-------|------------------------------|-------|-----------------|-------|--------------------------------------------|-------|-----------------|------------|
| 4                      | Hardness bid - Coliform" os CaCO <sub>3</sub> ity MPN/mi Total N C |       | Median<br>5.6    | Maximum<br>230. | Minimum<br>0.06   |       |                              |       |                 |       |                                            |       |                 |            |
| - 10                   | ty chy                                                             |       | 120              | -               | ~                 | CV    | 8                            | c .   |                 | 10    | 4.0                                        | -     | cu              | m          |
|                        | N COS                                                              |       | C.               |                 | -                 | CV.   |                              | С     |                 | 0     | 0                                          | ~     | 0               | 0          |
|                        | nardn<br>os Ca(                                                    |       | 8                | 75              | 35                | 읽     | 8                            | 7     | 34              | 36    | 33                                         | 27    | 31              | 33         |
| D a                    | 1 E                                                                |       | 5                | 98              | 80                | 8     | 13                           | 2     | 85              | 27    | 20                                         | %     | 28              | R          |
| Total                  | solved sod<br>solved sod<br>solds um                               |       | 984<br>1         | a69             | . 69 <sub>6</sub> | 55    | \$177<br>777                 | 979   | 11 <sub>e</sub> | e69   | 69 E                                       | 70°   | 67 <sup>e</sup> | 73.6       |
|                        | Other constituents                                                 |       |                  |                 |                   |       | PO <sub>4 0.20</sub> A1 0.18 |       |                 |       | Fe 0.01 A1 0.06 d<br>PO <sub>16</sub> 0.00 |       |                 |            |
|                        | Silico<br>(SiO <sub>2</sub> )                                      | -     |                  |                 |                   |       | 13                           |       | _               |       | 13                                         |       |                 |            |
| 90                     | Boron Sil                                                          | -     |                  | 3               | 0.0               | 0.0   | 0.0                          | 0:0   | 31              | 0:0   | 0.0                                        | 0.1   | 0.0             | 9          |
| million<br>ser million | Fluo-B<br>ride (F)                                                 | ┼.    | _                | 01              | 01                | -01   | 0,00                         | -01   |                 | -01   | 0.00                                       | 01    | 01              | 01         |
| 2 3                    | Ni-<br>trote<br>(NO <sub>3</sub> )                                 | +     |                  |                 |                   |       | 0.01                         |       |                 |       | 0.00                                       |       |                 |            |
| parts per              |                                                                    |       | - NP             | .100            | [0]               | No    |                              | 8     | - 18            | E     |                                            | .E    | 0,10            | a.18       |
| 12                     | Chio-<br>ride<br>(CI)                                              |       | 0.00             | 0.13            | 3.6               | 0.0   | 0.0                          | 0.0   | 2.2             | 0.04  | 0.12                                       | 0.4   | 0.12            | 0.00       |
| 5                      | Sul -<br>fota<br>(SO <sub>4</sub> )                                |       |                  |                 |                   |       | 0.10                         |       |                 |       | 0.0                                        |       |                 |            |
| fituents               | Bicor-<br>bonate<br>(HCO <sub>3</sub> )                            |       | 0,10             | 51<br>0.84      | 0.77              | 37    | 26                           | 32    | 54<br>0.89      | 51    | 51                                         | 0.82  | 5.89            | 57<br>0.93 |
| Mineral constituents   | Carbon-                                                            |       | 0.0              | 00.0            | 0.0               | 0.0   | 0.00                         | 00.0  | 0.00            | 0.00  | 0.0                                        | 0.0   | 0.00            | 0.00       |
| Mine                   | Potos-<br>CK)                                                      |       |                  |                 |                   |       | 0.0                          |       |                 |       | 0.03                                       |       |                 |            |
|                        | Sodium<br>(No)                                                     |       | 3:1              | 9.50            | 0.20              | 3.7   | 2.6                          | 3.1   | 6.4             | 6.2   | 6.6                                        | 6.9   | 0.32            | 0.33       |
|                        | Mogne-<br>Sium<br>(Mg)                                             | T     |                  |                 |                   |       | 0.10                         |       |                 |       | 0,11                                       |       |                 |            |
|                        | Colc.um<br>(Ca)                                                    |       | 0.540            | 0.68°           | 0.68°             | 0.64° | 6.8                          | 0.1Bc | 0.71            | 0.720 | 0.55                                       | 9.84  | 0.74            | 0.70       |
|                        | x                                                                  | İ     | 7.1 <sup>b</sup> | 9.7             | 7.98              | 7.5ª  | g                            | 7.7   | T.7.            | et    | F                                          | 7.98  | 7.84            | 7.38       |
|                        | Specific<br>conductance<br>(micromhos)<br>at 25°C)                 |       | 66.8             | 6.9             | 91.7              | 73.3  | 6.46                         | 63.9  | 5'66            | 8.2   | 97.2                                       | 98.5  | 75              | 102        |
|                        | ygen (c                                                            |       |                  |                 | 78                | - 8   | 93                           | 92    | 8.              | 98    | 78                                         | 42    | 19              | 102        |
|                        | Oxygen<br>Oxygen                                                   | -     |                  |                 | 10.1              | 9.0   | 0.0                          | 7.5   | 60              | 0.0   | 7.6                                        | 8,2   | 6.6             | 10.1       |
|                        |                                                                    |       |                  | 5               | 9                 | 54    | 54                           | 69    | 63              | 69    | 63                                         | 99    | 24              | 54         |
|                        | Discharge Temp                                                     |       | -T+              |                 | 212               | 141   | 170                          | 48    | 59              | 764   | 084                                        | 277   | 315             | 310        |
|                        | Date of time ompled                                                | 1050  | 21/12            |                 |                   | 4/17  | 5/14                         | 6/15  | 1145            | 8/13  | 9/2                                        | 10/12 | 11/9            | 12/1       |

b Leborotory pH

c. Sum of colorum and magnesium in spin.
d. Iran (Fe), aluminum (A), assence (As), copper (Cu), lead (Fb), manganese (Mn), and is and heavisalent chromium (Cr\*\*), reported here as 0 0 except as shown d. Iran (Fe), aluminum (A), assence (As), copper (Cu), lead (Fb), manganese (Mn), and heavisalent chromium (A), assence (As), copper (Cu), lead (Fb), manganese (Mn), and heavisalent chromium (Cr\*\*), reported here as 0 0 except as shown

f Determined by addition of analyzed constituents e Derived from conductivity vs TDS curves

g Gravimetric determination

h. Amal median and range, respectively. Calculated from analysis of digitizen enouthly sengler made by California Department of Public Health, Division of Lebaroanies, or United States Senders and the California Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branch (1957) and the American Branc

TABLE B-5 ANALYSES OF SURFACE WATER

THOSENAM STOR (NO FORE)

|                            |              | Annyled<br>by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    |     |      |      |        |         |     |    |      |
|----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------|------|--------|---------|-----|----|------|
|                            |              | os on 13 porm western of the property of the porm of the porm of the porm of the property of the porm of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the p | 4 =  | 1   |      |      |        |         |     |    |      |
| Į                          | 100          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |      |      |        |         |     | 8  |      |
|                            |              | 50 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |      |      |        |         |     |    |      |
|                            |              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1 7 |      |      |        |         |     | T  |      |
|                            | 9            | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |      |      |        |         | E   | 1  |      |
| 1                          | Toto         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 9.9 |      |      |        | 10      |     | Y  | 8    |
|                            |              | ther strents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     | E 15 |      | 5, W = | 7 8 8 1 |     |    |      |
|                            |              | 072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     | 1    | 0. 1 |        | 11      |     |    |      |
|                            |              | B + 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |      | 33   |        |         | J   |    |      |
| 1                          | De, 3        | Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | w 2. | 1   | 1 1  | T I  |        | -7      | 1   |    |      |
|                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10   |     | P 35 |      |        |         | - 2 |    |      |
| TOG BUSH                   | eduinoients  | Chi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18   | 1   | 11   | 0    | - 3    | -1      | ST. | 1  | 1    |
| H                          | ē            | Sui<br>fare<br>(S I.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E    | =15 | D.B  | 13   |        | 1       |     |    |      |
|                            | constituents | Bicar<br>banate<br>(H O <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11   | 16  | J I  | # 1  | 1      | K       | 韭   | 16 |      |
| WING RIVE F PART R INCOMPT | Wineral Ilon | Carban<br>ore<br>( O <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18   | 1   |      |      |        |         |     | :K |      |
| 27.78                      | 2            | Poros<br>(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18   | F.  | 17   | 45 ) |        | -1      | 学   |    |      |
|                            |              | . Naj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2  |     | J. C | 10   |        | - 4     | 11- | -  | all. |
|                            |              | Magne<br>Pare<br>Magne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1    |     |      |      |        | · ·     | 2   |    |      |
| Į                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12   |     | F V  |      | E      | 1       | ul! | 1  | 7    |
|                            |              | T a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |      |      |        |         |     |    |      |
|                            | Spell        | and ton,<br>micromho<br>at 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1    | i,  |      | 13   | Ē      | 1       |     |    |      |
|                            |              | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |      |      |        |         | 1   |    |      |
|                            |              | Diesal, ed<br>oeygen<br>apm of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |      |      |        |         |     |    |      |
|                            |              | 10 0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     | 1    | 2.15 |        |         |     | 5  | 1    |
|                            |              | Discharge Temp Dissolined Conductions PM Inc. of the Conduction of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25 of page of 25  |      |     |      |      | 3      |         |     |    |      |
|                            |              | ond time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0  |     |      |      | 1      | 31      | A   |    |      |

947

ANALYSES OF SURFACE WATER TABLE B-5

LAHONTAN REGION (NO. 6)

|                                              |              | Andlyzed<br>by i                                                       | 25SU |                  |         |         |              |                                                               |                 |      |       |                               |       |       |       |
|----------------------------------------------|--------------|------------------------------------------------------------------------|------|------------------|---------|---------|--------------|---------------------------------------------------------------|-----------------|------|-------|-------------------------------|-------|-------|-------|
|                                              | A            | Hordness bid - Coliform<br>as CoCO <sub>3</sub> 11y MPN/ml<br>Ford N C |      | Mediller<br>0,50 | Maximum | Minimus |              |                                                               |                 |      |       |                               |       |       |       |
|                                              | - 1          | - pig<br>- pig<br>- pig                                                |      |                  |         |         |              | 1.5                                                           | -               |      |       | cu .                          |       | m     |       |
|                                              |              | N C D D D D D D D D D D D D D D D D D D                                |      |                  |         |         |              |                                                               |                 |      |       | 0                             | 0     | С     | 0     |
|                                              |              | Hardy<br>as Co<br>Total<br>ppm                                         |      | 3                |         | C-T     | 70           |                                                               |                 | d.   |       | 95                            | S     | 5     | £     |
|                                              | ů,           | sad-                                                                   |      | 8                |         | 37      | 7            | 3                                                             | 2               | 2    | 22    | g                             | 24    | 5     | 4     |
|                                              | Total        | solved<br>solids<br>in ppm                                             |      | 182              |         | 102f    | \$4.<br>\$5. |                                                               | 26 <sup>1</sup> | 72F  | 76f   |                               | 118   | 71°e  | 1186  |
|                                              |              | Other constituents                                                     |      |                  |         |         |              | Ne 0.05 PO <sub>14</sub> 0.00 <sup>d</sup><br>A1 0.08 cu 0.04 |                 |      |       | Po <sub>4</sub> 0.1 A1 0.04 d |       |       |       |
|                                              |              | Silica<br>(\$10 <b>2</b> )                                             |      | 12               |         | 16      | 9.9          | 5.1                                                           | 6.7             | 19   | 9     | 8.1                           | 17    |       |       |
|                                              | u u          | Boron (B)                                                              |      | 0.0              |         | 77      | 0:0          | 0:0                                                           | 0.0             | 0:0  | 00    | 0.7                           | 7     | 0,0   | 0     |
| 116)                                         | per million  | Fluo-<br>ride<br>(F)                                                   |      | 0.00             |         | 0.0     | 0.0          | 0.0                                                           | 0.0             | 0.0  | 0.0   | 0.0                           | 0.0   |       |       |
| IE (STA.                                     |              | rrose<br>(NO <sub>3</sub> )                                            |      | 4.0              |         | 4.0     | 0.00         | 0.00                                                          | 0.0             | 0.0  | 00.00 | 0.00                          | 0.0   |       |       |
| OLEVILI                                      | ports p      | Chlo-<br>ride<br>(CI)                                                  |      | 2.5              |         | 0.11    | 0.03         | 0.03                                                          | 0.0             | 0.11 | 0.5   | 8.00                          | 0.20  | 5.2   | 0.14  |
| NEAR C                                       | 5            | Sul -<br>fate<br>(SO <sub>4</sub> )                                    |      | 5.8              |         | 9.6     | 000          | 2.9                                                           | 6.50            | 0.0  | 0.21  | 7.0                           | 0.23  |       |       |
| ER, WEST NEAR COLEVE                         | constituents | Bicor-<br>bonate<br>(HCO <sub>3</sub> )                                |      | 1.03             |         | 1.31    | 34.0         | 0.28                                                          | 0.28            | 0.72 | 63    | 1.21                          | 1.43  | 1.03  | 1.44  |
| MALKER RIVER, WEST NEAR COLEVILLE (STA. 116) | Mineral cont | Carban-<br>ate<br>(CO <sub>3</sub> )                                   |      | 0.0              |         | 0.00    | 0.00         | 0.00                                                          | 0.00            | 0.00 | 0.00  | 0.00                          | 0.0   | 0.00  | 0 0   |
| WAT                                          | Mine         | Potds-<br>Sium<br>(K)                                                  |      | 1.1              |         | 1.7     | 0.3          | 9.0                                                           | 10.0            | 0.0  | 0.7   | 0.03                          | 0.03  |       | ,     |
|                                              |              | Sodum<br>(No)                                                          |      | 6.9              |         | 0.61    | 0.08         | 1.8                                                           | 1.7             | 0.38 | 0.27  | 7.1                           | 0.96  | 0.30  | 0.83  |
|                                              |              | Magne-<br>Sium<br>(Mg)                                                 |      | 3.4              |         | 3.4     | 2.2          | 0.5                                                           | 0.02            | 0,10 | 0.35  | 3.3                           | 2.1   |       |       |
|                                              |              | (Ca)                                                                   |      | 115              |         | 0.70    | 0.30         | 0.2                                                           | 9.4             | 9.2  | 0.65  | 0.85                          | 0.65  | 0.82  | 1.00  |
|                                              |              | a.T.                                                                   |      | 7:3              |         | 7.7     | 7.           | 7.5                                                           | ÷.              | 7.7  | 5.    | 7,8                           | 8.5   | 7.8   | 7.3   |
|                                              | 3            | conductance pH<br>(micromhos) pH<br>at 25°C)                           |      | THE STATE OF     |         | 152     | 50.4         | 31.3                                                          | 33.4            | 89.0 | 119   | 137                           | 180   | 017   | 7-1-1 |
|                                              |              | gen<br>% Sot                                                           |      | 5                |         | ő       | 3            | 20                                                            | 8               | 16   | F     | (C)                           | 18    | 89    | 104   |
|                                              |              | Dissolved<br>axygen<br>ppm %Sa                                         |      | 11.6             |         |         | 10.6         | 10.2                                                          | 60              | 0.   | 7.3   | 8.3                           | 0.6   | 10.1  | 77.   |
|                                              |              | E O C                                                                  |      |                  | Sampled | 8       | CJ<br>-3     | 7.                                                            | 25              | 19   | 69    | 9                             | 25    | 77.77 | 32    |
|                                              |              | Discharge Temp                                                         |      | 9                | Not 5a  | %       | 350          | 634                                                           | 14              | 126  |       | 3%                            | 9     | %     | 114   |
|                                              |              | Out time<br>sampled<br>PST                                             | 1959 | 1/22             | 5/      | 3/1     | 1100         | 5/15                                                          | 6/16            | 1/8  | 8/14  | 9/3                           | 10/13 | 11/10 | 12/2  |

b Laboratary pH a Field pH

c. Sum of calcium and majnesuran in egim. (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Gr<sup>25</sup>), reparted here as  $\frac{0}{0}$ 0 except as shown. d Iran (Fe), aluminum (A1), areteric As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Gr<sup>25</sup>), reparted here as  $\frac{0}{0}$ 0 except as shown. e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

Gravimetric determination

h Annal median and range, respectively. Calculated from analysts of diplicate monthly samples under by Calcination Department of Public Healthi, Division of Laboratories, or Direct Public Health Service Department of Interface and Public Health, Division of Laboratories, and District Health Service (1954). San Bernaul Anna Camp. Flood Camp. Plood Camp. Plood Camp. Plood Camp. 1954 (Lineal Service Department of Manhard Laboratories, As Service Camp. 1954). San Bernaul Anna Camp. Plood Camp. Plood Camp. 1954 (Lineal Service). The Service Camp. 1954 (Lineal Service). The Service Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood Camp. Plood

TABLE B-6

### NORTH COASTAL REGION (NO. 1)

| Sto | , and a second | N N                       | Date        |                                 | Micro-mic                      | Micro-micro curies per liter |                            |
|-----|----------------|---------------------------|-------------|---------------------------------|--------------------------------|------------------------------|----------------------------|
| S O | Stream         | L COL                     | 1959        | Dissolved Beta                  | Solid Beta                     | Dissolved Alpha              | Solid Alpha                |
| 7   | Mamath River   | Copco                     | 5-17        | 6.18 ± 3.90<br>7.93 ± 4.70      | 2.05 ± 4.13<br>0.79 ± 4.48     | 0.00 ± 0.50<br>0.90 ± 0.34   | 0.36 ± 0.55<br>0.37 ± 0.30 |
| la  | Shasta River   | Yreka                     | 9-8         | 14.07 ± 4.12<br>0.00 ± 4.56     | 0.96 ± 4.11<br>0.00 ± 4.56     | 0.30 ± 0.50<br>0.00 ± 0.21   | 0.45 ± 0.69<br>0.28 ± 0.34 |
| 1b  | Scott River    | Fort Jones                | 9-8         | 1.73 ± 3.73<br>0.00 ± 4.51      | 1.63 ± 4.38<br>0.00 ± 4.46     | 0.10 ± 0.55<br>0.90 ± 0.25   | 0.45 ± 0.65<br>0.00 ± 0.20 |
| 1c  | Klamath River  | Hamburg Reservoir<br>Site | 5-13        | 3.59 ± 4.00<br>8.95 ± 4.71      | $1.74 \pm 4.39$<br>2.18 ± 4.51 | 0.10 ± 0.55<br>0.00 ± 0.29   | 0.27 ± 0.47<br>0.00 ± 0.29 |
| 14  | Butte Creek    | MacDoel                   | 5-6         | 6.18 ± 4.05<br>0.00 ± 4.56      | 13.16 ± 4.06                   | 0.72 ± 0.58<br>0.00 ± 0.34   | 0.45 ± 0.65<br>0.17 ± 0.34 |
| le  | Antelope Creek | Tennant                   | 5-6<br>9-7  | 3.36 ± 4.00<br>0.00 ± 4.51      | 13.16 ± 4.06<br>0.00 ± 4.56    | 0.41 ± 0.48<br>0.17 ± 0.40   | 0.54 ± 0.64<br>0.00 ± 0.37 |
| CV. | Klamath River  | Somesbar                  | 5-6<br>9-10 | 1.59 $\pm$ 4.10 3.54 $\pm$ 4.41 | 12.85 ± 3.95                   | 0.10 ± 0.34<br>0.27 ± 0.34   | 0.36 ± 0.50                |
| 28  | Salmon River   | Somesbar                  | 5-6         | 1.59 ± 4.12<br>0.00 ± 4.16      | 17.67 ± 4.12<br>0.14 ± 4.11    | 0.10 ± 0.34<br>0.00 ± 0.26   | 0.00 ± 0.38<br>0.00 ± 0.21 |
| 2p  | Klamath River  | Seiad Valley              | 5-13<br>9-8 | 15.61 ± $h$ .60 7.61 ± $h$ .31  | 19.08 ± 4.17<br>0.00 ± 4.11    | 0.20 ± 0.37<br>0.09 ± 0.15   | 0.45 ± 0.60                |
| m   | Klamath River  | Klemath                   | 5-5         | 15.56 ± 4.55<br>0.00 ± 4.26     | 10.88 ± 3.90                   | 0.10 ± 0.34<br>0.19 ± 0.31   | 0.64 ± 0.65                |
| 38  | Smith River    | Crescent City             | 5-5         | 3.87 ± 4.00<br>3.46 ± 3.57      | 2.48 ± 4.43<br>2.67 ± 3.57     | 0.20 ± 0.37<br>0.18 ± 0.29   | 0.54 ± 0.64<br>0.09 ± 0.25 |

TABLE B-6

NORTH COASTAL REGION (NO. 1) (continued)

|              |                           |             |                          | (continued)                 |                             |                                    |                            |
|--------------|---------------------------|-------------|--------------------------|-----------------------------|-----------------------------|------------------------------------|----------------------------|
| Sta.         | Chragan                   | Negr        | Date                     |                             | Micro-micro                 | Micro-micro curies per liter       |                            |
| No.          |                           |             | 1959                     | Dissolved Beta              | Solid Beta                  | Dissolved Alpha                    | Solid Alpha                |
| 3b           | Redwood Creek             | Orick       | 5-6                      | 0.00 ± 5.30                 | 4.51 ± 4.50<br>1.88 ± 3.86  | 0.20 ± 0.31<br>0.00 ± 0.33         | 0.00 ± 0.50<br>0.27 ± 0.44 |
| #            | Trinity River             | Ноора       | 5-6                      | 0.31 ± 5.35<br>1.09 ± 4.06  | 2.73 ± 3.75<br>0.00 ± 4.01  | 0.92 ± 0.55<br>0.00 ± 0.35         | 0.54 ± 0.50<br>0.27 ± 0.43 |
| the state of | Trinity River             | Lewiston    | 5-4<br>9-10              | 1.88 ± 4.00<br>9.05 ± 4.11  | 9.27 ± 4.18<br>3.98 ± 4.01  | 0.00 ± 0.37<br>0.08 ± 0.25         | 0.36 ± 0.50<br>0.26 ± 0.37 |
| q.p          | Trinity River             | Burnt Ranch | 5-6                      | 15.56 ± 4.80<br>4.14 ± 4.02 | 5.04 ± 4.13<br>6.02 ± 4.06  | 0.41 ± 0.45<br>0.18 ± 0.42         | 0.09 ± 0.42<br>0.09 ± 0.45 |
| 2            | Eel River                 | McCann      | 5-5                      | 2.08 ± 4.55<br>0.00 ± 3.86  | 7.72 ± 3.66<br>1.58 ± 3.97  | $0.72 \pm 0.45$<br>$0.00 \pm 0.36$ | 0.00 ± 0.32<br>0.09 ± 0.45 |
| 58           | Van Duzen<br>River        | Bridgeville | 5-7                      | 0.80 ± 3.90<br>6.30 ± 3.86  | 5.35 ± 3.58<br>4.20 ± 3.81  | 0.61 ± 0.66<br>0.00 ± 0.41         | 0.63 ± 0.73<br>0.19 ± 0.49 |
| 59           | Outlet Creek              | Longvale    | 5-1 <sup>4</sup><br>9-15 | 1.08 ± 3.90                 | 3.49 ± 4.60<br>0.00 ± 3.59  | 0.61 ± 0.66<br>0.19 ± 0.38         | 0.63 ± 0.65<br>0.38 ± 0.49 |
| 5c           | Eel River,<br>Middle Fork | Dos Rios    | 5-1 <sup>4</sup><br>9-15 | 4.24 ± 4.00<br>2.23 ± 3.59  | 12.03 ± 4.80<br>0.00 ± 3.50 | 0.10 ± 0.56<br>0.27 ± 0.49         | 0.85 ± 0.64<br>0.09 ± 0.39 |
| 54           | Eel River                 | Dos Rios    | 5-13<br>9-15             | 0.00 ± 3.90                 | 0.00 ± 4.40<br>0.21 ± 3.76  | $0.51 \pm 0.58$<br>$0.09 \pm 0.25$ | 0.63 ± 0.74<br>0.36 ± 0.46 |
| 9            | Eel River                 | Scotia      | 9-8                      | 5.15 ± 4.16<br>7.00 ± 4.60  | 3.94 ± 4.38<br>0.00 ± 4.43  | 0.51 ± 0.56<br>0.17 ± 0.17         | 0.10 ± 0.56<br>0.25 ± 0.37 |
| 68           | Mad River                 | Arcata      | 5-5                      | 4.61 ± 4.00<br>0.00 ± 4.15  | 8.62 ± 4.37<br>0.00 ± 4.15  | 0.20 ± 0.37<br>0.09 ± 0.24         | 0.42 ± 0.58<br>0.26 ± 0.31 |
|              |                           |             |                          |                             |                             |                                    |                            |

## RADIOASSAY OF SURFACE WATERS

### NORTH COASTAL REGION (NO. 1)

|      |                              |                             |            | (continued)                  |                                 |                              |                            |
|------|------------------------------|-----------------------------|------------|------------------------------|---------------------------------|------------------------------|----------------------------|
| Sto. | Stream                       | Neor                        | Date       |                              | Micro-mic                       | Micro-micro curies per liter |                            |
| No.  |                              |                             | 1959       | Dissolved Beta               | Solid Beta                      | Dissolved Alpha              | Solid Alpha                |
| 7    | Eel River,<br>South Fork     | Miranda                     | 9-8        | 4.84 ± 3.90<br>0.00 ± 4.26   | 6.40 ± 4.29<br>0.00 ± 4.20      | 0.20 ± 0.31<br>0.09 ± 0.39   | 0.21 ± 0.58                |
| 78   | Mattole River                | Petrolia                    | 5-7        | 2.65 ± 4.10<br>0.00 ± 4.20   | 12.91 ± 4.29<br>0.00 ± 4.32     | 0.10 ± 0.34<br>0.27 ± 0.39   | 0.00 ± 0.31                |
| 88   | Russian River                | Hopland                     | 5-15       | 0.00 ± 3.90                  | 6.82 ± 4.30<br>0.00 ± 4.32      | 0.51 ± 0.56<br>0.19 ± 0.31   | 0.21 ± 0.53<br>0.36 ± 0.31 |
| 820  | Navarro River                | Navarro                     | 5-4<br>9-7 | 2.16 ± 4.12<br>0.00 ± 4.15   | 6.73 ± 3.97<br>0.00 ± 4.08      | 0.00 ± 0.37<br>0.09 ± 0.16   | 0.42 ± 0.52<br>0.09 ± 0.27 |
| 8c   | Big River                    | Mouth                       | 5-4        | 3.59 ± 4.15<br>0.00 ± 3.90   | 8.82 ± 4.25<br>0.00 ± 3.96      | 0.20 ± 0.34<br>0.17 ± 0.36   | 0.63 ± 0.57<br>0.09 ± 0.15 |
| 6    | Russian River                | Healdsburg                  | 5-11       | 0.08 ± 4.70<br>0.00 ± 3.90   | 0.93 ± 4.11<br>0.00 ± 3.84      | 0.20 ± 0.31<br>0.09 ± 0.33   | 0.42 ± 0.48<br>0.09 ± 0.38 |
| 8    | Gualala River,<br>South Fork | Annapol1s                   | 5-4<br>9-7 | 0.00 ± 4.35<br>0.00 ± 3.77   | $4.37 \pm 4.14$ $0.00 \pm 3.64$ | 0.51 ± 0.51<br>0.00 ± 0.24   | 0.63 ± 0.48                |
| 10   | Russian River                | Guerneville                 | 5-4<br>9-7 | 0.00 ± 4.40                  | 4.00 ± 4.12<br>0.00 ± 4.04      | 0.30 ± 0.41                  | 0.21 ± 0.37<br>0.17 ± 0.28 |
| 100  | Russian River,<br>East Fork  | Potter Valley<br>Powerhouse | 5-13       | 21.11 ± 4.60<br>13.82 ± 3.91 | 2.45 ± 4.05<br>10.63 ± 8.81     | 0.41 ± 0.48                  | 0.31 ± 0.53<br>0.18 ± 0.42 |
| 10c  | Noyo River                   | Fort Bragg                  | 5-4        | 12.05 ± 4.40<br>9.13 ± 4.06  | 0.36 ± 4.08<br>8.15 ± 4.01      | 0.10 ± 0.41                  | 0.10 ± 0.42                |



TABLE B-7
RADIOASSAY OF SURFACE WATERS
SAN FRANCISCO BAY REGION (NO. 2)

| Sta. | Stream              | Near       | Date        |                            | Micro-mic                   | Micro-micro curies per liter |                            |
|------|---------------------|------------|-------------|----------------------------|-----------------------------|------------------------------|----------------------------|
| So.  |                     |            | 1959        | Dissolved Beta             | Solid Beta                  | Solid Beta Dissolved Alpha   | Solid Alpha                |
| 11   | Arroyo del<br>Valle | Livermore  | 5-13        | 5.10 ± 4.15                | 3.86 ± 4.11                 | 0.52 ± 0.45                  | 0.62 ± 0.61                |
| 72   | Napa River          | St. Helena | 5-11        | 1.88 ± 3.59                | 4.36 ± 4.40                 | 0.21 ± 0.60                  | 0.29 ± 0.47                |
| 73   | Alameda Creek       | Niles      | 5-13        | 2.25 ± 4.00                | 0.31 ± 4.10                 | 0.41 ± 0.50                  | 0.62 ± 0.73                |
| 47   | Los Gatos<br>Creek  | Los Gatos  | 5-13<br>9-8 | 0.60 ± 4.16<br>3.57 ± 3.88 | 3.46 ± 4.21<br>6.92 ± 3.96  | 0.52 ± 0.50<br>0.00 ± 0.44   | 0.62 ± 0.68<br>0.19 ± 0.38 |
| 82   | Coyote Creek        | Madrone    | 5-12<br>9-9 | 0.00 ± 4.10<br>8.56 ± 3.71 | 2.95 ± 4.43<br>11.46 ± 3.27 | 0.62 ± 0.48<br>0.19 ± 0.31   | 0.62 ± 0.56                |



TABLE B-8
RADIOASSAY OF SURFACE WATERS

## CENTRAL COASTAL REGION (NO. 3)

| 20  |                      |             |             |                                    | Micro-micr                 | Micro-micro curies per liter |                            |
|-----|----------------------|-------------|-------------|------------------------------------|----------------------------|------------------------------|----------------------------|
| S S | Stream               | Nedr        | 1959        | Dissolved Beta                     | Solid Beto                 | Dissolved Alpha              | Solid Alpha                |
| 143 | Salinas River        | Spreckels   | 5-12        | 0.00 ± 4.12                        | 2.39 ± 4.41                | 0.20 ± 0.53                  | 0.41 ± 0.65                |
| 75  | San Lorenzo<br>River | Big Trees   | 5-13<br>9-8 | $3.11 \pm 4.23$<br>$7.74 \pm 3.97$ | 5.80 ± 4.45<br>0.00 ± 3.22 | 0.20 ± 0.37<br>0.17 ± 0.29   | 0.20 ± 0.43<br>0.17 ± 0.35 |
| 76  | Soquel Creek         | Soquel      | 5-13<br>9-9 | 0.00 ± 4.34<br>5.56 ± 4.06         | 3.38 ± 4.47<br>7.09 ± 4.06 | 0.41 ± 0.53<br>0.00 ± 0.35   | 1.04 ± 0.61                |
| 77  | Pajaro River         | Chittenden  | 5-12<br>9-9 | 5.55 ± 4.90<br>4.00 ± 4.83         | 1.83 ± 4.35<br>9.29 ± 4.93 | 0.00 ± 0.48                  | 0.41 ± 0.48<br>0.18 ± 0.28 |
| 83  | Carmel River         | Carmel      | 5-12        | 24.4 \$ 86.4                       | 2.11 ± 4.40                | 0.30 ± 0.45                  | 0.31 ± 0.40                |
| %   | Uvas Creek           | Morgan Hill | 5-12        | 0.00 ± 4.35<br>4.40 ± 4.78         | 6.65 ± 4.76<br>0.00 ± 4.63 | 0.10 ± 0.40<br>0.90 ± 0.26   | 0.00 ± 0.31                |



## RADIOASSAY OF SURFACE WATERS

| 24.5 |                     |                                |             |                             | Micromin                    | Microamicro Curios por litor |                                    |
|------|---------------------|--------------------------------|-------------|-----------------------------|-----------------------------|------------------------------|------------------------------------|
| 2    | Stream              | Near                           | 1959        | Dissolved Beta              | Solid Beto                  | Dissolved Alpho              | Solid Alpha                        |
| 11   | Sacramento<br>River | Delta                          | 5-5         | 0.00 ± 3.82<br>1.06 ± 4.42  | 6.73 ± 3.60<br>2.46 ± 4.42  | 0.58 ± 0.51<br>0.36 ± 0.36   | 0.59 ± 0.40<br>0.18 ± 0.41         |
| 118  | Cottonwood          | North Fork<br>Cottonwood Creek | 5-4         | 4.27 ± 4.16<br>6.24 ± 4.42  | 3.41 ± 4.13<br>4.92 ± 4.42  | 0.34 ± 0.51                  | 0.82 ± 0.51<br>0.62 ± 0.43         |
| 111  | Cottonwood          | South Fork<br>Cottonwood Creek | 5-4         | 3.30 ± 4.18<br>2.18 ± 4.37  | 0.98 ± 4.15<br>2.43 ± 4.37  | 0.11 ± 0.40<br>0.00 ± 0.33   | 0.47 ± 0.38<br>0.09 ± 0.25         |
| 12   | Sacramento<br>River | Keswick                        | 9-8         | 2.42 ± 4.45<br>8.26 ± 4.42  | 0.70 ± 4.41<br>3.30 ± 5.39  | 0.58 ± 0.36                  | $0.47 \pm 0.32$<br>$0.29 \pm 0.39$ |
| 126  | Cottonwood          | Cottonwood                     | 5-4         | 0.00 ± 4.35<br>0.33 ± 3.91  | 2.87 ± 4.45<br>1.82 ± 3.91  | 0.97 ± 0.70<br>0.00 ± 0.41   | 0.89 ± 0.60<br>0.28 ± 0.52         |
| 12c  | Sacramento<br>River | Bend                           | 9-1         | 8.26 ± 3.91                 | 4.81 ± 3.86                 | 0.00 ± 0.36                  | 0.27 ± 0.45                        |
| 124  | Clear Creek         | Igo                            | 5-14<br>9-1 | 4.44 ± 3.54<br>23.21 ± 4.32 | 6.54 ± 3.91<br>4.62 ± 3.71  | 0.58 ± 0.66<br>0.10 ± 0.35   | 0.20 ± 0.32                        |
| 13   | Sacramento<br>River | Ramilton City                  | 5-8         | 1.99 ± 3.52<br>9.85 ± 4.12  | 1.24 ± 4.42<br>8.20 ± 4.07  | 0.09 ± 0.43<br>0.09 ± 0.39   | 0.30 ± 0.36<br>0.27 ± 0.49         |
| 13a  | Stony Creek         | Hamilton City                  | 5-12        | 0.00 ± 3.50                 | 5.46 ± 4.47                 | 0.48 ± 0.43                  | 0.40 ± 0.45                        |
| 13b  | Sacramento<br>River | Colusa                         | 5-4<br>9-7  | 3.44 ± 3.48<br>3.08 ± 4.07  | 7.86 ± 4.03<br>2.18 ± 4.07  | 0.68 ± 0.70<br>0.00 ± 0.29   | 0.20 ± 0.45                        |
| 13c  | Stony Creek         | Black Butte<br>Dem Site        | 5-12        | 5.21 ± 3.50<br>3.94 ± 4.12  | 12.12 ± 4.19<br>1.54 ± 4.02 | 0.58 ± 0.70                  | 0.40 ± 0.50<br>0.26 ± 0.32         |
| 134  | Thomes Creek        | Paskenta                       | 5-11        | 3.50 ± 3.57<br>5.29 ± 3.96  | 9.27 ± 4.41<br>5.29 ± 3.96  | 0.58 ± 0.60                  | 0.60 ± 0.45                        |

TABLE B-9

CENTRAL VALLEY REGION (NO. 5) (continued)

|      |                      |                     |             | (continued)                 |                                |                              |                            |
|------|----------------------|---------------------|-------------|-----------------------------|--------------------------------|------------------------------|----------------------------|
| Sta. | Stream               | Near                | Date        |                             | Micro-micr                     | Micro-micro curies per liter |                            |
| No.  |                      |                     | 1959        | Dissolved Beta              | Solid Beta                     | Dissolved Alpha              | Solid Alpha                |
| 13e  | Elder Creek          | Paskenta            | 5-11<br>9-2 | 8.52 ± 3.80<br>0.00 ± 3.45  | 5.41 ± 4.38<br>2.27 ± 3.61     | 0.68 ± 0.62<br>0.18 ± 0.21   | 0.20 ± 0.32<br>0.27 ± 0.33 |
| 17   | Sacramento<br>River  | Knights<br>Landing  | 5-4<br>9-7  | 6.86 ± 3.75<br>0.00 ± 3.56  | $3.83 \pm 4.10$<br>0.00 ± 3.50 | 0.38 ± 0.56<br>0.18 ± 0.21   | 0.40 ± 0.38<br>0.09 ± 0.15 |
| 148  | Sacramento<br>Slough | Knights<br>Lending  | 5-4<br>9-7  | 0.00 ± 3.83<br>3.64 ± 3.91  | 2.36 ± 4.14<br>2.77 ± 3.86     | 0.48 ± 0.54<br>0.09 ± 0.15   | 0.60 ± 0.45<br>0.37 ± 0.29 |
| 15   | Sacramento<br>River  | Sacramento          | 5-11<br>9-7 | 5.50 ± 3.98<br>2.41 ± 3.97  | 12.96 ± 3.99<br>3.64 ± 4.13    | 0.09 ± 0.43<br>0.00 ± 0.30   | 0.30 ± 0.47<br>0.00 ± 0.33 |
| 16   | Sacramento<br>River  | Rio Vista           | 5-11<br>9-7 | 2.28 ± 3.93<br>1.56 ± 3.96  | 11.41 ± 4.47                   | 0.09 ± 0.43<br>0.09 ± 0.33   | 0.20 ± 0.50<br>0.27 ± 0.26 |
| 16a  | Calaveras<br>River   | Jenny Lind          | 5-15        | 0.00 ± 4.11                 | 7.04 ± 3.45                    | 0.28 ± 0.54                  | 0.40 ± 0.32                |
| 17   | Pit River            | Montgomery<br>Creek | 9-6         | 0.00 ± 4.15<br>8.82 ± 4.07  | 0.28 ± 3.64<br>0.64 ± 6.47     | 0.09 ± 0.48<br>0.09 ± 0.32   | 0.50 ± 0.42<br>0.17 ± 0.32 |
| 178  | Pit River            | Canby               | 5-7<br>9-9  | 4.64 ± 4.30<br>6.72 ± 4.02  | 8.25 ± 3.91<br>0.00 ± 3.82     | 0.19 ± 0.51<br>0.17 ± 0.17   | 0.40 ± 0.50<br>0.09 ± 0.25 |
| 17d  | Indian Creek         | Crescent Mills      | 5-7<br>9-10 | 6.49 ± 3.90<br>0.00 ± 4.42  | 2.28 ± 4.00<br>0.70 ± 4.47     | 0.51 ± 0.63<br>0.00 ± 0.35   | 0.00 ± 0.40<br>0.17 ± 0.41 |
| 17e  | Pit River            | Bieber              | 9-6         | 6.15 ± 4.35<br>13.33 ± 4.58 | 7.16 ± 3.83<br>2.66 ± 4.27     | 0.00 ± 0.33<br>0.00 ± 0.25   | 0.10 ± 0.42<br>0.09 ± 0.25 |
| 18   | McCloud River        | Shasta Lake         | 5-5         | 3.07 ± 3.52<br>2.10 ± 4.07  | 0.50 ± 3.94<br>0.11 ± 4.01     | 0.51 ± 0.56<br>0.00 ± 0.21   | 0.22 ± 0.40<br>0.55 ± 0.52 |

|       |                       |               |      | (continued)    |             |                              |                            |
|-------|-----------------------|---------------|------|----------------|-------------|------------------------------|----------------------------|
| Sta   | Change                | Noon          | Date |                | Micro-mic   | Micro-micro curies per liter |                            |
| , o   | Stream                | Ineni         | 1959 | Dissolved Beta | Solid Beta  | Dissolved Alpho              | Solid Alpha                |
| 18a   | Pit River,            | Likely        | 5-7  | 6.35 ± 3.55    | 0.00 ± 3.91 |                              | 7 77                       |
|       | South Fork            |               | 9-10 | 9.32 ± 4.27    | 41          | 0.09 ± 0.34                  | 0.27 ± 0.45                |
| 19    | Feather River         | Oroville      | 5-8  | 6.61 ± 3.55    | 1.80 ± 3.98 | 8                            | 0.10 ± 0.38                |
| ì     |                       |               | 9-10 | +(             | ±<br>3.     | +1                           | 41                         |
| 0     | Peather River         | Nicolaus      | 5-12 | +1             | 9.38 ± 4.65 | 0.82 ± 0.70                  | 0.10 ± 0.32                |
|       |                       |               | 8-6  | 6.66 ± 3.71    | +1          | +1                           | +1                         |
| 20a   | Feather River         | Shanghai Bend | 5-12 | +1             | 1.18 ± 5.02 | 0.61 ± 0.62                  | 0.00 ± 0.21                |
| 3     |                       |               | 9-1  | 4.28 ± 3.46    |             | ++                           | +1                         |
| 30p   | Bear River            | Mouth         | 5-12 | +1             | 0.00 ± 4.02 | 0.51 ± 0.58                  | 0.10 ± 0.24                |
| )     |                       |               | 9-1  | 15.76 ± 3.81   | +1          | +1                           | 41                         |
| 21    | Yuba River            | Marysville    | 5-12 | 11.25 ± 4.14   | 0.76 ± 3.72 | 0.20 ± 0.53                  | 0.22 ± 0.38                |
|       |                       |               | 9-1  | +1             | +1          | 41                           | 41                         |
| a [ C | Yuba River            | Smartwille    | 5-12 | +1             | +1          | 0.30 ± 0.56                  | 0                          |
| 4     | 3                     |               | 9-1  | 0.00 ± 3.87    | 3.80 ± 3.96 | 0.18 ± 0.36                  | 0.18 ± 0.30                |
| 20    | American              | Sacramento    | 5-13 | +1             |             | 0.00 ± 0.62                  |                            |
|       | River                 |               | 2-6  | 0.56 ± 3.66    | 1.23 ± 3.66 | +1                           | 0.36 ± 0.52                |
| 228   | American              | Nimbus Dem    | 5-13 | 3.05 ± 3.64    | 3.66 ± 4.04 | 0.30 ± 0.51                  | 0.77 ± 0.52                |
|       | River                 |               | 7-6  | 0.70 ± 3.81    |             | +(                           | +1                         |
| 200   | American              | Auburn        | 5-14 | 2.96 ± 3.64    | 0.28 ± 4.12 | 0.61 ± 0.37                  | 0.44 ± 0.45                |
|       | River, Middle<br>Fork |               | 7-6  | 1.84 ± 3.35    |             | +1                           | + 12                       |
| 22c   | American              | Lotus         | 5-14 | 2.42 ± 3.62    | 0.00 ± 4.06 | 0.20 ± 0.46                  | 0.22 ± 0.35<br>0.27 ± 0.39 |
|       | Kiver, South<br>Fork  |               | 1    | 1              |             |                              |                            |

### RADIOASSAY OF SURFACE WATERS

CENTRAL VALLEY REGION (NO. 5) (continued)

|      |                      |                        |                         | (continued)                 |                            |                              |                            |
|------|----------------------|------------------------|-------------------------|-----------------------------|----------------------------|------------------------------|----------------------------|
| Sta. | Chroam               | Nega                   | Date                    |                             | Micro-micr                 | Micro-micro curies per liter |                            |
| Š    | Siredin              | 1021                   | 1959                    | Dissolved Beta              | Solid Beta                 | Dissolved Alpha              | Solid Alpha                |
| 23   | Mokelumne<br>River   | Woodbridge             | 9-3                     | 6.41 ± 4.04<br>4.75 ± 4.06  | 0.00 ± 4.08<br>2.46 ± 3.96 | 0.41 ± 0.43<br>0.09 ± 0.35   | 1.10 ± 0.52<br>0.43 ± 0.52 |
| 23&  | Mokelumne<br>River   | Lancha Plana           | 5-15<br>9-1             | 9.49 ± 4.15<br>3.38 ± 4.17  | 0.96 ± 4.12<br>0.05 ± 4.06 | 0.20 ± 0.48<br>0.00 ± 0.35   | 0.44 ± 0.45<br>0.26 ± 0.32 |
| 57   | San Joaquin<br>River | Friant                 | 9-6                     | 15.01 ± 4.25<br>6.85 ± 4.27 | 0.81 ± 4.20<br>2.77 ± 4.17 | 0.51 ± 0.58<br>0.89 ± 0.33   | 0.22 ± 0.45<br>0.27 ± 0.49 |
| 25   | San Joaquin<br>River | Mendota                | 5-4<br>9-10             | 5.18 ± 4.00<br>2.32 ± 4.12  | 0.93 ± 4.25<br>0.00 ± 4.12 | 1.13 ± 0.81<br>0.89 ± 0.44   | 0.21 ± 0.46<br>0.00 ± 0.54 |
| 250  | San Joaquin<br>River | Hills Ferry<br>Bridge  | 5-4<br>9-10             | 11.79 ± 4.40                | 6.42 ± 4.17<br>0.64 ± 4.06 | 0.61 ± 0.48<br>0.00 ± 0.37   | 0.86 ± 0.63<br>0.00 ± 0.45 |
| 25c  | San Joaquin<br>River | Fremont Ford<br>Bridge | 9-10                    | 14.21 ± 4.27                | 7.27 ± 4.06                | 0.09 ± 0.26                  | 0.18 ± 0.36                |
| 56   | San Joaquin<br>River | Grayson                | 5-1 <sup>4</sup><br>9-2 | 6.86 ± 3.78<br>4.25 ± 3.73  | 5.49 ± 4.14<br>3.58 ± 3.73 | 0.00 ± 0.31<br>0.18 ± 0.36   | 0.00 ± 0.39                |
| 26a  | San Joaquin<br>River | Maze Road<br>Bridge    | 5-14<br>9-2             | 0.00 ± 3.64<br>5.75 ± 4.08  | 6.96 ± 4.19<br>4.69 ± 4.08 | 0.51 ± 0.46<br>0.27 ± 0.42   | 0.64 ± 0.51<br>0.27 ± 0.44 |
| 27   | San Joaquin<br>River | Vernalis               | 5-4<br>9-10             | 0.00 ± 3.92<br>8.44 ± 4.23  | 4.45 ± 4.14<br>3.61 ± 4.65 | 0.51 ± 0.88<br>0.26 ± 0.43   | 0.53 ± 0.44<br>0.17 ± 0.41 |
| 88   | San Joaquin<br>River | Antioch                | 5-12<br>9-7             | 0.00 ± 3.93<br>7.58 ± 4.23  | 2.48 ± 4.43<br>2.50 ± 4.08 | 0.61 ± 0.88<br>0.00 ± 0.25   | 0.31 ± 0.44<br>0.26 ± 0.43 |
| 59   | Stanislaus<br>River  | Mouth                  | 5-4<br>9-10             | 2.59 ± 4.08<br>2.52 ± 4.29  | 2.67 ± 4.44<br>0.66 ± 0.42 | 0.30 ± 0.66<br>0.09 ± 0.25   | 0.53 ± 0.53<br>0.44 ± 0.38 |

## RADIOASSAY OF SURFACE WATERS

|     |                     |                               |             | (continued)                 |                                    |                                    |                            |
|-----|---------------------|-------------------------------|-------------|-----------------------------|------------------------------------|------------------------------------|----------------------------|
| Sta | Ctroom              | N                             | Date        |                             | Micro-micr                         | Micro-micro curies per liter       |                            |
| 20  |                     |                               | 1959        | Dissolved Beta              | Solid Beta                         | Dissolved Alpha                    | Solid Alpha                |
| 298 | Stanislaus<br>River | Tulloch Dam                   | 5-6         | 0.00 ± 3.98<br>5.33 ± 3.93  | 1.24 ± 4.32<br>3.08 ± 3.88         | 0.41 ± 0.53<br>0.00 ± 0.29         | 0.21 ± 0.42<br>0.26 ± 0.43 |
| 30  | Tuolumne<br>River   | Hickman-Water-<br>ford Bridge | 5-14<br>9-2 | 1.16 ± 4.03<br>4.05 ± 3.28  | 1.29 ± 4.23<br>5.10 ± 3.18         | 0.41 ± 0.62                        | 0.31 ± 0.42                |
| 31  | Tuolumne River      | Tuolumne City                 | 5-14<br>9-2 | 6.14 ± 4.68<br>2.47 ± 3.38  | 0.00 ± 4.13<br>1.97 ± 3.38         | 1.23 ± 0.66                        | 0.42 ± 0.42                |
| 318 | Tuolumne River      | Don Pedro Dam                 | 5-14<br>9-1 | 9.57 ± 4.90                 | 0.00 ± 4.18<br>4.22 ± 4.03         | 0.51 ± 0.46<br>0.00 ± 0.25         | 1.07 ± 0.56<br>0.35 ± 0.50 |
| 32  | Merced River        | Stevinson                     | 5-4<br>9-10 | 3.79 ± 5.27<br>3.33 ± 4.24  | 0.25 ± 4.19<br>0.00 ± 4.09         | $0.41 \pm 0.43$<br>$0.27 \pm 0.43$ | 0.53 ± 0.53<br>0.26 ± 0.32 |
| 32& | Merced River        | Exchequer Dam                 | 5-6<br>9-1  | 4.04 ± 4.22<br>0.00 ± 3.89  | 3.21 ± 4.19<br>0.36 ± 3.90         | 0.10 ± 0.51<br>0.09 ± 0.32         | 0.21 ± 0.42                |
| 335 | Kings River         | Pine Flat Dam                 | 5-1<br>9-1  | 7.52 ± 4.34<br>4.77 ± 4.00  | $6.65 \pm 4.31$<br>$6.11 \pm 4.03$ | 0.41 ± 0.63<br>0.00 ± 0.40         | 1.07 ± 0.55                |
| 33c | Kings River         | North Fork                    | 5-1<br>9-1  | 8.29 ± 4.67<br>5.80 ± 4.29  | 2.99 ± 4.21<br>4.00 ± 4.24         | 0.31 ± 0.51<br>0.00 ± 0.36         | 0.42 ± 0.36<br>0.97 ± 0.56 |
| 34  | Kings River         | Peoples Weir                  | 5-5         | 11.88 ± 4.89<br>0.00 ± 4.34 | 6.42 ± 4.37<br>0.00 ± 4.23         | 0.61 ± 0.63<br>0.17 ± 0.41         | 0.64 ± 0.51                |
| 35  | Kaweah River        | Three Rivers                  | 5-5         | 8.37 ± 6.03<br>3.77 ± 4.54  | 6.73 ± 4.38<br>0.97 ± 4.44         | 0.31 ± 0.61<br>0.09 ± 0.27         | 0.20 ± 0.45<br>0.37 ± 0.44 |
| 36  | Kern River          | Bakersfield                   | 5-5         | 2.05 ± 5.92<br>5.16 ± 4.39  | 2.87 ± 4.35<br>0.00 ± 4.19         | 0.42 ± 0.70                        | 0.40 ± 0.50<br>0.84 ± 0.60 |

TABLE B-9

CENTRAL VALLEY REGION (NO. 5) (continued)

| 243 | i                          |              | -           |                                       | Micro-micr                 | Micro-micro curies per liter |                            |
|-----|----------------------------|--------------|-------------|---------------------------------------|----------------------------|------------------------------|----------------------------|
| ž ė | Stream                     | Near         | 1959        | Dissolved Beta                        | Solid Beta                 | Dissolved Alpha              | Solid Alpha                |
| 36a | Kern River                 | Isabella Dam | 9-5         | 0.00 ± 3.50                           | 8.11 ± 4.43                | 0.53 ± 0.61                  | 0.60 ± 0.45                |
| 36b | Kern River                 | Kernville    | 9-9         | 0.00 ± 3.55                           | 0.93 ± 4.53                | 0.53 ± 0.40                  | 0.40 ± 0.38                |
| 41  | Clear Lake                 | Lakeport     | 5-13<br>9-3 | 0.91 ± 3.70<br>8.91 ± 3.98            | 0.00 ± 4.50<br>6.50 ± 4.09 | 0.10 ± 0.64<br>0.00 ± 0.61   | 0.20 ± 0.45                |
| 745 | Cache Creek                | Lower Lake   | 5-13<br>9-3 | $1.5^{4} \pm 3.59$<br>$2.55 \pm 3.53$ | 4.08 ± 4.49<br>2.50 ± 3.53 | 0.85 ± 0.84<br>0.17 ± 0.35   | 0.40 ± 0.50<br>0.35 ± 0.46 |
| 78  | Bear River                 | Wheatland    | 5-11        | 0.00 ± 3.48                           | 0.00 ± 4.21                | 6η·0 ∓ 00·0                  | 0.00 ± 0.45                |
| 79  | Cache Creek,<br>North Fork | Lower Lake   | 5-13<br>9-3 | 0.00 ± 3.37<br>0.19 ± 3.73            | 4.51 ± 4.11<br>2.55 ± 3.78 | 0.85 ± 0.56<br>0.09 ± 0.25   | 0.20 ± 0.53<br>0.00 ± 0.14 |
| 8   | Cache Creek                | Capay        | 5-11<br>9-4 | 2.22 ± 3.30<br>7.58 ± 4.09            | 3.52 ± 4.10<br>7.38 ± 4.04 | 0.21 ± 0.47<br>0.26 ± 0.25   | 0.50 ± 0.60<br>0.35 ± 0.29 |
| 81  | Putah Creek                | Winters      | 5-11<br>9-4 | 5.81 ± 3.40<br>0.67 ± 5.17            | 3.80 ± 4.01<br>0.84 ± 4.18 | 0.10 ± 0.44<br>0.00 ± 0.20   | 0.29 ± 0.47<br>0.26 ± 0.38 |
| 48  | Butte Creek                | Chico        | 9-1         | 5.94 ± 4.39                           | 0.00 ± 4.23                | 0.00 ± 0.32                  | 0.00 ± 0.20                |
| 85  | Big Chico<br>Creek         | Chico        | 9-1         | 5.25 ± 4.44                           | 0.50 ± 4.34                | 0.37 ± 0.37                  | 0.18 ± 0.30                |
| 85a | Big Chico<br>Creek         | Chico        | 5-8         | 2.22 ± 3.47                           | 2.56 ± 4.03                | 0.15 ± 0.36                  | 0.60 ± 0.55                |
| 84  | Colusa Trough              | Colusa       | 5-4<br>9-7  | 5.35 ± 3.58<br>3.87 ± 4.49            | 1.88 ± 4.00<br>0.00 ± 4.39 | 0.63 ± 0.60<br>0.28 ± 0.34   | 0.10 ± 0.36<br>0.00 ± 0.21 |

# RADIOASSAY OF SURFACE WATERS

|      |                        |                   |             | (continued)                     |                            |                              |                            |
|------|------------------------|-------------------|-------------|---------------------------------|----------------------------|------------------------------|----------------------------|
| Sta. | Stream                 | Nea               | Date        |                                 | Micra-mic                  | Micra-micro curies per liter |                            |
| No.  |                        |                   | 1959        | Dissalved Beta                  | Salid Beta                 | Dissolved Alpha              | Solid Alpha                |
| 87.  | Sacramento<br>River    | Butte City        | 8-6         | 1.68 ± 4.64                     | 0.00 ± 4.49                | 0.00 ± 0.20                  | 0.09 ± 0.24                |
| 88   | Mill Creek             | Los Molinos       | 9-1         | 7.44 ± 4.64                     | 0.00 ± 4.44                | 0.34 ± 0.35                  | 0.43 ± 0.32                |
| 888  | Cow Creek              | Millville         | 5-15<br>9-1 | 5.84 ± 3.50<br>0.00 ± 3.98      | 0.00 ± 4.01                | 0.10 ± 0.68<br>0.09 ± 0.31   | 0.60 ± 0.55<br>0.09 ± 0.14 |
| 88   | Battle Creek           | Cottonwood        | 5-15<br>9-1 | 2.79 ± 3.95<br>14.94 ± 4.39     | 1.41 ± 4.05<br>5.20 ± 4.08 | 0.00 ± 0.55<br>0.17 ± 0.34   | 0.60 ± 0.55                |
| 988  | Antelope Creek         | Mouth             | 5-11<br>9-1 | $0.31 \pm 4.70$ $1.03 \pm 4.03$ | 0.00 ± 4.01                | 0.00 ± 0.47                  | 0.40 ± 0.55<br>0.09 ± 0.32 |
| 88   | Antelope Creek         | Red Bluff         | 5-11        | 9.49 ± 4.85                     | 3.49 ± 4.43                | 0.10 ± 0.15                  | 0.55 ± 0.53                |
| 888  | Paynes Creek           | Red Bluff         | 5-15<br>9-1 | 12.05 ± 5.00                    | 0.28 ± 4.21<br>2.61 ± 4.08 | 0.50 ± 0.36<br>0.09 ± 0.14   | 0.27 ± 0.40                |
| 84   | Delta-Mendota<br>Canal | Mendota           | 5-4<br>9-10 | 9.12 ± 6.20<br>0.00 ± 3.93      | 1.21 ± 4.00                | 0.30 ± 0.36<br>0.00 ± 0.18   | 0.27 ± 0.37<br>0.00 ± 0.18 |
| 928  | Selt Slough            | San Luis<br>Ranch | 5-4<br>9-10 | 4.90 ± 6.08<br>3.37 ± 3.72      | 2.14 ± 4.15<br>0.78 ± 3.64 | 0.40 ± 0.38<br>0.09 ± 0.33   | 0.27 ± 0.26                |
| 93   | Delta-Mendota<br>Canal | Tracy             | 7-6         | 7.58 ± 4.29                     | 1.61 ± 4.13                | 0.27 ± 0.25                  | 0.09 ± 0.25                |
| 46   | Cosumnes River         | Michigan Bar      | 9-1         | 1.32 ± 4.39                     | 0.59 ± 4.39                | 0.09 ± 0.33                  | 0.00 ± 0.29                |
| 946  | Cosumnes River         | McConnell         | 9-9         | 3.07 ± 6.00                     | 2.53 ± 4.10                | 0.40 ± 0.50                  | 0.09 ± 0.40                |

TABLE B-9

|      |                          |                        | CENTRAL | CENTRAL VALLEY REGION (NO. 5) (continued) |             |                              |              |
|------|--------------------------|------------------------|---------|-------------------------------------------|-------------|------------------------------|--------------|
| Sta. | Ctream                   | N TOON                 | Date    |                                           | Micro-micro | Micro-micro curies per liter |              |
| No.  |                          |                        | 1959    | Dissolved Beta                            | Solid Beta  | Dissolved Alpha              | Solid Alpha  |
| 95а  | Elder Creek              | Gerber                 | 5-12    | 0.62 ± 5.95                               | 0.70 ± 4.12 | 0.30 ± 0.47                  | 0.37 ± 0.53  |
| 95b  | Thomes Creek             | Mouth                  | 5-12    | 2.08 ± 5.30                               | 3.69 ± 3.35 | 0.30 ± 0.52                  | 0°00 ± 0°148 |
| %    | Delta Cross<br>Channel   | Walnut Grove           | 7-6     | 3.79 ± 4.21                               | 5.42 ± 4.27 | 0.43 ± 0.37                  | 0.17 ± 0.35  |
| 66   | Little Potato<br>Slough  | Terminous              | 1-6     | 6.51 ± 4.39                               | 0.00 ± 4.18 | 0.17 ± 0.28                  | 0.17 ± 0.28  |
| 100  | Stockton Ship<br>Channel | Rindge Island          | 9-11    | 6.43 ± 4.35                               | 1.68 ± 4.23 | 0.09 ± 0.39                  | 0.00 ± 0.33  |
| 101  | San Joaquin<br>River     | Garwood Bridge         | 9-11    | 2.21 ± 3.77                               | 0.00 ± 3.67 | ٥.27 ± ٥.44                  | 0,09 ± 0,39  |
| 102  | San Joaquin<br>River     | Mossdale Bridge        | 9-11    | 3.25 ± 3.37                               | 0.00 ± 3.21 | 0.44 ± 0.33                  | 0.54 ± 0.46  |
| 103  | Old River                | Tracy                  | 9-11    | 9.21 ± 3.52                               | 6.88 ± 3.18 | 0.09 ± 0.14                  | 0.71 ± 0.41  |
| 103& | Grant Line<br>Canal      | Tracy Road<br>Bridge   | 9-11    | 6.99 ± 5.15                               | 5.36 ± 4.34 | 0.26 ± 0.32                  | 0.09 ± 0.32  |
| 104  | Old River                | Clifton Court<br>Ferry | 8-6     | 0.84 ± 4.34                               | 0.06 ± 4.28 | 0.00 ± 0.52                  | 0.53 ± 0.46  |
| 901  | Italian Slough           | Mouth                  | 8-6     | 4.52 ± 4.55                               | 0.42 ± 4.49 | 0.17 ± 0.44                  | 0.34 ± 0.34  |
| 107  | Indian Slough            | Brentwood              | 8-6     | 4.13 ± 4.79                               | 0.00 ± 4.59 | 0.17 ± 0.28                  | 44.0 ± 48.0  |
| 108  | Old River                | Orwood Bridge          | 8-6     | 0.00 ± 4.54                               | 7.86 ± 4.80 | 0.09 ± 0.25                  | 0.61 ± 0.48  |

TABLE B-9

|      |                     |                      |      | (continued)                 |                            |                              |                            |
|------|---------------------|----------------------|------|-----------------------------|----------------------------|------------------------------|----------------------------|
| Sto. | Chromm              | Negr                 | Date |                             | Micro-micr                 | Micro-micro curies per liter |                            |
| No.  |                     |                      | 1959 | Dissolved Beta              | Solid Beta                 | Solid Beta   Dissolved Alpha | Solid Alpha                |
| 109  | Rock Slough         | Knightsen            | 8-6  | 3.68 ± 4.52                 | 5.03 ± 4.54                | 5.03 ± 4.54 0.09 ± 0.32      | 0.26 ± 0.32                |
| 110  | Lindsey Slough      | Rio Vista            | 7-6  | 0.00 ± 4.32                 | 0.00 ± 4.35                | 0.18 ± 0.30                  | 0.28 ± 0.40                |
| 1118 | Bear Creek          | Merced               | 5-6  | 12.36 ± 4.00<br>3.73 ± 4.23 | 6.39 ± 3.45<br>0.56 ± 4.13 | 0.20 ± 0.50                  | 0.37 ± 0.57<br>0.18 ± 0.43 |
| 112  | Old River           | Mandeville<br>Island | 9-11 | 10.95 ± 4.53                | 0.00 ± 4.18                | 0.26 ± 0.48                  | 0.09 ± 0.38                |
| 113  | Fresno River        | Daulton              | 9-5  | 9.49 ± 3.90                 | 8.45 ± 3.45                | 0.70 ± 0.65                  | 0.55 ± 0.53                |
| 117  | Chowchilla<br>River | Buchanan Dam<br>Site | 9-5  | 2.90 ± 3.85                 | 11.55 ± 3.50               | 0.40 ± 0.55                  | 0.64 ± 0.55                |



TABLE B-10
RADIOASSAY OF SURFACE WATERS

### LAHONTAN REGION (NO. 6)

| Sta. | Stream                     | Negr         | Date        |                            | Micro-micr                 | Micro-micro curies per liter |                            |
|------|----------------------------|--------------|-------------|----------------------------|----------------------------|------------------------------|----------------------------|
| No.  |                            |              | 1959        | Dissolved Beta             | Solid Beta                 | Dissolved Alpha              | Solid Alpha                |
| 170  | Susan River                | Susanville   | 5-7<br>9-10 | 4.16 ± 3.50<br>7.64 ± 4.63 | 4.03 ± 3.00<br>0.00 ± 4.41 | 0.30 ± 0.52<br>0.26 ± 0.32   | 0.55 ± 0.53<br>0.00 ± 0.53 |
| 37   | Lake Tahoe                 | Tahoe Vista  | 5-14<br>9-2 | 3.64 ± 3.57<br>1.07 ± 4.04 | 7.55 ± 3.25<br>2.81 ± 4.09 | 0.70 ± 0.58<br>0.00 ± 0.43   | 0.18 ± 0.37<br>0.33 ± 0.51 |
| 38   | Lake Tahoe                 | Tahoe City   | 5-14<br>9-2 | 5.10 ± 3.52<br>5.56 ± 3.87 | 3.55 ± 3.55<br>2.67 ± 3.78 | 0.10 ± 0.38<br>0.00 ± 0.27   | 0.37 ± 0.55<br>0.00 ± 0.43 |
| 39   | Lake Tahoe                 | Bijou        | 5-14<br>9-2 | 7.23 ± 3.60<br>2.64 ± 3.23 | 3.77 ± 4.45<br>0.00 ± 3.15 | 0.10 ± 0.42                  | 0.37 ± 0.56                |
| 52   | Truckee River              | Truckee      | 5-14<br>9-2 | 9.49 ± 4.15<br>1.03 ± 2.90 | 8.54 ± 3.72<br>1.26 ± 2.90 | 0.30 ± 0.36                  | 0.55 ± 0.56                |
| 53   | Truckee River              | Fared        | 5-14<br>9-2 | 2.76 ± 4.03<br>6.37 ± 3.47 | 7.78 ± 3.90<br>3.09 ± 3.37 | 0.30 ± 0.36<br>0.00 ± 0.25   | 0.27 ± 0.40<br>0.44 ± 0.44 |
| 1115 | Carson diver,<br>East Fork | Markleeville | 9-3         | 0.84 ± 3.72                | 2.81 ± 3.78                | 0.00 ± 0.40                  | 0.43 ± 0.55                |
| 115a | Carson River,<br>West Fork | Woodfords    | 5-15<br>9-3 | 4.16 ± 3.50<br>8.79 ± 3.79 | 0.96 ± 3.25<br>6.04 ± 3.66 | 0.00 ± 0.31<br>0.33 ± 0.43   | 0.54 ± 0.42                |
| 911  | Walker River,<br>West      | Coleville    | 5-15        | 4.16 ± 3.55<br>0.64 ± 3.45 | 6.54 + 3.44                | 0.20 ± 0.22<br>0.17 ± 0.27   | 0.26 ± 0.33                |
| 116a | Walker River,<br>East      | Bridgeport   | 9-3         | 0.36 ± 3.83                | 0.00 ± 3.82                | 0.33 ± 0.43                  | 0.33 ± 0.51                |



TABLE B-11
RADIOASSAY OF SNOW
CENTRAL VALLEY REGION (NO. 5)

| Stream basin      | : Snow survey course<br>: | Date<br>1959 | Gross radioactivity<br>in micro-micro<br>curies per liter |
|-------------------|---------------------------|--------------|-----------------------------------------------------------|
| American River    | Phillips                  | 1-30         | 980 ± 15                                                  |
|                   |                           | 2-27         | 240 ± 8                                                   |
|                   |                           | 3-31         | 1080 ± 15                                                 |
| Feather River     | Harkness Flat             | 2-28         | 890 ± 15                                                  |
|                   |                           | 3-30         | 625 ± 10                                                  |
|                   |                           | 4-29         | 570 ± 10                                                  |
|                   | Lower Lake Helen          | 1-29         | 900 ± 15                                                  |
|                   |                           | 2-26         | 410 ± 9                                                   |
|                   |                           | 4-1          | 900 ± 15                                                  |
|                   |                           | 4-30         | 290 ± 9                                                   |
| Kings River       | Sand Meadow               | 2-2          | 700 ± 10                                                  |
|                   |                           | 2-26         | 1270 ± 15                                                 |
|                   |                           | 3-27         | 940 ± 15                                                  |
|                   |                           | 4-291        | 1090 ± 15                                                 |
| Mokelumne River   | Lumberyard Ranger Station | 2-3          | 1530 ± 15                                                 |
|                   |                           | 3-2          | 470 ± 10                                                  |
|                   |                           | 4-3          | 580 ± 10                                                  |
| San Joaquin River | Kaiser Pass Meadow        | 2-3          | 640 ± 10                                                  |
| *                 |                           | 2-26         | 1020 ± 15                                                 |
|                   |                           | 3-26         | 490 ± 10                                                  |
|                   |                           | 4-30         | 180 ± 7                                                   |
| Tuolumne River    | Gin Flat                  | 1-29         | 1390 ± 45                                                 |
|                   |                           | 2-25         | 1010 ± 15                                                 |
|                   |                           | 3-30         | 570 ± 15                                                  |
|                   |                           | 4-23         | 1440 ± 25                                                 |
|                   | Horse Camp Lodge          | 1-30         | 470 ± 10                                                  |
|                   | 10-                       | 2-27         | 210 ± 8                                                   |
|                   |                           |              |                                                           |

<sup>1</sup> Collected from Dodson's Meadow - Sand Meadow under water of Courtright Reservoir.

TABLE B-11
RADIOASSAY OF SNOW

#### LAHONTAN REGION (NO. 6)

| Stream basin | : Snow survey course | Date 1959                 | Gross radioactivity<br>in micro-micro<br>curies per liter |
|--------------|----------------------|---------------------------|-----------------------------------------------------------|
| Owens River  | Upper Minarettes     | 2-6<br>3-4<br>3-31<br>5-1 | 720 ± 10<br>640 ± 10<br>640 ± 10<br>1180 ± 15             |



















THIS BOOK IS DUE ON THE LAST DATE
STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

gain - i war

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-50m-8,'63(D995484)458

Call Numbers

TC82ls



PHYSICAL SCIENCES LIBRARY

306011

California. Dept. of

Water Resources.

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS 306014

